
EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 18

1 / 1



Overview

Overview of iterative methods

Arnoldi algorithm

Krylov subspace

2 / 1



Reading

Chapter 32-34 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 9-10 of Matrix Computations by Gene Golub and Charles
Van Loan

3 / 1



Direct and iterative methods

Direct methods:
I solve the problem by a finite sequence of operations,
I and in the absence of rounding errors, would deliver an exact solution

(like solving a linear system of equation Ax = b by Gaussian
elimination)

I operate directly on elements of a matrix
I for general matrices require O(m3)

Iterative methods:
I solve a problem by finding successive approximations to the solution

starting from an initial guess
I usually the only choice for nonlinear equations
I often useful even for linear problems involving a large number of

variables where direct methods would be prohibitively expensive
I exploit sparsity structure that operate in O(m2)

4 / 1



Matrix computation

Thumbnail history of matrix computation for “very large” dense
direct matrix computation

1950: m = 20 Wilkinson
1960: m = 200 Forsythe and Moler
1980: m = 2000 LINPACK
1995: m = 20000 LAPACK
2010: m =? ?

Matrix dimensions: increase by a factor of 103

Computer hardware: increase by a factor of 109 (FLOPS)

Roughly the O(m3) bottleneck of direct matrix algorithms

If matrix problems could be solved in O(m2) instead, some of the
matrices might be 10 to 100 times larger

5 / 1



Structure, sparsity, and black boxes

For example, a finite difference discretization of a partial differential
equation may lead to matrix of dimension m = 105 with only ν = 10
non-zero entries per row

Iterative methods exploit sparsity structure

Iterative methods use a matrix in the form of a black box

The iterative algorithm requires nothing more than the ability to
determine Ax for any x

For sparse matrix A, easy to design a procedure to compute Ax in
only O(νm) rather than O(m2) operations

Marked contrast to direct methods such as Gaussian or Householder
triangularization (which explicitly manipulate matrix entries to
introduce zeros, but may destroy sparsity structure)

6 / 1



Projection into Krylov subspaces

The iterative methods are based on the idea of projecting an
m-dimensional problem into a lower-dimensional Krylov subspace

Given a matrix A and a vector b, the associated Krylov sequence is
the set of vector b, Ab, A(Ab), A(A(Ab)), . . .

The corresponding Krylov subspaces are the spaces spanned by
successively larger groups of these vectors

The algorithms can be categorized as

Ax = b Ax = λx

A = A∗ Conjugate gradients Lanczos

A 6= A∗ GMRES, CGN, BCG, et al. Arnoldi

The result of projection into the Krylov subspaces is that the original
matrix problem is reduced to a sequence of matrix problems of
dimension n = 1, 2, 3, . . .

When A is Hermitian, the reduced matrices are tridiagonal, otherwise
they have Hessenberg form

7 / 1



Number of steps, work per step, and preconditioning

Gaussian elimination, QR factorization, and most other algorithms of
dense linear algebra: there are O(m) steps, each requiring O(m2)
work, for a total work estimate of O(m3)

For iterative methods, the same figures still apply, but now they
represent a typical worst-case behavior

When iterative methods succeed, they may reduce one or both factors

The ideal iterative method reduces the number of steps from m to
O(1) and the work per step from O(m2) to O(m), reducing the total
work from O(m3) to O(m)

A more typical improvement is from O(m3) to O(m2)

In a practical large-scale engineering computation of the mid-1990s
(e.g., m = 20, 000), they beat direct algorithms by a factor on the
order of 10

8 / 1



Exact vs. approximate solutions

Iterative methods are approximate in the sense that in principle they
do not deliver exact answers

Even direct methods are inexact when carried out on a computer, i.e.,
up to machine precision

Under favorable circumstances, iterative methods converge
geometrically until the residual is on the oder of machine precision,
εmachine

The direct method makes no progress at all until O(m3) operations
are computed, at which point the residual is again on the oder of
εmachine

Note that there are direct methods that beat O(m3), however they do
not scale well

9 / 1



The Arnoldi iteration

Most iterative methods are built upon Arnoldi process

Gram-Schmidt style iteration for transforming a matrix into
Hessenberg form

Recall for QR factorization, we can use
I Householder reflections (batch algorithm)
I Gram-Schmidt orthogonalization (anytime algorithm)

Recall we use similarity transforms to reduce a matrix into Hessenberg
form, A = QHQ∗, and we can use

I Householder reflections (batch algorithm)
I Arnoldi method (anytime algorithm)

A = QR A = QHQ∗

orthogonal structuring Householder Householder

structured orthogonalization Gram-Schmidt Arnoldi

Consider a m ×m real or complex matrix A and m > n and
‖ · ‖ = ‖ · ‖2

10 / 1



Mechanics of the Arnoldi iteration

A complete reduction of A to Hessenberg form by an orthogonal
similarity transformation can be written as A = QHQ∗ or AQ = QH

For iterative methods, we take the view that m is huger of infinite (so
computing the full reduction is not feasible)

Instead, consider the first n columns of AQ = QH and let Qn be the
m × n matrix whose columns are the first columns of Q

Qn =

[
q1

∣∣∣∣∣q2
∣∣∣∣∣ · · ·

∣∣∣∣∣qn
]

Let H̃n be the (n + 1)× n upper left section of H, which is also a
Hessenberg matrix

H̃n =


h11 · · · h1n
h21 h22

. . .
. . .

...
hn,n−1 hnn

hn+1,n


11 / 1



Mechanics of the Arnoldi iteration (cont’d)
We have

AQn = Qn+1H̃n

A

[
q1

∣∣∣∣∣ · · ·
∣∣∣∣∣qn
]

=

[
q1

∣∣∣∣∣ · · ·
∣∣∣∣∣qn+1

]
h11 · · · h1n
h21 h22

. . .
. . .

...
hn,n−1 hnn

hn+1,n


Aq1 = h11q1 + h21q2

Aq2 = h12q1 + h22q2 + h32q3

The n-th column of this equation can be written as

Aqn = h1nq1 + · · ·+ hnnqn + hn+1,nqn+1

That is, qn+1 satisfies an (n + 1)-term recurrence relation involving
itself and the previous Krylov vectors
The Arnoldi iteration is simply the modified Gram-Schmidt iteration
that implements the above equation

12 / 1



Arnoldi iteration

Arnoldi iteration:

Initialize b as a random vector, q1 = b
‖b‖

for n = 1, 2, 3, . . . do
v = Aqn
for j = 1 to n do

hjn = q∗j v
v = v − hjnqj

end for
hn+1,n = ‖v‖
qn+1 = v/hn+1,n

end for

Can be implemented in a few lines using MATLAB

The matrix A appears only in the product of Aqn which can be
computed efficiently (e.g., as a black box procedure)

13 / 1



QR factorization of a Krylov matrix

The power of the Arnoldi process lies in its interpretations

Aqn = h1nq1 + · · ·+ hnnqn + hn+1,nqn+1

The vectors {qi} form bases of the successive Krylov subspaces
generated by A and b

Kn = 〈b,Ab, . . . ,An−1b〉 = 〈q1,q2, . . . ,qn〉 ⊆ Cm

Since the vectors qj are orthonormal, these are orthonormal bases

The Arnoldi process can be described as the systematic construction
of orthonormal bases for successive Krylov subspaces

Define Kn as the m × n Krylov matrix

Kn =

[
b

∣∣∣∣∣Ab
∣∣∣∣∣ · · ·

∣∣∣∣∣An−1b

]
(1)

Then Kn must have a reduced QR factorization

Kn = QnRn (2)

where Qn is the same matrix as before
14 / 1



QR factorization of a Krylov matrix (cont’d)

In the Arnoldi process, neither Kn nor Rn is formed explicitly

Working with an explicit approach would make for an unstable
algorithm, since these are exceedingly ill-conditioned matrices in
general, as the columns of Kn all tend to approximate the same
dominant eigenvector of A

Clearly Kn might be expected to contain good information about the
eigenvalues of A with largest modulus

The QR factorization might be expected to reveal the information by
peeling off one approximate eigenvector after another, starting with
dominant one

direct iterative

straightforward but unstable simultaneous iteration (1)-(2)

subtle but stable QR algorithm Arnoldi

15 / 1



Projection onto Krylov subspaces

Another way to view the Arnoldi process is as a computation of
projections onto successive Krylov subspaces

Note that the product Q∗nQn+1 is the n × (n + 1) matrix with 1 on
the main diagonal and 0 elsewhere

Thus Q∗nQn+1H̃n is the n × n Hessenberg matrix obtained by

removing the last row of H̃n

Hn =


h11 · · · h1n
h21 h22

. . .
. . .

...
hn,n−1 hnn


and with AQn = Qn+1H̃n, we have

Hn = Q∗nAQn

The matrix Hn can be interpreted as the representation in the basis
{qq, . . . ,qn} of the orthogonal projection of A onto Kn

16 / 1



Projection onto Krylov subspaces (cont’d)

Consider the linear operator Kn → Kn defined as follows: given
v ∈ Kn, apply A to it, then orthogonally project Av back into the
space Kn

Since the orthogonal projector of CM onto Kn is QnQ
∗
n , this operator

can be written QnQ
∗
nA with respect to the standard basis of Cm

With respect to the basis of columns of Qn, it can therefore be
written Q∗nAQn

Used frequently in applied and numerical mathematics

Known as Rayleigh-Ritz procedure in another context

Not coincidentally, in the diagonal elements of Hn one recognizes the
Rayleigh quotients of A with respect to the vectors qj

Also one of the ideas underlying finite element methods for solution of
partial differential equations, and spectral methods

17 / 1



Projection onto Krylov subspaces (cont’d)
Since Hn is a projection of A, one might imagine that its eigenvalues
would be related to those of A in a useful fashion
These n numbers

{θj} = {eigenvalues of Hn}
are called the Arnoldi eigenvalue estimates (at step n) or Ritz values
(with respect to Kn of A)
Some of these numbers may be extraordinarily accurate
approximations to some of the eigenvalues of A, even for n� m

Theorem

The matrices Qn generated by the Arnoldi iteration are reduced QR factors
of the Krylov matrix

Kn = QnRn

The Hessenberg matrices Hn are the corresponding projections

Hn = Q∗nAQn

and the successive iterates are related by the formula

AQn = Qn+1H̃n
18 / 1



Computing eigenvalues by the Arnoldi iteration
The Arnoldi iteration has two roles

I the basis of many of the iterative algorithms of numerical linear algebra
I find eigenvalues of non-Hermitian matrices

At each step n, or at occasional steps, the eigenvalues of the
Hessenberg matrix Hn are computed by standard methods such as the
QR algorithm

These are the Arnoldi estimates or Ritz values

Since n� m for feasible computation, one cannot expect to compute
all the eigenvalues of A by this process

Typically, it finds extreme eigenvalues, i.e., eigenvalues near the edge
of the spectrum of A

Physical significance of the eigenvalues of non-Hermitian matrices is
sometimes not as great as supposed

If a matrix is far from normal, i.e., if its eigenvectors are far from
orthogonal, implies that its eigenvalues are ill-conditioned

Then the eigenvalues may have little to do with how a physical
system governed by the matrix actually behaves

19 / 1



Arnoldi and polynomial approximation
Let x be a vector in the Krylov subspace Kn which can be written as
a linear combination of powers of A times b

x = c0b + c1Ab + c2A
2b + · · ·+ cn−1A

n−1b

i.e., x is a polynomial in A times b
That is, if q is the polynomial q(z) = c0 + c1z + · · ·+ cn−1zn−1, then
we have

x = q(A)b

Krylov subspace iterations can always be analyzed in terms of matrix
polynomials
Define

Pn = {monic polynomials of degrees n}
(Note superscript n here does not indicate power)
Arnoldi/Lanczos approximation problem
Find pn ∈ Pn such that

‖pn(A)b‖ = minimum

20 / 1



Arnoldi and polynomial approximation (cont’d)

Theorem

As long as the Arnoldi iteration does not break down (i.e., Kn is of full
rank n), it has a unique solution pn, namely, the characteristic polynomial
of Hn

First note that if p ∈ Pn, then the vector p(A)b can be written
p(A)b = Anb− Qny for some y ∈ Cn where Qn is defined as before
(Qn is the orthogonal matrix in similarity transform)

Equivalent to a linear least squares problem: find the point in the Kn

closest to Anb, or in the matrix terms, find y such that ‖Anb− Qny‖
is minimal

The solution is characterized by the orthogonality condition
pn(A)b⊥Kn, or equivalently Q∗np

n(A)b = 0

21 / 1



Arnoldi and polynomial approximation (cont’d)

Now consider the factorization A = QHQ∗ as discussed before

At step n of the Arnoldi process, we have computed the first n
columns of Q and H, and thus

Q =
[
Qn U

]
, H =

[
Hn X1

X2 X3

]
for some m × (m − n) matrix U with orthonormal columns that are
also orthogonal to the columns Qn and some matrices X1, X2, and X3

of dimensions n × (m − n), (m − n)× n, and (m − n)× (m − n),
respectively with all but the upper right entry of X2 equal to 0

22 / 1



Arnoldi and polynomial approximation (cont’d)

The orthogonality condition becomes Q∗nQp
n(H)Q∗b = 0, which

amounts to the condition that the first n entries of the first column of
pn(H) are zero (as only the first entry of Q∗b is nonzero)

Because of the structure of H, these are also the first n entries of the
first column of pn(Hn)

By the Cayley-Hamilton theorem, that these are zero if pn is the
characteristic polynomial of Hn

Conversely, suppose there were another polynomial pn(A)b⊥Kn

Taking the difference would give a nonzero polynomial q of degree
n− 1 with q(A)b = 0, violating the assumption that Kn is of full rank

23 / 1



Arnoldi and polynomial approximation (cont’d)

The goal of the Arnoldi iteration is to solve a polynomial
approximation problem, or equivalently a least squares problem
involving a Krylov subspace

If the Arnoldi iteration tends to find eigenvalues, it must be a
by-product of achieving this goal

Suppose that A is diagonalizable and has only n� m distinct
eigenvalues, hence a minimal polynomial of degree n

After n steps, all of these eigenvalues will be found exactly at least if
the vector b contains components in directions associated with every
eigenvalue

Thus, after n steps, the Arnoldi iteration has computed the minimal
polynomial of A exactly

In practical applications, the agreement of Ritz values with
eigenvalues is approximate instead of exact, and instead of minimal
polynomial, the result is a pseudo minimal, i.e., a polynomial pn such
that ‖pn(A)‖ is small

24 / 1


