EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 18

Overview

- Overview of iterative methods
- Arnoldi algorithm
- Krylov subspace

Reading

- Chapter 32-34 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 9-10 of Matrix Computations by Gene Golub and Charles Van Loan

Direct and iterative methods

- Direct methods:
- solve the problem by a finite sequence of operations,
- and in the absence of rounding errors, would deliver an exact solution (like solving a linear system of equation $A \mathbf{x}=\mathbf{b}$ by Gaussian elimination)
- operate directly on elements of a matrix
- for general matrices require $O\left(\mathrm{~m}^{3}\right)$
- Iterative methods:
- solve a problem by finding successive approximations to the solution starting from an initial guess
- usually the only choice for nonlinear equations
- often useful even for linear problems involving a large number of variables where direct methods would be prohibitively expensive
- exploit sparsity structure that operate in $O\left(m^{2}\right)$

Matrix computation

- Thumbnail history of matrix computation for "very large" dense direct matrix computation

1950: $m=20$	
1960: $m=200$	Forsyinson
1980: $m=2000$	LINPACK
1995: $m=20000$	
LAPACK	
2010: $m=?$	

- Matrix dimensions: increase by a factor of 10^{3}
- Computer hardware: increase by a factor of 10^{9} (FLOPS)
- Roughly the $O\left(m^{3}\right)$ bottleneck of direct matrix algorithms
- If matrix problems could be solved in $O\left(m^{2}\right)$ instead, some of the matrices might be 10 to 100 times larger

Structure, sparsity, and black boxes

- For example, a finite difference discretization of a partial differential equation may lead to matrix of dimension $m=10^{5}$ with only $\nu=10$ non-zero entries per row
- Iterative methods exploit sparsity structure
- Iterative methods use a matrix in the form of a black box

- The iterative algorithm requires nothing more than the ability to determine $A \mathbf{x}$ for any \mathbf{x}
- For sparse matrix A, easy to design a procedure to compute $A \mathbf{x}$ in only $O(\nu m)$ rather than $O\left(m^{2}\right)$ operations
- Marked contrast to direct methods such as Gaussian or Householder triangularization (which explicitly manipulate matrix entries to introduce zeros, but may destroy sparsity structure)

Projection into Krylov subspaces

- The iterative methods are based on the idea of projecting an m-dimensional problem into a lower-dimensional Krylov subspace
- Given a matrix A and a vector \mathbf{b}, the associated Krylov sequence is the set of vector $\mathbf{b}, A \mathbf{b}, A(A \mathbf{b}), A(A(A \mathbf{b})), \ldots$
- The corresponding Krylov subspaces are the spaces spanned by successively larger groups of these vectors
- The algorithms can be categorized as

	$A \mathbf{x}=\mathbf{b}$	$A \mathbf{x}=\lambda \mathbf{x}$
$A=A^{*}$	Conjugate gradients	Lanczos
$A \neq A^{*}$	GMRES, CGN, BCG, et al.	Arnoldi

- The result of projection into the Krylov subspaces is that the original matrix problem is reduced to a sequence of matrix problems of dimension $n=1,2,3, \ldots$
- When A is Hermitian, the reduced matrices are tridiagonal, otherwise they have Hessenberg form

Number of steps, work per step, and preconditioning

- Gaussian elimination, QR factorization, and most other algorithms of dense linear algebra: there are $O(m)$ steps, each requiring $O\left(m^{2}\right)$ work, for a total work estimate of $O\left(m^{3}\right)$
- For iterative methods, the same figures still apply, but now they represent a typical worst-case behavior
- When iterative methods succeed, they may reduce one or both factors
- The ideal iterative method reduces the number of steps from m to $O(1)$ and the work per step from $O\left(m^{2}\right)$ to $O(m)$, reducing the total work from $O\left(m^{3}\right)$ to $O(m)$
- A more typical improvement is from $O\left(m^{3}\right)$ to $O\left(m^{2}\right)$
- In a practical large-scale engineering computation of the mid-1990s (e.g., $m=20,000$), they beat direct algorithms by a factor on the order of 10

Exact vs. approximate solutions

- Iterative methods are approximate in the sense that in principle they do not deliver exact answers
- Even direct methods are inexact when carried out on a computer, i.e., up to machine precision
- Under favorable circumstances, iterative methods converge geometrically until the residual is on the oder of machine precision, $\varepsilon_{\text {machine }}$
- The direct method makes no progress at all until $O\left(m^{3}\right)$ operations are computed, at which point the residual is again on the oder of $\varepsilon_{\text {machine }}$
- Note that there are direct methods that beat $O\left(m^{3}\right)$, however they do not scale well

The Arnoldi iteration

- Most iterative methods are built upon Arnoldi process
- Gram-Schmidt style iteration for transforming a matrix into Hessenberg form
- Recall for QR factorization, we can use
- Householder reflections (batch algorithm)
- Gram-Schmidt orthogonalization (anytime algorithm)
- Recall we use similarity transforms to reduce a matrix into Hessenberg form, $A=Q H Q^{*}$, and we can use
- Householder reflections (batch algorithm)
- Arnoldi method (anytime algorithm)

	$A=Q R$	$A=Q H Q^{*}$
orthogonal structuring	Householder	Householder
structured orthogonalization	Gram-Schmidt	Arnoldi

- Consider a $m \times m$ real or complex matrix A and $m>n$ and $\|\cdot\|=\|\cdot\|_{2}$

Mechanics of the Arnoldi iteration

- A complete reduction of A to Hessenberg form by an orthogonal similarity transformation can be written as $A=Q H Q^{*}$ or $A Q=Q H$
- For iterative methods, we take the view that m is huger of infinite (so computing the full reduction is not feasible)
- Instead, consider the first n columns of $A Q=Q H$ and let Q_{n} be the $m \times n$ matrix whose columns are the first columns of Q

$$
Q_{n}=\left[\mathbf{q}_{1}\left|\mathbf{q}_{2}\right| \cdots \mid \mathbf{q}_{n}\right]
$$

- Let $\widetilde{H_{n}}$ be the $(n+1) \times n$ upper left section of H, which is also a Hessenberg matrix

$$
\widetilde{H_{n}}=\left[\begin{array}{cccc}
h_{11} & & \cdots & h_{1 n} \\
h_{21} & h_{22} & & \\
& \ddots & \ddots & \vdots \\
& & h_{n, n-1} & h_{n n} \\
& & & h_{n+1, n}
\end{array}\right]
$$

Mechanics of the Arnoldi iteration (cont'd)

- We have

$$
\begin{gathered}
A Q_{n}=Q_{n+1} \widetilde{H}_{n} \\
A\left[\mathbf{q}_{1}|\cdots| \mathbf{q}_{n}\right]=\left[\mathbf{q}_{1}|\cdots| \mathbf{q}_{n+1}\right]\left[\begin{array}{cccc}
h_{11} & & \cdots & h_{1 n} \\
h_{21} & h_{22} & & \\
& \ddots & \ddots & \vdots \\
& & h_{n, n-1} & h_{n n} \\
& & h_{n+1, n}
\end{array}\right] \\
A \mathbf{q}_{1}=h_{11} \mathbf{q}_{1}+h_{21} \mathbf{q}_{2} \\
A \mathbf{q}_{2}=h_{12} \mathbf{q}_{1}+h_{22} \mathbf{q}_{2}+h_{32} \mathbf{q}_{3}
\end{gathered}
$$

- The n-th column of this equation can be written as

$$
A \mathbf{q}_{n}=h_{1 n} \mathbf{q}_{1}+\cdots+h_{n n} \mathbf{q}_{n}+h_{n+1, n} \mathbf{q}_{n+1}
$$

- That is, \mathbf{q}_{n+1} satisfies an ($n+1$)-term recurrence relation involving itself and the previous Krylov vectors
- The Arnoldi iteration is simply the modified Gram-Schmidt iteration that implements the above equation

Arnoldi iteration

- Arnoldi iteration:

Initialize \mathbf{b} as a random vector, $\mathbf{q}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$ for $n=1,2,3, \ldots$ do

$$
\begin{aligned}
& \mathbf{v}=A \mathbf{q}_{n} \\
& \text { for } j=1 \text { to } n \text { do }
\end{aligned}
$$

$$
h_{j n}=\mathbf{q}_{j}^{*} \mathbf{v}
$$

$$
\mathbf{v}=\mathbf{v}-h_{j n} \mathbf{q}_{j}
$$

end for
$h_{n+1, n}=\|\mathbf{v}\|$
$\mathbf{q}_{n+1}=\mathbf{v} / h_{n+1, n}$
end for

- Can be implemented in a few lines using MATLAB
- The matrix A appears only in the product of $A \mathbf{q}_{n}$ which can be computed efficiently (e.g., as a black box procedure)

QR factorization of a Krylov matrix

- The power of the Arnoldi process lies in its interpretations

$$
A \mathbf{q}_{n}=h_{1 n} \mathbf{q}_{1}+\cdots+h_{n n} \mathbf{q}_{n}+h_{n+1, n} \mathbf{q}_{n+1}
$$

- The vectors $\left\{\mathbf{q}_{i}\right\}$ form bases of the successive Krylov subspaces generated by A and \mathbf{b}

$$
\mathcal{K}_{n}=\left\langle\mathbf{b}, A \mathbf{b}, \ldots, A^{n-1} \mathbf{b}\right\rangle=\left\langle\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\rangle \subseteq \mathbb{C}^{m}
$$

- Since the vectors \mathbf{q}_{j} are orthonormal, these are orthonormal bases
- The Arnoldi process can be described as the systematic construction of orthonormal bases for successive Krylov subspaces
- Define K_{n} as the $m \times n$ Krylov matrix

$$
\begin{equation*}
K_{n}=\left[\mathbf{b}|A \mathbf{b}| \cdots \mid A^{n-1} \mathbf{b}\right] \tag{1}
\end{equation*}
$$

- Then K_{n} must have a reduced QR factorization

$$
\begin{equation*}
K_{n}=Q_{n} R_{n} \tag{2}
\end{equation*}
$$

where Q_{n} is the same matrix as before

QR factorization of a Krylov matrix (cont'd)

- In the Arnoldi process, neither K_{n} nor R_{n} is formed explicitly
- Working with an explicit approach would make for an unstable algorithm, since these are exceedingly ill-conditioned matrices in general, as the columns of K_{n} all tend to approximate the same dominant eigenvector of A
- Clearly K_{n} might be expected to contain good information about the eigenvalues of A with largest modulus
- The QR factorization might be expected to reveal the information by peeling off one approximate eigenvector after another, starting with dominant one

	direct	iterative
straightforward but unstable	simultaneous iteration	$(1)-(2)$
subtle but stable	QR algorithm	Arnoldi

Projection onto Krylov subspaces

- Another way to view the Arnoldi process is as a computation of projections onto successive Krylov subspaces
- Note that the product $Q_{n}^{*} Q_{n+1}$ is the $n \times(n+1)$ matrix with 1 on the main diagonal and 0 elsewhere
- Thus $Q_{n}^{*} Q_{n+1} \widetilde{H}_{n}$ is the $n \times n$ Hessenberg matrix obtained by removing the last row of \widetilde{H}_{n}

$$
H_{n}=\left[\begin{array}{cccc}
h_{11} & & \cdots & h_{1 n} \\
h_{21} & h_{22} & & \\
& \ddots & \ddots & \vdots \\
& & h_{n, n-1} & h_{n n}
\end{array}\right]
$$

and with $A Q_{n}=Q_{n+1} \widetilde{H_{n}}$, we have

$$
H_{n}=Q_{n}^{*} A Q_{n}
$$

- The matrix H_{n} can be interpreted as the representation in the basis $\left\{\mathbf{q}_{q}, \ldots, \mathbf{q}_{n}\right\}$ of the orthogonal projection of A onto \mathcal{K}_{n}

Projection onto Krylov subspaces (cont'd)

- Consider the linear operator $\mathcal{K}_{n} \rightarrow \mathcal{K}_{n}$ defined as follows: given $\mathbf{v} \in \mathcal{K}_{n}$, apply A to it, then orthogonally project $A \mathbf{v}$ back into the space \mathcal{K}_{n}
- Since the orthogonal projector of \mathbb{C}^{M} onto \mathcal{K}_{n} is $Q_{n} Q_{n}^{*}$, this operator can be written $Q_{n} Q_{n}^{*} A$ with respect to the standard basis of \mathbb{C}^{m}
- With respect to the basis of columns of Q_{n}, it can therefore be written $Q_{n}^{*} A Q_{n}$
- Used frequently in applied and numerical mathematics
- Known as Rayleigh-Ritz procedure in another context
- Not coincidentally, in the diagonal elements of H_{n} one recognizes the Rayleigh quotients of A with respect to the vectors \mathbf{q}_{j}
- Also one of the ideas underlying finite element methods for solution of partial differential equations, and spectral methods

Projection onto Krylov subspaces (cont'd)

- Since H_{n} is a projection of A, one might imagine that its eigenvalues would be related to those of A in a useful fashion
- These n numbers

$$
\left\{\theta_{j}\right\}=\left\{\text { eigenvalues of } H_{n}\right\}
$$

are called the Arnoldi eigenvalue estimates (at step n) or Ritz values (with respect to \mathcal{K}_{n} of A)

- Some of these numbers may be extraordinarily accurate approximations to some of the eigenvalues of A, even for $n \ll m$

Theorem

The matrices Q_{n} generated by the Arnoldi iteration are reduced $Q R$ factors of the Krylov matrix

$$
K_{n}=Q_{n} R_{n}
$$

The Hessenberg matrices H_{n} are the corresponding projections

$$
H_{n}=Q_{n}^{*} A Q_{n}
$$

and the successive iterates are related by the formula

$$
A Q_{n}=Q_{n+1} \widetilde{H_{n}}
$$

Computing eigenvalues by the Arnoldi iteration

- The Arnoldi iteration has two roles
- the basis of many of the iterative algorithms of numerical linear algebra
- find eigenvalues of non-Hermitian matrices
- At each step n, or at occasional steps, the eigenvalues of the Hessenberg matrix H_{n} are computed by standard methods such as the QR algorithm
- These are the Arnoldi estimates or Ritz values
- Since $n \ll m$ for feasible computation, one cannot expect to compute all the eigenvalues of A by this process
- Typically, it finds extreme eigenvalues, i.e., eigenvalues near the edge of the spectrum of A
- Physical significance of the eigenvalues of non-Hermitian matrices is sometimes not as great as supposed
- If a matrix is far from normal, i.e., if its eigenvectors are far from orthogonal, implies that its eigenvalues are ill-conditioned
- Then the eigenvalues may have little to do with how a physical system governed by the matrix actually behaves

Arnoldi and polynomial approximation

- Let \mathbf{x} be a vector in the Krylov subspace \mathcal{K}_{n} which can be written as a linear combination of powers of A times \mathbf{b}

$$
\mathbf{x}=c_{0} \mathbf{b}+c_{1} A \mathbf{b}+c_{2} A^{2} \mathbf{b}+\cdots+c_{n-1} A^{n-1} \mathbf{b}
$$

i.e., \mathbf{x} is a polynomial in A times \mathbf{b}

- That is, if q is the polynomial $q(\mathbf{z})=c_{0}+c_{1} \mathbf{z}+\cdots+c_{n-1} \mathbf{z}^{n-1}$, then we have

$$
\mathbf{x}=q(A) \mathbf{b}
$$

- Krylov subspace iterations can always be analyzed in terms of matrix polynomials
- Define

$$
P^{n}=\{\text { monic polynomials of degrees } n\}
$$

(Note superscript n here does not indicate power)

- Arnoldi/Lanczos approximation problem

Find $p^{n} \in P^{n}$ such that

$$
\left\|p^{n}(A) \mathbf{b}\right\|=\text { minimum }
$$

Arnoldi and polynomial approximation (cont'd)

Theorem

As long as the Arnoldi iteration does not break down (i.e., \mathcal{K}_{n} is of full rank n), it has a unique solution p^{n}, namely, the characteristic polynomial of H_{n}

- First note that if $p \in P^{n}$, then the vector $p(A) \mathbf{b}$ can be written $p(A) \mathbf{b}=A^{n} \mathbf{b}-Q_{n} \mathbf{y}$ for some $\mathbf{y} \in \mathbb{C}^{n}$ where Q_{n} is defined as before (Q_{n} is the orthogonal matrix in similarity transform)
- Equivalent to a linear least squares problem: find the point in the \mathcal{K}_{n} closest to $A^{n} \mathbf{b}$, or in the matrix terms, find \mathbf{y} such that $\left\|A^{n} \mathbf{b}-Q_{n} \mathbf{y}\right\|$ is minimal
- The solution is characterized by the orthogonality condition $p^{n}(A) \mathbf{b} \perp \mathcal{K}_{n}$, or equivalently $Q_{n}^{*} p^{n}(A) \mathbf{b}=0$

Arnoldi and polynomial approximation (cont'd)

- Now consider the factorization $A=Q H Q^{*}$ as discussed before
- At step n of the Arnoldi process, we have computed the first n columns of Q and H, and thus

$$
Q=\left[\begin{array}{ll}
Q_{n} & U
\end{array}\right], \quad H=\left[\begin{array}{ll}
H_{n} & X_{1} \\
X_{2} & X_{3}
\end{array}\right]
$$

for some $m \times(m-n)$ matrix U with orthonormal columns that are also orthogonal to the columns Q_{n} and some matrices X_{1}, X_{2}, and X_{3} of dimensions $n \times(m-n),(m-n) \times n$, and $(m-n) \times(m-n)$, respectively with all but the upper right entry of X_{2} equal to 0

Arnoldi and polynomial approximation (cont'd)

- The orthogonality condition becomes $Q_{n}^{*} Q p^{n}(H) Q^{*} \mathbf{b}=0$, which amounts to the condition that the first n entries of the first column of $p^{n}(H)$ are zero (as only the first entry of $Q^{*} \mathbf{b}$ is nonzero)
- Because of the structure of H, these are also the first n entries of the first column of $p^{n}\left(H_{n}\right)$
- By the Cayley-Hamilton theorem, that these are zero if p^{n} is the characteristic polynomial of H_{n}
- Conversely, suppose there were another polynomial $p^{n}(A) \mathbf{b} \perp \mathcal{K}_{n}$
- Taking the difference would give a nonzero polynomial q of degree $n-1$ with $q(A) \mathbf{b}=0$, violating the assumption that \mathcal{K}_{n} is of full rank

Arnoldi and polynomial approximation (cont'd)

- The goal of the Arnoldi iteration is to solve a polynomial approximation problem, or equivalently a least squares problem involving a Krylov subspace
- If the Arnoldi iteration tends to find eigenvalues, it must be a by-product of achieving this goal
- Suppose that A is diagonalizable and has only $n \ll m$ distinct eigenvalues, hence a minimal polynomial of degree n
- After n steps, all of these eigenvalues will be found exactly at least if the vector \mathbf{b} contains components in directions associated with every eigenvalue
- Thus, after n steps, the Arnoldi iteration has computed the minimal polynomial of A exactly
- In practical applications, the agreement of Ritz values with eigenvalues is approximate instead of exact, and instead of minimal polynomial, the result is a pseudo minimal, i.e., a polynomial p^{n} such that $\left\|p^{n}(A)\right\|$ is small

