
EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 17

1 / 26

Overview

QR algorithm without shifts

Simultaneous iteration

QR algorithm with shifts

Wilkinson shifts

2 / 26

Reading

Chapter 28-29 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 8 of Matrix Computations by Gene Golub and Charles Van
Loan

3 / 26

The QR algorithm

The QR algorithm, dating to the early 1960s, is one of the jewels of
numerical analysis

In its simplest form, it can be viewed as a stable procedure for
computing QR factorizations of the matrix powers A, A2, A3, . . .

Useful for solving eigenvalue problems

4 / 26

Pure QR algorithm

“Pure” QR algorithm:

A(0) = A
for k = 1, 2, . . . do

Q(k)R(k) = A(k−1) // QR factorization of A(k−1)

A(k) = R(k)Q(k) // Recombine factors in reverse order
end for

Take a QR factorization, multiply the computed factors Q and R
together in the reverse order RQ, and repeat

Under suitable assumptions, this simple algorithm converges to a
Schur form for the matrix, upper triangular if A is arbitrary, diagonal
if A is Hermitian

Here we assume A is real and symmetric with real eigenvalues λj and
orthonormal eigenvectors qj , i.e., interest in the convergence of the
matrices A(k) to diagonal form

5 / 26

QR algorithm (cont’d)

The QR algorithm

Q(k)R(k) = A(k−1) // QR factorization ofA(k−1)

A(k) = R(k)Q(k) // Recombine factors in reverse order

Carry out similarity transformation (A 7→ X−1AX)
I triangularize A(k) by forming R(k) = (Q(k))>A(k−1)

I multiply on the right by Q(k) gives A(k) = (Q(k))>A(k−1)Q(k)

Recall if X ∈ Cm×m is nonsingular, then the map A 7→ X−1AX is a
similarity transformation of A

Also recall an eigendecomposition of a square matrix A is a
factorization A = XΛX−1 where X is a nonsingular and Λ is diagonal

6 / 26

QR algorithm (cont’d)

Like Rayleigh quotient iteration, the QR algorithm for real symmetric
matrices converges cubically

However, it must be modified by introducing shifts at each step

The use of shifts is one of the three modifications required to bring it
closer to practical algorithm

I before starting the iteration, A is reduced to tridiagonal form (e.g.,
using Hessenberg reduction)

I instead of A(k), a shifted matrix A(k) − µ(k)I is factored at each step,
where µ(k) is some eigenvalue estimate

I whenever possible, and in particular whenever an eigenvalue is found,
the problem is deflated by breaking A(k) into submatrices

7 / 26

Practical QR algorithm

Practical QR algorithm

(Q(0))>A(0)Q(0) = A // A(0) is a tridiagonalization of A
for k = 1, 2, . . . do

Pick a shift µ(k) // e.g., choose µ(k) = A
(k−1)
mm

Q(k)R(k) = A(k−1)−µ(k)I // QR factorization of A(k−1)−µ(k)I
A(k) = R(k)Q(k) + µ(k)I // Recombine factors in reverse order

If any off-diagonal element A
(k)
j ,j+1 is sufficiently close to zero,

set Aj ,j+1 = Aj+1,j = 0 to obtain[
A1 0
0 A2

]
= A(k)

and apply the QR algorithm to A1 and A2

end for

The QR algorithm with well-chosen shifts has been the standard
method for computing all eigenvalues of a matrix since the early 1960

8 / 26

Unnormalized simultaneous iteration

Idea: apply the power iteration to several vectors at once (also known
as block power iteration)

Suppose we start with a set of n linearly independent vectors

v
(0)
1 , . . . , v

(0)
n

As Akv
(0)
1 converges as k →∞ (under suitable assumptions) to the

eigenvector corresponding to the largest eigenvalue of A in absolute
value

The space 〈Akv
(0)
1 , . . . ,Akv

(0)
n 〉 should converge (under suitable

assumptions) to the space 〈q1, . . . ,qn〉 spanned by the eigenvectors
q1, . . . ,qn of A corresponding to the n largest eigenvalues in absolute
value

9 / 26

Unnormalized simultaneous iteration (cont’d)

In matrix notation, define V (0) to be the m × n initial matrix

V (0) =
[
v
(0)
1 · · · v

(0)
n

]
and define V (k) to the result after k applications of A:

V (k) = AkV (0) =
[
v
(k)
1 · · · v

(k)
n

]
Extract a well-behaved basis for this space by computing a reduced
QR factorization of V (k)

Q̂(k)R̂(k) = V (k)

where Q̂(k) and R̂(k) have dimensions m × n and n × n, respectively

As k →∞, the columns should converge to eigenvectors ±q1,
±q2, . . ., ±qn

10 / 26

Analysis of simultaneous iteration

If we expand v
(0)
j and v

(k)
j in the eigenvectors of A, we have

v
(0)
j = a1jq1 + · · ·+ amjqm

v
(k)
j = λk1a1jq1 + · · ·+ λkmamjqm

Simple convergence results will hold if two conditions are satisfied
I the leading n + 1 eigenvalues are distinct in absolute value:

|λ1| > |λ2| > · · · > |λn| > |λn+1| ≥ |λn+2| ≥ · · · ≥ |λm|

I the collection of expansion coefficients aij is in nonsingular. Define Q̂
as the m × n matrix whose columns are the eigenvectors q1,q2, . . . ,qn.
We assume the following

All the leading principal submatrices of Q̂>V (0) are nonsingular

I namely, the upper-left 1× 1, 2× 2, . . . , n × n submatrices are
nonsingular

11 / 26

Simultaneous iteration

As k →∞, the vectors v
(k)
1 , . . . , v

(k)
n all converge to multiples of the

same dominant eigenvector q1 of A

Thus, although the space they span 〈v(k)1 , . . . , v
(k)
j 〉 converges to

something useful, these vectors constitute a highly ill-conditioned
basis of that space

Need to orthonormalize at each step rather than once for all

Use a different sequence of matrices Z (k) rather than V (k) as before

Q̂(0) ∈ IRm×n with orthonormal columns
for k = 1, 2, . . . do

Z = AQ̂(k−1)

Q̂(k)R̂(k) = Z // reduced QR factorization of Z
end for

The column spaces of Q̂(k) and Z (k) are the same, both being equal
to the column space of AkQ̂(0)

12 / 26

Simultaneous iteration ⇐⇒ QR Algorithm

The QR algorithm is equivalent to simultaneous iteration applied to a
full set of n = m initial vectors, namely, the identity, Q̂(0) = I

Since the matrices Q̂(k) are now square, we are dealing with full QR
factorization and can drop the hats on Q̂(k) and R̂(k)

Will replace R̂(k) by R(k) but Q̂(k) by Q(k) to distinguish the Q
matrices of simultaneous iteration from those of the QR algorithm

13 / 26

Simultaneous iteration and unshifted QR algorithm
Simultaneous iteration Unshifted QR algorithm

Q(0) = I (1) A(0) = A (5)

Z = AQ(k−1) (2) A(k−1) = Q(k)R(k) (6)

Z = Q(k)R(k) (3) A(k) = R(k)Q(k) (7)

A(k) = (Q(k))>AQ(k) (4) Q(k) = Q(1)Q(2) · · ·Q(k) (8)

For both algorithms, we define one m ×m matrix R(k)

R(k) = R(k)R(k−1) · · ·R(1) (9)

Theorem

The above processes generate identical sequences of matrices R(k), Q(k),
and A(k), namely, those defined by the QR factorization of the k-th power
of A

Ak = Q(k)R(k) (10)

together with the projection

A(k) = (Q(k))>AQ(k) (11)

14 / 26

Simultaneous iteration and QR algorithm

Proof.

The case for k = 0 is trivial. For both simultaneous iteration and the QR
algorithm imply A0 = Q(0) = R(0) = I and A(0) = A from which the
results are immediate.
For k ≥ 1 for simultaneous iteration

Ak = AAk−1︸ ︷︷ ︸
(10)

= AQ(k−1)︸ ︷︷ ︸
(2)(3)

R(k−1) = Q(k)R(k)R(k−1) = Q(k)R(k)

For k ≥ 1 for the QR algorithm

Ak = AAk−1︸ ︷︷ ︸
(10)

= AQ(k−1)︸ ︷︷ ︸
(11)

R(k−1) = Q(k−1) A(k−1)︸ ︷︷ ︸
(6)(8)

R(k−1) = Q(k)R(k)

Finally,

A(k)︸︷︷︸
(7)

= R(k)︸︷︷︸
(6)

Q(k) = (Q(k))> A(k−1)︸ ︷︷ ︸
(11)

Q(k) = (Q(k))>AQ(k)

15 / 26

Convergence of the QR algorithm

Qualitative understanding of (10) and (11) is the key

First, (10) explains why the QR algorithm can be expected to find
eigenvectors: it constructs orthonormal bases for successive powers Ak

Second, (11) explains why the algorithm finds eigenvalues

It follows from (11) that the diagonal elements of A(k) are Rayleigh
quotients of A corresponding to the columns of Q(k)

As these columns converge to eigenvectors, the Rayleigh quotients
converge to the corresponding eigenvalues

Meanwhile, (11) implies that the off-diagonal elements of A(k)

correspond to generalized Rayleigh quotients involving approximations
of distinct eigenvectors of A on the left and the right

Since these approximations must become orthogonal as they converge
to distinct eigenvectors, the off-diagonal elements of A(k) must
converge to zero

16 / 26

QR algorithm with shifts
What makes QR iteration works in practice is the introduction of
A→ A− µI at each step
An implicit connection to the Rayleigh quotient iteration
The “pure” QR algorithm is equivalent to simultaneous iteration
applied to the identity matrix
In particular, the first column of the result evolves according to the
power iteration applied to e1
The “pure” QR algorithm is also equivalent to simultaneous inverse
iteration applied to a “flipped” identity matrix P, and the m-th
column of the result evolves according to inverse iteration applied to
em
Let Q(k) be the orthogonal factor at the k-th step of the QR
algorithm, the accumulated product of these matrices

Q(k) =
k∏

j=1

Q(j) =
[
q
(k)
1 q

(k)
2 · · · q

(k)
m

]
is the same orthogonal matrix that appears at step k of simultaneous
iteration

17 / 26

QR algorithm with shifts (cont’d)

Another way to put this is to say Q(k) is the orthogonal factor in a
QR factorization

Ak = Q(k)R(k)

If we invert this formula, we calculate

A−k = (R(k))−1Q(k)> = Q(k)(R(k))−>

for the second equality we have used the fact that A−1 is symmetric.
Let P denote the m ×m permutation matrix that reverse row or
column order

P =

1

1
· · ·

1

PA swap rows of A, and AP swaps columns of A

18 / 26

QR algorithm with shifts (cont’d)

Since P2 = I , we have

A−kP = (Q(k)P)(P(R(k))−>P)

where the first factor is this product, Q(k)P, is orthogonal, and the

second factor, P(R(k))−>P, is upper triangular (start with lower
triangular matrix (R(k))−>, flip it top-to-bottom, then flip again
left-to-right)

Can be interpreted as a QR factorization of A−kP

In other words, we effectively carry out simultaneous iteration on A−1

applied to the initial matrix P, which is to say, simultaneous inverse
iteration on A

In particular, the first column of Q(k)P, i.e., the last column of Q(k),
is the result of applying k steps of inverse iteration to the vector em

19 / 26

Connection with shifted inverse iteration

The QR algorithm is both simultaneous iteration and simultaneous
inverse iteration: the symmetry is perfect

However, there is a huge difference between power iteration and
inverse iteration as the latter can be accelerated arbitrarily through
the use of shifts

The better we can estimate an eigenvalue µ ≈ λJ , the more we can
accomplish by a step of inverse iteration with shifted matrix A− µI
This corresponds to shifts in the simultaneous iteration and inverse
iteration

Let µ(k) denote the eigenvalue estimate chosen at the k-th step of
the QR algorithm, the relationship between steps k − 1 and k of the
shifted QR algorithm is

A(k−1) − µ(k)I = Q(k)R(k)

A(k) = R(k)Q(k) + µ(k)I

20 / 26

Connection with shifted inverse iteration (cont’d)

This implies
A(k) = (Q(k))>A(k−1)Q(k)

and by induction
A(k) = (Q(k))>AQ(k)

which is unchanged from that in the QR algorithm without shifts

However, the equation, Ak = Q(k)R(k), in QR algorithm without
shifts, is no longer true. Instead, we have the factorization

(A− µ(k)I)(A− µ(k−1)I) · · · (A− µ(1)I) = Q(k)R(k)

a shifted variation on simultaneous iteration

In other words, Q(k) =
∏k

j=1Q
(j) is an orthogonalization of∏k

j=1(A− µ(j)I)
The first column of Q(k) is the result of applying shifted power
iteration to e1 using the shifts µ(j) and the last column is the result of
applying k steps of shifted inverse iteration to em with the same shifts

If the shifts are good eigenvalue estimates, this last column of Q(k)

converges quickly to an eigenvector

21 / 26

Connection with Rayleigh quotient iteration

To estimate the eigenvalue corresponding to the eigenvector
approximated by the last column of Q(k), it is natural to apply the
Rayleigh quotient to this last column

µ(k) =
(q

(k)
m)>Aq

(k)
m

(q
(k)
m)>q

(k)
m

= (q
(k)
m)>Aq

(k)
m

If this number is chosen as the shift at every step, the eigenvalue and

eigenvector estimates µ(k) and q
(k)
m are identical to those that are

computed by the Rayleigh quotient iteration with em

Thus, the QR algorithm has cubic convergence in the sense that q
(k)
m

converges cubically to an eigenvector

Notice that the Rayleigh quotient r(q
(k)
m) appears as the m,m entry

of A(k), so it comes for free!

A
(k)
mm = e>mA

(k)em = e>mQ
(k)>AQ(k)em = q

(k)>
m Aq

(k)
m

Thus the above equation of µ(k) is simply setting µ(k) = A
(k)
mm, which

is known as the Rayleigh quotient shift

22 / 26

Wilkinson shift

Although the Rayleigh quotient shift gives cubic convergence,
convergence is not guaranteed for all initial condition

Consider

A =

[
0 1
1 0

]
The unshifted QR algorithm does not converge

A = Q(1)R(1) =

[
0 1
1 0

] [
1 0
0 1

]
A(1) = R(1)Q(1) =

[
1 0
0 1

] [
0 1
1 0

]
= A

The Rayleigh quotient shift µ = Amm, however, has no effect either,
since Amm = 0

The problem arises because of the symmetry of the eigenvalues, one is
+1 and the other is -1

Need an eigenvalue estimate that can break the symmetry

23 / 26

Wilkinson shift (cont’d)

Let B denote the lower rightmost 2× 2 submatrix A(k)

B =

[
am−1 bm−1
bm−1 am

]
The Wilkinson shift is defined as that eigenvalue of B that is closer to
am where in the case of a tie, one of the two eigenvalues of B is
chosen arbitrarily

A numerically stable formula for the Wilkinson shift is

µ = am − sign(δ)b2m−1
/

(|δ|+
√
δ2 + b2m−1)

where δ = (am−1 − am)/2 and if δ = 0, sign(δ) can be arbitrarily set
to 1 or -1

24 / 26

Wilkinson shift (cont’d)

Like Rayleigh quotient shift, the Wilkinson shift achieves cubic
convergence in the generic case

It can be shown that it achieves at least quadratic convergence in the
worst case

The QR algorithm with Wilkinson shift always converges

25 / 26

Other eigenvalue algorithms

Jacobi algorithm: one of the oldest ideas for computing eigenvalues

Bisection method: when one does not need all the eigenvalues (e.g.,
largest 10%)

Divide-and-conquer algorithm

26 / 26

