EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 17

Overview

- QR algorithm without shifts
- Simultaneous iteration
- QR algorithm with shifts
- Wilkinson shifts

Reading

- Chapter 28-29 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 8 of Matrix Computations by Gene Golub and Charles Van Loan

The QR algorithm

- The QR algorithm, dating to the early 1960s, is one of the jewels of numerical analysis
- In its simplest form, it can be viewed as a stable procedure for computing QR factorizations of the matrix powers A, A^{2}, A^{3}, \ldots
- Useful for solving eigenvalue problems

Pure QR algorithm

- "Pure" QR algorithm:

$$
A^{(0)}=A
$$

$$
\text { for } k=1,2, \ldots \text { do }
$$

$$
\begin{aligned}
& Q^{(k)} R^{(k)}=A^{(k-1)} \quad / / Q R \text { factorization of } A^{(k-1)} \\
& A^{(k)}=R^{(k)} Q^{(k)} \quad / / \text { Recombine factors in reverse order }
\end{aligned}
$$

end for

- Take a QR factorization, multiply the computed factors Q and R together in the reverse order $R Q$, and repeat
- Under suitable assumptions, this simple algorithm converges to a Schur form for the matrix, upper triangular if A is arbitrary, diagonal if A is Hermitian
- Here we assume A is real and symmetric with real eigenvalues λ_{j} and orthonormal eigenvectors \mathbf{q}_{j}, i.e., interest in the convergence of the matrices $A^{(k)}$ to diagonal form

QR algorithm (cont'd)

- The QR algorithm

$$
\begin{array}{cl}
Q^{(k)} R^{(k)}=A^{(k-1)} & / / Q R \text { factorization of } A^{(k-1)} \\
A^{(k)}=R^{(k)} Q^{(k)} & \text { // Recombine factors in reverse order }
\end{array}
$$

- Carry out similarity transformation $\left(A \mapsto X^{-1} A X\right)$
- triangularize $A^{(k)}$ by forming $R^{(k)}=\left(Q^{(k)}\right)^{\top} A^{(k-1)}$
- multiply on the right by $Q^{(k)}$ gives $A^{(k)}=\left(Q^{(k)}\right)^{\top} A^{(k-1)} Q^{(k)}$
- Recall if $X \in \mathbb{C}^{m \times m}$ is nonsingular, then the map $A \mapsto X^{-1} A X$ is a similarity transformation of A
- Also recall an eigendecomposition of a square matrix A is a factorization $A=X \wedge X^{-1}$ where X is a nonsingular and Λ is diagonal

QR algorithm (cont'd)

- Like Rayleigh quotient iteration, the QR algorithm for real symmetric matrices converges cubically
- However, it must be modified by introducing shifts at each step
- The use of shifts is one of the three modifications required to bring it closer to practical algorithm
- before starting the iteration, A is reduced to tridiagonal form (e.g., using Hessenberg reduction)
- instead of $A^{(k)}$, a shifted matrix $A^{(k)}-\mu^{(k)} I$ is factored at each step, where $\mu^{(k)}$ is some eigenvalue estimate
- whenever possible, and in particular whenever an eigenvalue is found, the problem is deflated by breaking $A^{(k)}$ into submatrices

Practical QR algorithm

- Practical QR algorithm
$\left(Q^{(0)}\right)^{\top} A^{(0)} Q^{(0)}=A \quad / / A^{(0)}$ is a tridiagonalization of A
for $k=1,2, \ldots$ do
Pick a shift $\mu^{(k)} \quad / /$ e.g., choose $\mu^{(k)}=A_{m m}^{(k-1)}$
$Q^{(k)} R^{(k)}=A^{(k-1)}-\mu^{(k)} / \quad / / \mathrm{QR}$ factorization of $A^{(k-1)}-\mu^{(k)} /$
$A^{(k)}=R^{(k)} Q^{(k)}+\mu^{(k)} / \quad / /$ Recombine factors in reverse order If any off-diagonal element $A_{j, j+1}^{(k)}$ is sufficiently close to zero, set $A_{j, j+1}=A_{j+1, j}=0$ to obtain

$$
\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]=A^{(k)}
$$

and apply the QR algorithm to A_{1} and A_{2}
end for

- The QR algorithm with well-chosen shifts has been the standard method for computing all eigenvalues of a matrix since the early 1960

Unnormalized simultaneous iteration

- Idea: apply the power iteration to several vectors at once (also known as block power iteration)
- Suppose we start with a set of n linearly independent vectors $\mathbf{v}_{1}^{(0)}, \ldots, \mathbf{v}_{n}^{(0)}$
- As $A^{k} \mathbf{v}_{1}^{(0)}$ converges as $k \rightarrow \infty$ (under suitable assumptions) to the eigenvector corresponding to the largest eigenvalue of A in absolute value
- The space $\left\langle A^{k} \mathbf{v}_{1}^{(0)}, \ldots, A^{k} \mathbf{v}_{n}^{(0)}\right\rangle$ should converge (under suitable assumptions) to the space $\left\langle\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\rangle$ spanned by the eigenvectors $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ of A corresponding to the n largest eigenvalues in absolute value

Unnormalized simultaneous iteration (cont'd)

- In matrix notation, define $V^{(0)}$ to be the $m \times n$ initial matrix

$$
V^{(0)}=\left[\begin{array}{lll}
\mathbf{v}_{1}^{(0)} & \cdots & \mathbf{v}_{n}^{(0)}
\end{array}\right]
$$

and define $V^{(k)}$ to the result after k applications of A :

$$
V^{(k)}=A^{k} V^{(0)}=\left[\begin{array}{lll}
\mathbf{v}_{1}^{(k)} & \cdots & \mathbf{v}_{n}^{(k)}
\end{array}\right]
$$

- Extract a well-behaved basis for this space by computing a reduced QR factorization of $V^{(k)}$

$$
\hat{Q}^{(k)} \hat{R}^{(k)}=V^{(k)}
$$

where $\hat{Q}^{(k)}$ and $\hat{R}^{(k)}$ have dimensions $m \times n$ and $n \times n$, respectively

- As $k \rightarrow \infty$, the columns should converge to eigenvectors $\pm \mathbf{q}_{1}$, $\pm \mathbf{q}_{2}, \ldots, \pm \mathbf{q}_{n}$

Analysis of simultaneous iteration

- If we expand $\mathbf{v}_{j}^{(0)}$ and $\mathbf{v}_{j}^{(k)}$ in the eigenvectors of A, we have

$$
\begin{aligned}
& \mathbf{v}_{j}^{(0)}=a_{1 j} \mathbf{q}_{1}+\cdots+a_{m j} \mathbf{q}_{m} \\
& \mathbf{v}_{j}^{(k)}=\lambda_{1}^{k} a_{1 j} \mathbf{q}_{1}+\cdots+\lambda_{m}^{k} a_{m j} \mathbf{q}_{m}
\end{aligned}
$$

- Simple convergence results will hold if two conditions are satisfied
- the leading $n+1$ eigenvalues are distinct in absolute value:

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|>\left|\lambda_{n+1}\right| \geq\left|\lambda_{n+2}\right| \geq \cdots \geq\left|\lambda_{m}\right|
$$

- the collection of expansion coefficients $a_{i j}$ is in nonsingular. Define \hat{Q} as the $m \times n$ matrix whose columns are the eigenvectors $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. We assume the following

All the leading principal submatrices of $\hat{Q}^{\top} V^{(0)}$ are nonsingular

- namely, the upper-left $1 \times 1,2 \times 2, \ldots, n \times n$ submatrices are nonsingular

Simultaneous iteration

- As $k \rightarrow \infty$, the vectors $\mathbf{v}_{1}^{(k)}, \ldots, \mathbf{v}_{n}^{(k)}$ all converge to multiples of the same dominant eigenvector \mathbf{q}_{1} of A
- Thus, although the space they span $\left\langle\mathbf{v}_{1}^{(k)}, \ldots, \mathbf{v}_{j}^{(k)}\right\rangle$ converges to something useful, these vectors constitute a highly ill-conditioned basis of that space
- Need to orthonormalize at each step rather than once for all
- Use a different sequence of matrices $Z^{(k)}$ rather than $V^{(k)}$ as before

$$
\begin{aligned}
& \hat{Q}^{(0)} \in \mathbb{R}^{m \times n} \text { with orthonormal columns } \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad Z=A \hat{Q}^{(k-1)} \\
& \hat{Q}^{(k)} \hat{R}^{(k)}=Z \quad / / \text { reduced } Q R \text { factorization of } Z
\end{aligned}
$$

end for

- The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are the same, both being equal to the column space of $A^{k} \hat{Q}^{(0)}$

Simultaneous iteration \Longleftrightarrow QR Algorithm

- The QR algorithm is equivalent to simultaneous iteration applied to a full set of $n=m$ initial vectors, namely, the identity, $\hat{Q}^{(0)}=I$
- Since the matrices $\hat{Q}^{(k)}$ are now square, we are dealing with full $Q R$ factorization and can drop the hats on $\hat{Q}^{(k)}$ and $\hat{R}^{(k)}$
- Will replace $\hat{R}^{(k)}$ by $R^{(k)}$ but $\hat{Q}^{(k)}$ by $\underline{Q}^{(k)}$ to distinguish the Q matrices of simultaneous iteration from those of the QR algorithm

Simultaneous iteration and unshifted QR algorithm

Simultaneous iteration
$Q^{(0)}=1$
$Z=A Q^{(k-1)}$
$A^{(0)}=A$
(2)
$A^{(k-1)}=Q^{(k)} R^{(k)}$
$A^{(k)}=R^{(k)} Q^{(k)}$
$\underline{Q}^{(k)}=Q^{(1)} Q^{(2)} \cdots Q^{(k)}$

Unshifted QR algorithm

For both algorithms, we define one $m \times m$ matrix $\underline{R}^{(k)}$

$$
\begin{equation*}
\underline{R}^{(k)}=R^{(k)} R^{(k-1)} \cdots R^{(1)} \tag{9}
\end{equation*}
$$

Theorem

The above processes generate identical sequences of matrices $\underline{R}^{(k)}, \underline{Q}^{(k)}$, and $A^{(k)}$, namely, those defined by the $Q R$ factorization of the k-th power of A

$$
\begin{equation*}
A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)} \tag{10}
\end{equation*}
$$

together with the projection

$$
\begin{equation*}
A^{(k)}=\left(\underline{Q}^{(k)}\right)^{\top} A \underline{Q}^{(k)} \tag{11}
\end{equation*}
$$

Simultaneous iteration and QR algorithm

Proof.

The case for $k=0$ is trivial. For both simultaneous iteration and the QR algorithm imply $A^{0}=\underline{Q}^{(0)}=\underline{R}^{(0)}=I$ and $A^{(0)}=A$ from which the results are immediate.
For $k \geq 1$ for simultaneous iteration

$$
A^{k}=A \underbrace{A^{k-1}}_{(10)}=\underbrace{A \underline{Q}^{(k-1)}}_{(2)(3)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} R^{(k)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

For $k \geq 1$ for the QR algorithm

$$
A^{k}=A \underbrace{A^{k-1}}_{(10)}=\underbrace{A \underline{Q}^{(k-1)}}_{(11)} \underline{R}^{(k-1)}=\underline{Q}^{(k-1)} \underbrace{A^{(k-1)}}_{(6)(8)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

Finally,

$$
\underbrace{A^{(k)}}_{(7)}=\underbrace{R^{(k)}}_{(6)} Q^{(k)}=\left(Q^{(k)}\right)^{\top} \underbrace{A^{(k-1)}}_{(11)} Q^{(k)}=\left(\underline{Q}^{(k)}\right)^{\top} A \underline{Q}^{(k)}
$$

Convergence of the QR algorithm

- Qualitative understanding of (10) and (11) is the key
- First, (10) explains why the QR algorithm can be expected to find eigenvectors: it constructs orthonormal bases for successive powers A^{k}
- Second, (11) explains why the algorithm finds eigenvalues
- It follows from (11) that the diagonal elements of $A^{(k)}$ are Rayleigh quotients of A corresponding to the columns of $\underline{Q}^{(k)}$
- As these columns converge to eigenvectors, the Rayleigh quotients converge to the corresponding eigenvalues
- Meanwhile, (11) implies that the off-diagonal elements of $A^{(k)}$ correspond to generalized Rayleigh quotients involving approximations of distinct eigenvectors of A on the left and the right
- Since these approximations must become orthogonal as they converge to distinct eigenvectors, the off-diagonal elements of $A^{(k)}$ must converge to zero

QR algorithm with shifts

- What makes QR iteration works in practice is the introduction of $A \rightarrow A-\mu I$ at each step
- An implicit connection to the Rayleigh quotient iteration
- The "pure" QR algorithm is equivalent to simultaneous iteration applied to the identity matrix
- In particular, the first column of the result evolves according to the power iteration applied to \mathbf{e}_{1}
- The "pure" QR algorithm is also equivalent to simultaneous inverse iteration applied to a "flipped" identity matrix P, and the m-th column of the result evolves according to inverse iteration applied to \mathbf{e}_{m}
- Let $Q^{(k)}$ be the orthogonal factor at the k-th step of the QR algorithm, the accumulated product of these matrices

$$
\underline{Q}^{(k)}=\prod_{j=1}^{k} Q^{(j)}=\left[\begin{array}{llll}
\mathbf{q}_{1}^{(k)} & \mathbf{q}_{2}^{(k)} & \cdots & \mathbf{q}_{m}^{(k)}
\end{array}\right]
$$

is the same orthogonal matrix that appears at step k of simultaneous iteration

QR algorithm with shifts (cont'd)

- Another way to put this is to say $\underline{Q}^{(k)}$ is the orthogonal factor in a QR factorization

$$
A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

- If we invert this formula, we calculate

$$
A^{-k}=\left(\underline{R}^{(k)}\right)^{-1} \underline{Q}^{(k)^{\top}}=\underline{Q}^{(k)}\left(\underline{R}^{(k)}\right)^{-\top}
$$

for the second equality we have used the fact that A^{-1} is symmetric. Let P denote the $m \times m$ permutation matrix that reverse row or column order

$$
P=\left[\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& \ldots & & \\
1 & & &
\end{array}\right]
$$

- PA swap rows of A, and $A P$ swaps columns of A

QR algorithm with shifts (cont'd)

- Since $P^{2}=I$, we have

$$
A^{-k} P=\left(\underline{Q}^{(k)} P\right)\left(P\left(\underline{R}^{(k)}\right)^{-\top} P\right)
$$

where the first factor is this product, $\underline{Q}^{(k)} P$, is orthogonal, and the second factor, $P\left(\underline{R}^{(k)}\right)^{-\top} P$, is upper triangular (start with lower triangular matrix $\left(\underline{R}^{(k)}\right)^{-\top}$, flip it top-to-bottom, then flip again left-to-right)

- Can be interpreted as a QR factorization of $A^{-k} P$
- In other words, we effectively carry out simultaneous iteration on A^{-1} applied to the initial matrix P, which is to say, simultaneous inverse iteration on A
- In particular, the first column of $\underline{Q}^{(k)} P$, i.e., the last column of $\underline{Q}^{(k)}$, is the result of applying k steps of inverse iteration to the vector \mathbf{e}_{m}

Connection with shifted inverse iteration

- The QR algorithm is both simultaneous iteration and simultaneous inverse iteration: the symmetry is perfect
- However, there is a huge difference between power iteration and inverse iteration as the latter can be accelerated arbitrarily through the use of shifts
- The better we can estimate an eigenvalue $\mu \approx \lambda_{\jmath}$, the more we can accomplish by a step of inverse iteration with shifted matrix $A-\mu l$
- This corresponds to shifts in the simultaneous iteration and inverse iteration
- Let $\mu^{(k)}$ denote the eigenvalue estimate chosen at the k-th step of the QR algorithm, the relationship between steps $k-1$ and k of the shifted QR algorithm is

$$
\begin{aligned}
A^{(k-1)}-\mu^{(k)} I & =Q^{(k)} R^{(k)} \\
A^{(k)} & =R^{(k)} Q^{(k)}+\mu^{(k)} I
\end{aligned}
$$

Connection with shifted inverse iteration (cont'd)

- This implies

$$
A^{(k)}=\left(Q^{(k)}\right)^{\top} A^{(k-1)} Q^{(k)}
$$

and by induction

$$
A^{(k)}=\left(\underline{Q}^{(k)}\right)^{\top} A \underline{Q}^{(k)}
$$

which is unchanged from that in the $Q R$ algorithm without shifts

- However, the equation, $A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}$, in QR algorithm without shifts, is no longer true. Instead, we have the factorization

$$
\left(A-\mu^{(k)} I\right)\left(A-\mu^{(k-1)} I\right) \cdots\left(A-\mu^{(1)} I\right)=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

a shifted variation on simultaneous iteration

- In other words, $\underline{Q}^{(k)}=\prod_{j=1}^{k} Q^{(j)}$ is an orthogonalization of $\prod_{j=1}^{k}\left(A-\mu^{(j)} \iota\right)$
- The first column of $\underline{Q}^{(k)}$ is the result of applying shifted power iteration to \mathbf{e}_{1} using the shifts $\mu^{(j)}$ and the last column is the result of applying k steps of shifted inverse iteration to \mathbf{e}_{m} with the same shifts
- If the shifts are good eigenvalue estimates, this last column of $\underline{Q}^{(k)}$ converges quickly to an eigenvector

Connection with Rayleigh quotient iteration

- To estimate the eigenvalue corresponding to the eigenvector approximated by the last column of $\underline{Q}^{(k)}$, it is natural to apply the Rayleigh quotient to this last column

$$
\mu^{(k)}=\frac{\left(\mathbf{q}_{m}^{(k)}\right)^{\top} A \mathbf{q}_{m}^{(k)}}{\left(\mathbf{q}_{m}^{(k)}\right)^{\top} \mathbf{q}_{m}^{(k)}}=\left(\mathbf{q}_{m}^{(k)}\right)^{\top} A \mathbf{q}_{m}^{(k)}
$$

- If this number is chosen as the shift at every step, the eigenvalue and eigenvector estimates $\mu^{(k)}$ and $\mathbf{q}_{m}^{(k)}$ are identical to those that are computed by the Rayleigh quotient iteration with \mathbf{e}_{m}
- Thus, the QR algorithm has cubic convergence in the sense that $\mathbf{q}_{m}^{(k)}$ converges cubically to an eigenvector
- Notice that the Rayleigh quotient $r\left(\mathbf{q}_{m}^{(k)}\right)$ appears as the m, m entry of $A^{(k)}$, so it comes for free!

$$
A_{m m}^{(k)}=\mathbf{e}_{m}^{\top} A^{(k)} \mathbf{e}_{m}=\mathbf{e}_{m}^{\top} \underline{Q}^{(k) \top} A \underline{Q}^{(k)} \mathbf{e}_{m}=\mathbf{q}_{m}^{(k) \top} A \mathbf{q}_{m}^{(k)}
$$

- Thus the above equation of $\mu^{(k)}$ is simply setting $\mu^{(k)}=A_{m m}^{(k)}$, which is known as the Rayleigh quotient shift

Wilkinson shift

- Although the Rayleigh quotient shift gives cubic convergence, convergence is not guaranteed for all initial condition
- Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

The unshifted QR algorithm does not converge

$$
\begin{aligned}
& A=Q^{(1)} R^{(1)} \\
&=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A^{(1)}=R^{(1)} Q^{(1)}
\end{aligned}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=A
$$

- The Rayleigh quotient shift $\mu=A_{m m}$, however, has no effect either, since $A_{m m}=0$
- The problem arises because of the symmetry of the eigenvalues, one is +1 and the other is -1
- Need an eigenvalue estimate that can break the symmetry

Wilkinson shift (cont'd)

- Let B denote the lower rightmost 2×2 submatrix $A^{(k)}$

$$
B=\left[\begin{array}{cc}
a_{m-1} & b_{m-1} \\
b_{m-1} & a_{m}
\end{array}\right]
$$

- The Wilkinson shift is defined as that eigenvalue of B that is closer to a_{m} where in the case of a tie, one of the two eigenvalues of B is chosen arbitrarily
- A numerically stable formula for the Wilkinson shift is

$$
\mu=a_{m}-\operatorname{sign}(\delta) b_{m-1}^{2} /\left(|\delta|+\sqrt{\delta^{2}+b_{m-1}^{2}}\right)
$$

where $\delta=\left(a_{m-1}-a_{m}\right) / 2$ and if $\delta=0, \operatorname{sign}(\delta)$ can be arbitrarily set to 1 or -1

Wilkinson shift (cont'd)

- Like Rayleigh quotient shift, the Wilkinson shift achieves cubic convergence in the generic case
- It can be shown that it achieves at least quadratic convergence in the worst case
- The QR algorithm with Wilkinson shift always converges

Other eigenvalue algorithms

- Jacobi algorithm: one of the oldest ideas for computing eigenvalues
- Bisection method: when one does not need all the eigenvalues (e.g., largest 10\%)
- Divide-and-conquer algorithm

