EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 16

Overview

- Conditioning of least squares problems
- Perturbation
- Stability

Reading

- Chapter 18 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 2 of Matrix Computations by Gene Golub and Charles Van Loan

Conditioning of least squares problems

- Assume A is full rank and consider 2-norm for analysis

Given $A \in \mathbb{C}^{m \times n}$ of full rank, $m \geq n, \mathbf{b} \in \mathbb{C}^{m}$
Find $\mathbf{x} \in \mathbb{C}^{n}$, such that $\|\mathbf{b}-A \mathbf{x}\|$ is minimized

- The solution \mathbf{x} and the corresponding $\mathbf{y}=A \mathbf{x}$ that is closest to \mathbf{b} in $\operatorname{ran}(A)$ are given by

$$
\mathbf{x}=A^{\dagger} \mathbf{b} \quad \mathbf{y}=P \mathbf{b}
$$

where $A^{\dagger}=\left(A^{H} A\right)^{-1} A^{H} \in C^{n \times m}$ is the pseudoinverse of A and $P=A A^{\dagger} \in \mathbb{C}^{m \times m}$ is the orthogonal projector onto $\operatorname{ran}(A)$

Conditioning of least squares problems (cont'd)

- Recall for rectangular matrix A,

$$
\kappa(A)=\|A\|\left\|A^{\dagger}\right\|=\frac{\sigma_{1}}{\sigma_{n}}
$$

- Another measure of closeness of the fit

$$
\theta=\cos ^{-1} \frac{\|\mathbf{y}\|}{\|\mathbf{b}\|}
$$

Conditioning of least squares problems (cont'd)

- The third is a measure of how much $\|\mathbf{y}\|$ falls short of its maximum possible value, given $\|A\|$ and $\|\mathbf{x}\|$

$$
\eta=\frac{\|A\|\|\mathbf{x}\|}{\|\mathbf{y}\|}=\frac{\|A\|\|\mathbf{x}\|}{\|A \mathbf{x}\|}
$$

- These parameters lie in the ranges

$$
1 \leq \kappa(A)<\infty, \quad 0 \leq \theta \leq \pi / 2, \quad 1 \leq \eta \leq \kappa(A)
$$

Conditioning of least squares problems (cont'd)

Theorem

Let $\mathbf{b} \in C^{m}$ and $A \in \mathbb{C}^{m \times n}$ be full rank. The least squares has the following 2-norm relative condition numbers describing the sensitivities of \mathbf{y} and \mathbf{x} to perturbations in \mathbf{b} and A :

	\mathbf{y}	\mathbf{x}
\mathbf{b}	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta \cos \theta}$
A	$\frac{\kappa(A)}{\cos \theta}$	$\kappa(A)+\frac{\kappa(A)^{2} \tan \theta}{\eta}$

The results in the first row are exact, being attained for certain perturbations $\delta \mathbf{b}$, and the results in the second row are upper bounds

- When $m=n$, the problem reduces to a square, nonsingular system with $\theta=0$
- The numbers in the second column reduce to $\kappa(A) / \eta$ and $\kappa(A)$

Conditioning of least squares problems (cont'd)

- Let $A=U \Sigma V^{H}$ where Σ is an $m \times n$ diagonal matrix
- Since perturbations are measured in 2-norm, their sizes are unaffected by a unitary change of basis, so the perturbation behavior of A is the same as that of Σ
- Without loss of generality, we can deal with Σ directly
- In the following analysis, we assume $A=\Sigma$ and write

$$
A=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{n}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right]
$$

where A_{1} is $n \times n$ and diagonal and the rest of A is zero

Conditioning of least squares problems (cont'd)

- The orthogonal projection of \mathbf{b} onto $\operatorname{ran}(A)$ is now

$$
\mathbf{b}=\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

where \mathbf{b}_{1} contains the first n entries of \mathbf{b}, then the projection $\mathbf{y}=P \mathbf{b}$ is

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{b}_{1} \\
0
\end{array}\right]
$$

- To find the corresponding \mathbf{x} we can write $A \mathbf{x}=\mathbf{y}$ as

$$
\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{b}_{1} \\
0
\end{array}\right]
$$

which implies $\mathbf{x}=A_{1}^{-1} \mathbf{b}_{1}$

- It follows that the orthogonal projector and pseudoinverse are the block 2×2 and 1×2 matrices

$$
P=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] \quad A^{\dagger}=\left[\begin{array}{ll}
A_{1}^{-1} & 0
\end{array}\right]
$$

Sensitivity of \mathbf{y} to perturbations in \mathbf{b}

- The relationship between \mathbf{b} and \mathbf{y} is linear $\mathbf{y}=P \mathbf{b}$
- The Jacobian of this mapping is P itself with $\|P\|=1$
- The condition number of \mathbf{y} with respect to perturbations in \mathbf{b} is

$$
\kappa=\frac{\|J(\mathbf{x})\|}{\|f(\mathbf{x})\| /\|\mathbf{x}\|}, \quad \kappa_{\mathbf{b} \mapsto \mathbf{y}}=\frac{\|P\|}{\|\mathbf{y}\| /\|\mathbf{b}\|}=\frac{1}{\cos \theta}
$$

- Recall

$$
\kappa=\sup _{\delta \mathbf{x}}\left(\frac{\|\delta f\|}{\|f(\mathbf{x})\|} / \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}\right)
$$

and $\delta f \approx J(\mathbf{x}) \delta \mathbf{x}$

- The condition number is realized (i.e., the supremum is attained) for perturbations $\delta \mathbf{b}$ with $\|P(\delta \mathbf{b})\|=\|\delta \mathbf{b}\|$ which occurs when $\delta \mathbf{b}$ is zero except in the first n entries

Sensitivity of \mathbf{x} to perturbations in \mathbf{b}

- The relationship between \mathbf{b} and \mathbf{x} is linear, $\mathbf{x}=A^{\dagger} \mathbf{b}$, with Jacobian A^{\dagger}
- The condition number of \mathbf{x} with respect to perturbations in \mathbf{b} is

$$
\kappa_{\mathbf{b} \mapsto \mathbf{x}}=\frac{\left\|A^{\dagger}\right\|}{\|\mathbf{x}\| /\|/\| \mathbf{b} \|}=\left\|A^{\dagger}\right\| \frac{\|\mathbf{b}\|\|\mathbf{y}\|}{\|\mathbf{y}\|\|\mathbf{x}\|}=\left\|A^{\dagger}\right\| \frac{1}{\cos \theta} \frac{\|A\|}{\eta}=\frac{\kappa(A)}{\eta \cos \theta}
$$

- The condition number is realized by perturbations $\delta \mathbf{b}$ satisfying $\left\|A^{\dagger}(\delta \mathbf{b})\right\|=\left\|A^{\dagger}\right\|\|\delta \mathbf{b}\|=\|\delta \mathbf{b}\| / \sigma_{n}$, which occurs when $\delta \mathbf{b}$ is zero except in the n-th entry (or perhaps also in other entries if A has more than one singular value equal to σ_{n})

Tilting the range of A

- The analysis of perturbations in A is a nonlinear problem
- Observe that the perturbations in A affect the last squares problem in two ways: they distort the mapping of \mathbb{C}^{m} onto $\operatorname{ran}(A)$ and they alter $\operatorname{ran}(A)$ itself
- Consider the slight change in $\operatorname{ran}(A)$ as small tiltings of this space
- What is the maximum angle of tilt $\delta \alpha$ that can be imparted by a small perturbation of δA ?
- The image under A of the unit n-sphere is a hyperellipse that lies flat in $\operatorname{ran}(A)$
- To change $\operatorname{ran}(A)$ as efficiently as possible, we grasp a point $\mathbf{p}=A \mathbf{v}$ on the hyperellipse (hence $\|\mathbf{v}\|=1$) and nudge it in a direction $\delta \mathbf{p}$ orthogonal to $\operatorname{ran}(A)$
- A matrix perturbation that achieves this most efficiently is $\delta A=(\delta \mathbf{p}) \mathbf{v}^{H}$, which gives $(\delta A) \mathbf{v}=\delta \mathbf{p}$ with $\|\delta A\|=\|\delta \mathbf{p}\|$

Tilting the range of A (cont'd)

- To obtain the maximum tilt with a given $\|\delta \mathbf{p}\|$, we should take \mathbf{p} to be as close to the origin as possible
- That is, $\mathbf{p}=\sigma_{n} \mathbf{u}_{n}$, where σ_{n} is the smallest singular value of A and \mathbf{u}_{n} is the corresponding left singular vector
- Let $A=\left[\begin{array}{c}A_{1} \\ \mathbf{0}\end{array}\right]$ as before, \mathbf{p} is equal to the last column of A, \mathbf{v}^{H} is the n-vector $(0,0, \ldots, 1)$ and δA is a perturbation of the entries of A below the diagonal in this column
- The perturbation tilts ran (A) by the angle $\delta \alpha$ given by $\tan (\delta \alpha)=\|\delta \mathbf{p}\| / \sigma_{n}$
- Since $\|\delta \mathbf{p}\|=\|\delta A\|$ and $\delta \alpha \leq \tan (\delta \alpha)$, we have

$$
\delta \alpha \leq \frac{\|\delta A\|}{\sigma_{n}}=\frac{\|\delta A\|}{\|A\|} \kappa(A)
$$

with equality attained for choices δA of the kind described above

Sensitivity of \mathbf{y} to perturbations in A

- \mathbf{y} is the orthogonal projection of \mathbf{b} onto $\operatorname{ran}(A)$, it is determined by \mathbf{b} and $\operatorname{ran}(A)$
- Study the effect on \mathbf{y} of tilting $\operatorname{ran}(A)$ by some angle $\delta \alpha$
- Can look at this from the geometric perspective when imaging fixing b and watching \mathbf{y} vary as $\operatorname{ran}(A)$ is tiled
- No matter how $\operatorname{ran}(A)$ is tiled, the vector $\mathbf{y} \in \operatorname{ran}(A)$ must always be orthogonal to $\mathbf{y}-\mathbf{b}$
- That is, the line $\mathbf{b}-\mathbf{y}$ must lie at right angles to the line $\mathbf{0 - y}$
- In other words, as $\operatorname{ran}(A)$ is adjusted, \mathbf{y} moves along the sphere of radius $\|\mathbf{b}\| / 2$ centered at the point $\mathbf{b} / 2$

Sensitivity of \mathbf{y} to perturbations in A (cont'd)

- Tilting $\operatorname{ran}(A)$ in the plane $\mathbf{0}-\mathbf{b}-\mathbf{y}$ by an angle $\delta \alpha$ changes the angle 2θ at the central point $\mathbf{b} / 2$ by $2 \delta \alpha$
- The corresponding perturbation $\delta \mathbf{y}$ is the base of an isosceles triangle with central angle $2 \delta \alpha$ and edge length $\|\mathbf{b}\| / 2$, thus $\|\delta \mathbf{y}\|=\|\mathbf{b}\| \sin (\delta \alpha)$
- For arbitrary perturbations by an angle $\delta \alpha$, we have

$$
\|\delta \mathbf{y}\| \leq\|\mathbf{b}\| \sin (\delta \alpha) \leq\|\mathbf{b}\| \delta \alpha
$$

Sensitivity of \mathbf{y} to perturbations in A (cont'd)

- For arbitrary perturbations by an angle $\delta \alpha$, we have

$$
\|\delta \mathbf{y}\| \leq\|\mathbf{b}\| \sin (\delta \alpha) \leq\|\mathbf{b}\| \delta \alpha
$$

- Using the previous results on θ and $\delta \alpha$,

$$
\begin{aligned}
\delta \alpha & \leq \frac{\|\delta A\|}{\sigma_{n}}=\frac{\|\delta A\|}{\|A\|} \kappa(A) \\
\theta & =\cos ^{-1} \frac{\|y\|}{\|\mathbf{b}\|}
\end{aligned}
$$

- We have

$$
\|\delta \mathbf{y}\| \leq\|\delta A\| \kappa(A)\|\mathbf{y}\| /(\|A\| \cos \theta)
$$

and

$$
\frac{\|\delta \mathbf{y}\|}{\|\mathbf{y}\|} / \frac{\|\delta A\|}{\|A\|} \leq \frac{\kappa(A)}{\cos \theta}
$$

Sensitivity of \mathbf{x} to perturbations in A

- A perturbation of δA can be split into two parts: one part δA_{1} in the first n rows and another part δA_{2} in the remaining $m-n$ rows

$$
\delta A=\left[\begin{array}{l}
\delta A_{1} \\
\delta A_{2}
\end{array}\right]=\left[\begin{array}{c}
\delta A_{1} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0} \\
\delta A_{2}
\end{array}\right]
$$

- A perturbation δA_{1} changes the mapping of A in its range, but not $\operatorname{ran}(A)$ itself or \mathbf{y}
- It perturb A_{1} by δA_{1} in $\mathbf{x}=A_{1}^{-1} \mathbf{b}_{1}$ without changing \mathbf{b}_{1}, and the condition number is

$$
\frac{\|\delta \mathbf{x}\|}{\|\delta \mathbf{x}\|} / \frac{\left\|\delta A_{1}\right\|}{\|A\|} \leq \kappa\left(A_{1}\right)=\kappa(A)
$$

- A perturbation δA_{2} tilts $\operatorname{ran}(A)$ without changing the mapping of A within this space
- This corresponds to perturbing \mathbf{b}_{1} in $\mathbf{x}=A_{1}^{-1} \mathbf{b}_{1}$ without changing A_{1}, and the condition number is

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\left\|\delta \mathbf{b}_{1}\right\|}{\left\|\mathbf{b}_{1}\right\|} \leq \frac{\kappa\left(A_{1}\right)}{\eta\left(A_{1} ; \mathbf{x}\right)}=\frac{\kappa(A)}{\eta}
$$

Sensitivity of \mathbf{x} to perturbations in A (cont'd)

- Need to relate $\delta \mathbf{b}_{1}$ and δA_{2}
- The vector \mathbf{b}_{1} is \mathbf{y} expressed in the coordinates of $\operatorname{ran}(A)$
- Thus, the only changes in \mathbf{y} that are realized as changes in \mathbf{b}_{1} are those that lie parallel to ran (A); orthogonal changes have no effect
- If $\operatorname{ran}(A)$ is tilted by an angle $\delta \alpha$ in the plane $\mathbf{0}-\mathbf{b}-\mathbf{y}$, the resulting perturbation $\delta \mathbf{y}$ lies not parallel to $\operatorname{ran}(A)$ but at an angle $\pi / 2-\theta$
- Thus, the changes in \mathbf{b}_{1} satisfies $\left\|\delta \mathbf{b}_{1}\right\|=\sin \theta\|\delta \mathbf{y}\|$, and

$$
\left\|\delta \mathbf{b}_{1}\right\| \leq(\|\mathbf{b}\| \delta \alpha) \sin \theta
$$

- Since $\left\|\mathbf{b}_{1}\right\|=\|\mathbf{b}\| \cos \theta$, we have

$$
\frac{\left\|\delta \mathbf{b}_{1}\right\|}{\left\|\mathbf{b}_{1}\right\|} \leq(\delta \alpha) \tan \theta
$$

thus

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\left\|\delta \mathbf{b}_{1}\right\|}{\left\|\mathbf{b}_{1}\right\|} \frac{\kappa(A)}{\eta} \leq \frac{\kappa(A)}{\eta}(\delta \alpha) \tan \theta
$$

Sensitivity of \mathbf{x} to perturbations in A (cont'd)

- Relate A_{2} to early results,

$$
\delta \alpha \leq \frac{\left\|\delta A_{2}\right\|}{\sigma_{n}}=\frac{\left\|\delta A_{2}\right\|}{\|A\|} \kappa(A)
$$

- Put things together,

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\left\|\delta A_{2}\right\|}{\|A\|} \leq \frac{\kappa(A)^{2} \tan \theta}{\eta}
$$

- Combine the perturbations caused by A_{1} and A_{2}

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\|\delta A\|}{\|A\|} \leq \kappa(A)+\frac{\kappa(A)^{2} \tan \theta}{\eta}
$$

Floating point and stability I

- Machine precision

$$
\varepsilon_{\text {machine }}=\frac{1}{2} \beta^{1-t}
$$

where β is usually 2 and t is 24 and 53 for IEEE single and double precision

- A mathematical problem is a function $f: X \rightarrow Y$
- An algorithm is another map $\tilde{f}: X \rightarrow Y$ (e.g., an implementation on computer)
- An algorithm \tilde{f} for a problem f is accurate if for each $x \in X$

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=O\left(\varepsilon_{\text {machine }}\right)
$$

- $O(\varepsilon)$ means "on the order of machine epsilon"

Floating point and stability II

- An algorithm \tilde{f} for a problem f is stable if for each $x \in X$

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=O\left(\varepsilon_{\text {machine }}\right)
$$

for each \tilde{x} with

$$
\frac{\|\tilde{x}-x\|}{\|x\|}=O\left(\varepsilon_{\text {machine }}\right)
$$

- In other words, a stable algorithm gives nearly the right answer to nearly the right question
- For a nonsingular $m \times m$ system of equations $A \mathbf{x}=\mathbf{b}$, we have

$$
\frac{\|\tilde{x}-x\|}{\|x\|}=O\left(\kappa(A) \varepsilon_{\text {machine }}\right)
$$

