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Overview

Conditioning of least squares problems

Perturbation

Stability
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Reading

Chapter 18 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 2 of Matrix Computations by Gene Golub and Charles Van
Loan
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Conditioning of least squares problems

Assume A is full rank and consider 2-norm for analysis

Given A ∈ Cm×n of full rank,m ≥ n,b ∈ Cm

Find x ∈ Cn, such that ‖b− Ax‖ is minimized

The solution x and the corresponding y = Ax that is closest to b in
ran(A) are given by

x = A†b y = Pb

where A† = (AHA)−1AH ∈ Cn×m is the pseudoinverse of A and
P = AA† ∈ Cm×m is the orthogonal projector onto ran(A)
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Conditioning of least squares problems (cont’d)

Recall for rectangular matrix A,

κ(A) = ‖A‖‖A†‖ =
σ1
σn

Another measure of closeness of the fit

θ = cos−1
‖y‖
‖b‖
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Conditioning of least squares problems (cont’d)

The third is a measure of how much ‖y‖ falls short of its maximum
possible value, given ‖A‖ and ‖x‖

η =
‖A‖‖x‖
‖y‖

=
‖A‖‖x‖
‖Ax‖

These parameters lie in the ranges

1 ≤ κ(A) <∞, 0 ≤ θ ≤ π/2, 1 ≤ η ≤ κ(A)

6 / 21



Conditioning of least squares problems (cont’d)

Theorem

Let b ∈ Cm and A ∈ Cm×n be full rank. The least squares has the
following 2-norm relative condition numbers describing the sensitivities of
y and x to perturbations in b and A:

y x

b 1
cos θ

κ(A)
η cos θ

A κ(A)
cos θ κ(A) + κ(A)2 tan θ

η

The results in the first row are exact, being attained for certain
perturbations δb, and the results in the second row are upper bounds

When m = n, the problem reduces to a square, nonsingular system
with θ = 0

The numbers in the second column reduce to κ(A)/η and κ(A)
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Conditioning of least squares problems (cont’d)

Let A = UΣV H where Σ is an m × n diagonal matrix

Since perturbations are measured in 2-norm, their sizes are unaffected
by a unitary change of basis, so the perturbation behavior of A is the
same as that of Σ

Without loss of generality, we can deal with Σ directly

In the following analysis, we assume A = Σ and write

A =



σ1
σ2

. . .

σn


=

[
A1

0

]

where A1 is n × n and diagonal and the rest of A is zero
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Conditioning of least squares problems (cont’d)
The orthogonal projection of b onto ran(A) is now

b =

[
b1
b2

]
where b1 contains the first n entries of b, then the projection y = Pb
is

y =

[
b1
0

]
To find the corresponding x we can write Ax = y as[

A1

0

]
x =

[
b1
0

]
which implies x = A−11 b1
It follows that the orthogonal projector and pseudoinverse are the
block 2× 2 and 1× 2 matrices

P =

[
I 0
0 0

]
A† =

[
A−11 0

]
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Sensitivity of y to perturbations in b

The relationship between b and y is linear y = Pb

The Jacobian of this mapping is P itself with ‖P‖ = 1

The condition number of y with respect to perturbations in b is

κ =
‖J(x)‖
‖f (x)‖/‖x‖

, κb 7→y =
‖P‖
‖y‖/‖b‖

=
1

cos θ

Recall

κ = sup
δx

(
‖δf ‖
‖f (x)‖

/
‖δx‖
‖x‖

)
and δf ≈ J(x)δx

The condition number is realized (i.e., the supremum is attained) for
perturbations δb with ‖P(δb)‖ = ‖δb‖ which occurs when δb is zero
except in the first n entries
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Sensitivity of x to perturbations in b

The relationship between b and x is linear, x = A†b, with Jacobian A†

The condition number of x with respect to perturbations in b is

κb 7→x =
‖A†‖
‖x‖/‖b‖

= ‖A†‖‖b‖‖y‖
‖y‖‖x‖

= ‖A†‖ 1

cos θ

‖A‖
η

=
κ(A)

η cos θ

The condition number is realized by perturbations δb satisfying
‖A†(δb)‖ = ‖A†‖‖δb‖ = ‖δb‖/σn, which occurs when δb is zero
except in the n-th entry (or perhaps also in other entries if A has
more than one singular value equal to σn)
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Tilting the range of A

The analysis of perturbations in A is a nonlinear problem

Observe that the perturbations in A affect the last squares problem in
two ways: they distort the mapping of Cm onto ran(A) and they alter
ran(A) itself

Consider the slight change in ran(A) as small tiltings of this space

What is the maximum angle of tilt δα that can be imparted by a
small perturbation of δA?

The image under A of the unit n-sphere is a hyperellipse that lies flat
in ran(A)

To change ran(A) as efficiently as possible, we grasp a point p = Av
on the hyperellipse (hence ‖v‖ = 1) and nudge it in a direction δp
orthogonal to ran(A)

A matrix perturbation that achieves this most efficiently is
δA = (δp)vH , which gives (δA)v = δp with ‖δA‖ = ‖δp‖
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Tilting the range of A (cont’d)

To obtain the maximum tilt with a given ‖δp‖, we should take p to
be as close to the origin as possible

That is, p = σnun, where σn is the smallest singular value of A and
un is the corresponding left singular vector

Let A =

[
A1

0

]
as before, p is equal to the last column of A, vH is the

n-vector (0, 0, . . . , 1) and δA is a perturbation of the entries of A
below the diagonal in this column

The perturbation tilts ran(A) by the angle δα given by
tan(δα) = ‖δp‖/σn
Since ‖δp‖ = ‖δA‖ and δα ≤ tan(δα), we have

δα ≤ ‖δA‖
σn

=
‖δA‖
‖A‖

κ(A)

with equality attained for choices δA of the kind described above
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Sensitivity of y to perturbations in A
y is the orthogonal projection of b onto ran(A), it is determined by b
and ran(A)
Study the effect on y of tilting ran(A) by some angle δα
Can look at this from the geometric perspective when imaging fixing
b and watching y vary as ran(A) is tiled
No matter how ran(A) is tiled, the vector y ∈ ran(A) must always be
orthogonal to y − b
That is, the line b− y must lie at right angles to the line 0− y
In other words, as ran(A) is adjusted, y moves along the sphere of
radius ‖b‖/2 centered at the point b/2
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Sensitivity of y to perturbations in A (cont’d)

Tilting ran(A) in the plane 0−b−y by an angle δα changes the angle
2θ at the central point b/2 by 2δα

The corresponding perturbation δy is the base of an isosceles triangle
with central angle 2δα and edge length ‖b‖/2, thus
‖δy‖ = ‖b‖ sin(δα)

For arbitrary perturbations by an angle δα, we have

‖δy‖ ≤ ‖b‖ sin(δα) ≤ ‖b‖δα
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Sensitivity of y to perturbations in A (cont’d)

For arbitrary perturbations by an angle δα, we have

‖δy‖ ≤ ‖b‖ sin(δα) ≤ ‖b‖δα
Using the previous results on θ and δα,

δα ≤ ‖δA‖
σn

= ‖δA‖
‖A‖ κ(A)

θ = cos−1 ‖y‖‖b‖
We have

‖δy‖ ≤ ‖δA‖κ(A)‖y‖/(‖A‖ cos θ)

and ‖δy‖
‖y‖

/
‖δA‖
‖A‖

≤ κ(A)

cos θ
16 / 21



Sensitivity of x to perturbations in A
A perturbation of δA can be split into two parts: one part δA1 in the
first n rows and another part δA2 in the remaining m − n rows

δA =

[
δA1

δA2

]
=

[
δA1

0

]
+

[
0
δA2

]
A perturbation δA1 changes the mapping of A in its range, but not
ran(A) itself or y
It perturb A1 by δA1 in x = A−11 b1 without changing b1, and the
condition number is

‖δx‖
‖δx‖

/
‖δA1‖
‖A‖

≤ κ(A1) = κ(A)

A perturbation δA2 tilts ran(A) without changing the mapping of A
within this space
This corresponds to perturbing b1 in x = A−11 b1 without changing
A1, and the condition number is

‖δx‖
‖x‖

/
‖δb1‖
‖b1‖

≤ κ(A1)

η(A1; x)
=
κ(A)

η
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Sensitivity of x to perturbations in A (cont’d)

Need to relate δb1 and δA2

The vector b1 is y expressed in the coordinates of ran(A)

Thus, the only changes in y that are realized as changes in b1 are
those that lie parallel to ran(A); orthogonal changes have no effect

If ran(A) is tilted by an angle δα in the plane 0−b−y, the resulting
perturbation δy lies not parallel to ran(A) but at an angle π/2− θ
Thus, the changes in b1 satisfies ‖δb1‖ = sin θ‖δy‖, and

‖δb1‖ ≤ (‖b‖δα) sin θ

Since ‖b1‖ = ‖b‖ cos θ, we have

‖δb1‖
‖b1‖

≤ (δα) tan θ

thus
‖δx‖
‖x‖

≤ ‖δb1‖
‖b1‖

κ(A)

η
≤ κ(A)

η
(δα) tan θ
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Sensitivity of x to perturbations in A (cont’d)

Relate A2 to early results,

δα ≤ ‖δA2‖
σn

=
‖δA2‖
‖A‖

κ(A)

Put things together,

‖δx‖
‖x‖

/
‖δA2‖
‖A‖

≤ κ(A)2 tan θ

η

Combine the perturbations caused by A1 and A2

‖δx‖
‖x‖

/
‖δA‖
‖A‖

≤ κ(A) +
κ(A)2 tan θ

η
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Floating point and stability I

Machine precision

εmachine =
1

2
β1−t

where β is usually 2 and t is 24 and 53 for IEEE single and double
precision

A mathematical problem is a function f : X → Y

An algorithm is another map f̃ : X → Y (e.g., an implementation on
computer)

An algorithm f̃ for a problem f is accurate if for each x ∈ X

‖f̃ (x)− f (x)‖
‖f (x)‖

= O(εmachine)

O(ε) means “on the order of machine epsilon”
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Floating point and stability II

An algorithm f̃ for a problem f is stable if for each x ∈ X

‖f̃ (x)− f (x)‖
‖f (x)‖

= O(εmachine)

for each x̃ with
‖x̃ − x‖
‖x‖

= O(εmachine)

In other words, a stable algorithm gives nearly the right answer to
nearly the right question

For a nonsingular m ×m system of equations Ax = b, we have

‖x̃ − x‖
‖x‖

= O(κ(A)εmachine)

21 / 21


