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Reading

Chapter 27 and Chapter 12 of Numerical Linear Algebra by Llyod
Trefethen and David Bau

Chapter 7 of Matrix Computations by Gene Golub and Charles Van
Loan
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Inverse iteration

For any µ ∈ IR that is not an eigenvalue of A, the eigenvectors of
(A− µI )−1 are the same as the eigenvectors of A, and the the
corresponding eigenvalues are (λj − µ)−1 where λj are the
eigenvalues of A

Suppose µ is close to an eigenvalue λJ of A, then (λJ − µ)−1 may be
much larger than (λj − µ)−1 for all j 6= J

If we apply power iteration to (A− µI )−1, the process will converge
rapidly to qJ

Algorithm:

Initialize v(0) randomly with ‖v(0)‖ = 1
for k = 1, 2, . . . do

Solve w = (A− µI )−1v(k−1) // apply (A− µI )−1
v(k) = w

‖w‖ // normalize

λ(k) = (v(k))>Av(k) // Rayleigh quotient
end for
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Inverse iteration (cont’d)
what if µ is or nearly is an eigenvalue of A, so that A− µI is singular?
can be handled numerically
exhibit linear convergence
unlike power iteration, we can choose the eigenvector that will be
found by supplying an estimate µ of the corresponding eigenvalue
if µ is much closer to one eigenvalue of A than to the others, then the
largest eigenvalue o (A− µI )−1 will be much larger than the rest

Theorem

Suppose λJ is the closest eigenvalue of µ and λK is the second closest,
that is |µ− λJ | < |µ− λK | < |µ− λj | for each j 6= J. Furthermore,
suppose q>J v

(0) 6= 0, then after k iterations

‖v(k) − (±qJ)‖ = O

(∣∣∣ µ−λJ
µ−λK

∣∣∣k) , |λ(k) − λJ | = O

(∣∣∣ µ−λJ
µ−λK

∣∣∣2k)
as k →∞. The ± sign means that at each step k , one or the other choice
of sign is to be taken, and then the indicated bound holds

5 / 21



Inverse iteration and Rayleigh quotient iteration
Inverse iteration:

I one of the most valuable tools of numerical linear algebra
I a standard method of calculating one or more eigenvectors of a matrix

if the eigenvalues are already known

Obtaining an eigenvalue estimate from an eigenvector estimate (the
Rayleigh quotient)

Obtaining an eigenvector estimate from an eigenvalue estimate
(inverse iteration)

Rayleigh quotient algorithm:

Initialize v(0) randomly with ‖v(0)‖ = 1
λ(0) = (v(0))>Av(0) = corresponding Rayleigh quotient
for k = 1, 2, . . . do

Solve w = (A− λ(k−1)I )−1v(k−1) // apply (A− µ(k−1)I )−1
v(k) = w

‖w‖ // normalize

λ(k) = (v(k))>Av(k) // Rayleigh quotient
end for
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Rayleigh quotient iteration

Theorem

Rayleigh quotient iteration converges to an eigenvalue/eigenvector pair for
all except a set of measure zero of starting vectors v(0). When it
converges, the convergence is ultimately cubic in the sense that if λJ is an
eigenvalue of A and v(0) is sufficiently close to the eigenvector qJ , then

‖v(k+1) − (±qJ)‖ = O(‖v(k) − (±qJ)‖3)

and
|λ(k+1) − λJ | = O(|λ(k) − λJ |3)

as k →∞. The ± sign means that at each step k , one or the other choice
of sign is to be taken, and then the indicated bound holds.
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Example

Consider the symmetric matrix

A =

2 1 1
1 3 1
1 1 4


and let v(0) = (1, 1, 1)>/

√
3 the initial eigenvector estimate

When Rayleigh quotient iteration is applied to A, the following values
λ(k) are computed by the first 3 iterations:

λ(0) = 5, λ(1) = 5.2131 . . . , λ(2) = 5.214319743184 . . .

The actual value of the eigenvalue corresponding to the eigenvector
closest to v(0) is λ = 5.214319743377

After three iterations, Rayleigh quotient iteration has produced a
result accurate to 10 digits

With three more iterations, the solution increases this figure to about
270 digits, if our machine precision were high enough
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Operation counts

Flops (floating point operations): addition, subtraction,
multiplication, division, or square root counts as one flop

Suppose A ∈ IRm×m is a full matrix, each step of power iteration
involves a matrix-vector multiplication, requiring O(m2) flops

Each step of inverse iteration involves the solution of a linear system,
which might seem to require O(m3) flops, but this can be reduced to
O(m2) if the matrix is processed in advance by LU or QR factorization

In Rayleigh quotient iteration, the matrix to be inverted changes at
each step, and beating O(m3) flops per step

These figures improve greatly if A is tridiagonal, and all three
iterations requires just O(m) flops per step

For non-symmetric matrices, we must deal with Hessenberg instead of
tridiagonal structure, and this figure increases to O(m3)
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Conditioning and condition numbers

Conditioning: pertain to the perturbation behavior of a mathematical
problem

Stability: pertain to the perturbation behavior of an algorithm used to
solve the problem on a computer

We view a problem as a function f : X → Y from a normed vector
space X of data to a normed vector space Y of solutions

f is usually nonlinear (even in linear algebra), but most of the time it
is at least continuous

A well-conditioned problem: all small perturbations of x lead to only
small changes in f (x)

An ill-conditioned problem: some small perturbation of x leads to a
large change in f (x)
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Absolute condition number
Let δx denote a small perturbation of x and write
δf = f (x + δx)− f (x)
Absolute condition number:

κ̂ = κ̂(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf ‖
‖δx‖

For most problems, it can be interpreted as a supremum over all
infinitesimal perturbations δx, and can write simply as

κ̂ = sup
δx

‖δf ‖
‖δx‖

If f is differentiable, we can evaluate the condition number by means
of the derivative of f
Let J(x) be the matrix where i , j entry is the partial derivative
∂fi/∂xj evaluated at x, known as the Jacobian of f at x
By the definition, δf ≈ J(x)δx with ‖δx‖ → 0, and the absolute
condition number becomes

κ̂ = ‖J(x)‖
where ‖J(x)‖ represents the norm of J(x)
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Relative condition number

Relative condition number:

κ = lim
δ→0

sup
‖δx‖≤δ

(
‖δf ‖
‖f (x)‖

/
‖δx‖
‖x‖

)
Again, assume δx and δf are infinitesimal,

κ = sup
δx

(
‖δf ‖
‖f (x)‖

/
‖δx‖
‖x‖

)
If f is differentiable, we can express this in terms of Jacobian

κ =
‖J(x)‖
‖f (x)‖/‖x‖

Relative condition number is more important in numerical analysis

A problem is well-conditioned if κ is small (e.g., 1, 10, 102), and
ill-conditioned if κ is large (e.g., 106, 1016)
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Well-conditioned and ill-conditioned problems

Consider the problem of obtaining the scalar x/2 from x ∈ C. The
Jacobian of the function f : x → x/2 is the derivative J = f ′ = 1/2

κ =
‖J‖

‖f (x)‖/‖x‖
=

1/2

(x/2)/x
= 1.

This problem is well-conditioned

Consider x2 − 2x + 1 = (x − 1)2, with a double root x = 1. A small
perturbation in the coefficient may lead to large change in the roots

x2 − 2x + 0.9999 = (x − 0.99)(x − 1.01).

In fact, the roots can change in proportion to the square root of the
change in the coefficients, so in this case the Jacobian is infinite (the
problem is not differentiable), and κ =∞
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Computing eigenvalues of a non-symmetric matrix

Computing the eigenvalues of a non-symmetric matrix is often
ill-conditioned

Consider the two matrices

A =

[
1 1000
0 1

]
B =

[
1 1000

0.001 1

]
and the eigenvalues are {1, 1} and {0, 2} respectively

On the other hand, if a matrix A is symmetric (more generally, if it is
normal), then its eigenvalues are well-conditioned

It can be shown that if λ and λ+ δλ are corresponding eigenvalues of
A and A + δA, then |δλ| ≤ ‖δA‖2 with equality if δA is a multiple of
the identity

In that case, κ̂ = 1 if perturbations are measured in the 2-norm and
the relative condition number is κ = ‖A‖2/|λ|
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Condition of matrix-vector multiplication

Consider A ∈ Cm×n, determine a condition number corresponding to
perturbations of x

κ =
∑
δx

(
‖A(x + δx)− Ax‖

‖Ax‖

/
‖δx‖
‖x‖

)
= sup

δx

‖Aδx‖
‖δx‖

/
‖Ax‖
‖x‖

,

that is

κ = ‖A‖ ‖x‖
‖Ax‖

(κ =
‖J(x)‖
‖f (x)‖/‖x‖

)

which is an exact formula for κ, dependent on both A and x

If A happens to be square and non-singular, we can use the fact that
‖x‖/‖Ax‖ ≤ ‖A−1‖ to loosen the bound

κ ≤ ‖A‖‖A−1‖,

or

κ = α‖A‖‖A−1‖, α =
‖x‖
‖Ax‖

/
‖A−1‖
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Condition of matrix-vector multiplication (cont’d)

For certain choices of x, we have α = 1, and consequently
κ = ‖A‖‖A−1‖
If we use 2-norm, this will occur when x is a multiple of a minimal
right singular vector of A

If A ∈ Cm×n with m ≥ n has full rank, the above equations hold with
A−1 replaced by the pseudo-inverse A† = (AHA)−1AH ∈ Cn×m

Given A, compute A−1b from input b?

Mathematically, identical to the problem just considered except that
A is repalced by A−1
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Condition of matrix-vector multiplication (cont’d)

Theorem

Let A ∈ Cm×n be nonsingular and consider the equation Ax = b. The
problem of computing b given x, has condition number

κ = ‖A‖‖x‖
‖b‖
≤ ‖A‖‖A−1‖ (1)

with respect to perturbation of x. The problem of computing x given b,
has condition number

κ = ‖A−1‖‖b‖
‖x‖
≤ ‖A‖‖A−1‖ (2)

with respect to perturbation of b. If we use 2-norm, then the equality
holds in (1) if x is a multiple of a right singular vector of A corresponding
to the minimal singular value σm. Likewise, the equality hold in (2) if b is
a multiple of a left singular vector of A corresponding to the maximal
singular value σ1.
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Condition number of a matrix

The product ‖A‖‖A−1‖ is the condition number of A (relative to the
norm ‖ · ‖), denoted by κ(A)

κ(A) = ‖A‖‖A−1‖

The condition number is attached to a matrix, not a problem

If κ(A) is small, A is said to be well-conditioned; if κ(A) is large, A is
ill-conditioned.

If A is singular, it is customary to write κ(A) =∞
If ‖ · ‖ = ‖ · ‖2, then ‖A‖ = σ1, and ‖A−1‖ = 1/σm, and thus

κ(A) =
σ1
σm

in the 2-norm, which is the formula for computing 2-norm condition
numbers of matrices.

The ratio σ1/σm can be interpreted as the eccentricity of the
hyperellipse that is the image of the unit sphere of Cm under A
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Condition number of a matrix (cont’d)
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For a rectangular matrix A ∈ Cm×n of full rank, m ≥ n, the condition
number is defined in terms of pseudo-inverse

κ(A) = ‖A‖‖A†‖

since A† is motivated by least squares problem, this definition is most
useful with 2-norm, where we have

κ(A) =
σ1
σn
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Condition number of a system of equations

Let b be fixed, and consider the behavior of the problem
A 7→ x = A−1b when A is perturbed by infinitesimal δA, then

(A + δA)(x + δx) = b

Using Ax = b and dropping the term (δA)(δx), we obtain
(δA)x + A(δx) = 0, that is, δx = −A−1(δA)x

It implies ‖δx‖ ≤ ‖A−1‖‖δA‖‖x‖, or equivalently

‖δx‖
‖x‖

/
‖δA‖
‖A‖

≤ ‖A−1‖‖A‖ = κ(A)

The equality in this bound will hold when δA is such that

‖A−1(δA)x‖ = ‖A−1‖‖δA‖‖x‖

and it can be shown that for any A and b and norm ‖ · ‖, such
perturbations of δA exists
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Condition number of a system of equations (cont’d)

Theorem

Let b be fixed and consider the problem of computing x = A−1b where A
is square and nonsingular. The condition number of this problem with
respect to perturbation in A is

κ = ‖A‖‖A−1‖ = κ(A)

Both theorems regarding matrix-vector multiplication and system of
equations are of fundamental importance in numerical linear algebra

They determine how accurately one can solve systems of equations

If a problem Ax = b contains an ill-conditioned matrix A, one must
always expect to “lose log10 κ(A) digits” in computing the solution
(except under very special cases)

21 / 21


