EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 15

Overview

- Inverse iteration
- Rayleigh quotient iteration
- Condition
- Perturbation
- Stability

Reading

- Chapter 27 and Chapter 12 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 7 of Matrix Computations by Gene Golub and Charles Van Loan

Inverse iteration

- For any $\mu \in \mathbb{R}$ that is not an eigenvalue of A, the eigenvectors of $(A-\mu I)^{-1}$ are the same as the eigenvectors of A, and the the corresponding eigenvalues are $\left(\lambda_{j}-\mu\right)^{-1}$ where λ_{j} are the eigenvalues of A
- Suppose μ is close to an eigenvalue λ_{J} of A, then $\left(\lambda_{J}-\mu\right)^{-1}$ may be much larger than $\left(\lambda_{j}-\mu\right)^{-1}$ for all $j \neq J$
- If we apply power iteration to $(A-\mu I)^{-1}$, the process will converge rapidly to \mathbf{q}_{J}
- Algorithm:

Initialize $\mathbf{v}^{(0)}$ randomly with $\left\|\mathbf{v}^{(0)}\right\|=1$
for $k=1,2, \ldots$ do
Solve $\mathbf{w}=(A-\mu I)^{-1} \mathbf{v}^{(k-1)} \quad / /$ apply $(A-\mu I)^{-1}$
$\mathbf{v}^{(k)}=\frac{\mathbf{w}}{\|\mathbf{w}\|} \quad / /$ normalize
$\lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{\top} A \mathbf{v}^{(k)} \quad / /$ Rayleigh quotient
end for

Inverse iteration (cont'd)

- what if μ is or nearly is an eigenvalue of A, so that $A-\mu /$ is singular?
- can be handled numerically
- exhibit linear convergence
- unlike power iteration, we can choose the eigenvector that will be found by supplying an estimate μ of the corresponding eigenvalue
- if μ is much closer to one eigenvalue of A than to the others, then the largest eigenvalue o $(A-\mu I)^{-1}$ will be much larger than the rest

Theorem

Suppose λ_{J} is the closest eigenvalue of μ and λ_{K} is the second closest, that is $\left|\mu-\lambda_{J}\right|<\left|\mu-\lambda_{K}\right|<\left|\mu-\lambda_{j}\right|$ for each $j \neq J$. Furthermore, suppose $\mathbf{q}_{J}^{\top} \mathbf{v}^{(0)} \neq 0$, then after k iterations

$$
\left\|\mathbf{v}^{(k)}-\left(\pm \mathbf{q}_{J}\right)\right\|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{k}\right),\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{2 k}\right)
$$

as $k \rightarrow \infty$. The \pm sign means that at each step k, one or the other choice of sign is to be taken, and then the indicated bound holds

Inverse iteration and Rayleigh quotient iteration

- Inverse iteration:
- one of the most valuable tools of numerical linear algebra
- a standard method of calculating one or more eigenvectors of a matrix if the eigenvalues are already known
- Obtaining an eigenvalue estimate from an eigenvector estimate (the Rayleigh quotient)
- Obtaining an eigenvector estimate from an eigenvalue estimate (inverse iteration)
- Rayleigh quotient algorithm:

Initialize $\mathbf{v}^{(0)}$ randomly with $\left\|\mathbf{v}^{(0)}\right\|=1$ $\lambda^{(0)}=\left(\mathbf{v}^{(0)}\right)^{\top} A \mathbf{v}^{(0)}=$ corresponding Rayleigh quotient
for $k=1,2, \ldots$ do
Solve $\mathbf{w}=\left(A-\lambda^{(k-1)} /\right)^{-1} \mathbf{v}^{(k-1)} \quad / /$ apply $\left(A-\mu^{(k-1)} I\right)^{-1}$ $\mathbf{v}^{(k)}=\frac{\mathbf{w}}{\|\mathbf{w}\|} \quad / /$ normalize
$\lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{\top} A \mathbf{v}^{(k)} \quad / /$ Rayleigh quotient
end for

Rayleigh quotient iteration

Theorem

Rayleigh quotient iteration converges to an eigenvalue/eigenvector pair for all except a set of measure zero of starting vectors $\mathbf{v}^{(0)}$. When it converges, the convergence is ultimately cubic in the sense that if λ_{J} is an eigenvalue of A and $\mathbf{v}^{(0)}$ is sufficiently close to the eigenvector \mathbf{q}_{J}, then

$$
\left\|\mathbf{v}^{(k+1)}-\left(\pm \mathbf{q}_{J}\right)\right\|=O\left(\left\|\mathbf{v}^{(k)}-\left(\pm \mathbf{q}_{J}\right)\right\|^{3}\right)
$$

and

$$
\left|\lambda^{(k+1)}-\lambda_{J}\right|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|^{3}\right)
$$

as $k \rightarrow \infty$. The \pm sign means that at each step k, one or the other choice of sign is to be taken, and then the indicated bound holds.

Example

- Consider the symmetric matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 4
\end{array}\right]
$$

and let $\mathbf{v}^{(0)}=(1,1,1)^{\top} / \sqrt{3}$ the initial eigenvector estimate

- When Rayleigh quotient iteration is applied to A, the following values $\lambda^{(k)}$ are computed by the first 3 iterations:

$$
\lambda^{(0)}=5, \quad \lambda^{(1)}=5.2131 \ldots, \quad \lambda^{(2)}=5.214319743184 \ldots
$$

The actual value of the eigenvalue corresponding to the eigenvector closest to $\mathbf{v}^{(0)}$ is $\lambda=5.214319743377$

- After three iterations, Rayleigh quotient iteration has produced a result accurate to 10 digits
- With three more iterations, the solution increases this figure to about 270 digits, if our machine precision were high enough

Operation counts

- Flops (floating point operations): addition, subtraction, multiplication, division, or square root counts as one flop
- Suppose $A \in \mathbb{R}^{m \times m}$ is a full matrix, each step of power iteration involves a matrix-vector multiplication, requiring $O\left(m^{2}\right)$ flops
- Each step of inverse iteration involves the solution of a linear system, which might seem to require $O\left(m^{3}\right)$ flops, but this can be reduced to $O\left(m^{2}\right)$ if the matrix is processed in advance by LU or QR factorization
- In Rayleigh quotient iteration, the matrix to be inverted changes at each step, and beating $O\left(m^{3}\right)$ flops per step
- These figures improve greatly if A is tridiagonal, and all three iterations requires just $O(m)$ flops per step
- For non-symmetric matrices, we must deal with Hessenberg instead of tridiagonal structure, and this figure increases to $O\left(\mathrm{~m}^{3}\right)$

Conditioning and condition numbers

- Conditioning: pertain to the perturbation behavior of a mathematical problem
- Stability: pertain to the perturbation behavior of an algorithm used to solve the problem on a computer
- We view a problem as a function $f: X \rightarrow Y$ from a normed vector space X of data to a normed vector space Y of solutions
- f is usually nonlinear (even in linear algebra), but most of the time it is at least continuous
- A well-conditioned problem: all small perturbations of \mathbf{x} lead to only small changes in $f(\mathbf{x})$
- An ill-conditioned problem: some small perturbation of \mathbf{x} leads to a large change in $f(\mathbf{x})$

Absolute condition number

- Let $\delta \mathbf{x}$ denote a small perturbation of \mathbf{x} and write $\delta f=f(\mathbf{x}+\delta \mathbf{x})-f(\mathbf{x})$
- Absolute condition number:

$$
\hat{\kappa}=\hat{\kappa}(\mathbf{x})=\lim _{\delta \rightarrow 0} \sup _{\|\delta \mathbf{x}\| \leq \delta} \frac{\|\delta f\|}{\|\delta \mathbf{x}\|}
$$

- For most problems, it can be interpreted as a supremum over all infinitesimal perturbations $\delta \mathbf{x}$, and can write simply as

$$
\hat{\kappa}=\sup _{\delta \mathbf{x}} \frac{\|\delta f\|}{\|\delta \mathbf{x}\|}
$$

- If f is differentiable, we can evaluate the condition number by means of the derivative of f
- Let $J(\mathbf{x})$ be the matrix where i, j entry is the partial derivative $\partial f_{i} / \partial \mathbf{x}_{j}$ evaluated at \mathbf{x}, known as the Jacobian of f at \mathbf{x}
- By the definition, $\delta f \approx J(\mathbf{x}) \delta \mathbf{x}$ with $\|\delta \mathbf{x}\| \rightarrow 0$, and the absolute condition number becomes

$$
\hat{\kappa}=\|J(\mathbf{x})\|
$$

where $\|J(\mathbf{x})\|$ represents the norm of $J(\mathbf{x})$

Relative condition number

- Relative condition number:

$$
\kappa=\lim _{\delta \rightarrow 0} \sup _{\|\delta \mathbf{x}\| \leq \delta}\left(\frac{\|\delta f\|}{\|f(\mathbf{x})\|} / \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}\right)
$$

- Again, assume $\delta \mathbf{x}$ and δf are infinitesimal,

$$
\kappa=\sup _{\delta \mathbf{x}}\left(\frac{\|\delta f\|}{\|f(\mathbf{x})\|} / \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}\right)
$$

- If f is differentiable, we can express this in terms of Jacobian

$$
\kappa=\frac{\|J(\mathbf{x})\|}{\|f(\mathbf{x})\| /\|\mathbf{x}\|}
$$

- Relative condition number is more important in numerical analysis
- A problem is well-conditioned if κ is small (e.g., $1,10,10^{2}$), and ill-conditioned if κ is large (e.g., $10^{6}, 10^{16}$)

Well-conditioned and ill-conditioned problems

- Consider the problem of obtaining the scalar $x / 2$ from $x \in \mathbb{C}$. The Jacobian of the function $f: x \rightarrow x / 2$ is the derivative $J=f^{\prime}=1 / 2$

$$
\kappa=\frac{\|J\|}{\|f(x)\| /\|x\|}=\frac{1 / 2}{(x / 2) / x}=1
$$

This problem is well-conditioned

- Consider $x^{2}-2 x+1=(x-1)^{2}$, with a double root $x=1$. A small perturbation in the coefficient may lead to large change in the roots

$$
x^{2}-2 x+0.9999=(x-0.99)(x-1.01)
$$

In fact, the roots can change in proportion to the square root of the change in the coefficients, so in this case the Jacobian is infinite (the problem is not differentiable), and $\kappa=\infty$

Computing eigenvalues of a non-symmetric matrix

- Computing the eigenvalues of a non-symmetric matrix is often ill-conditioned
- Consider the two matrices

$$
A=\left[\begin{array}{cc}
1 & 1000 \\
0 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 1000 \\
0.001 & 1
\end{array}\right]
$$

and the eigenvalues are $\{1,1\}$ and $\{0,2\}$ respectively

- On the other hand, if a matrix A is symmetric (more generally, if it is normal), then its eigenvalues are well-conditioned
- It can be shown that if λ and $\lambda+\delta \lambda$ are corresponding eigenvalues of A and $A+\delta A$, then $|\delta \lambda| \leq\|\delta A\|_{2}$ with equality if δA is a multiple of the identity
- In that case, $\hat{\kappa}=1$ if perturbations are measured in the 2-norm and the relative condition number is $\kappa=\|A\|_{2} /|\lambda|$

Condition of matrix-vector multiplication

- Consider $A \in \mathbb{C}^{m \times n}$, determine a condition number corresponding to perturbations of \mathbf{x}

$$
\kappa=\sum_{\delta \mathbf{x}}\left(\frac{\|A(\mathbf{x}+\delta x)-A \mathbf{x}\|}{\|A \mathbf{x}\|} / \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}\right)=\sup _{\delta \mathbf{x}} \frac{\|A \delta \mathbf{x}\|}{\|\delta \mathbf{x}\|} / \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|},
$$

that is

$$
\kappa=\|A\| \frac{\|\mathbf{x}\|}{\|A \mathbf{x}\|} \quad\left(\kappa=\frac{\|J(\mathbf{x})\|}{\|f(\mathbf{x})\| /\|\mathbf{x}\|}\right)
$$

which is an exact formula for κ, dependent on both A and \mathbf{x}

- If A happens to be square and non-singular, we can use the fact that $\|\mathbf{x}\| /\|A \mathbf{x}\| \leq\left\|A^{-1}\right\|$ to loosen the bound

$$
\kappa \leq\|A\|\left\|A^{-1}\right\|
$$

or

$$
\kappa=\alpha\|A\|\left\|A^{-1}\right\|, \quad \alpha=\frac{\|\mathbf{x}\|}{\|A \mathbf{x}\|} /\left\|A^{-1}\right\|
$$

Condition of matrix-vector multiplication (cont'd)

- For certain choices of \mathbf{x}, we have $\alpha=1$, and consequently $\kappa=\|A\|\left\|A^{-1}\right\|$
- If we use 2-norm, this will occur when \mathbf{x} is a multiple of a minimal right singular vector of A
- If $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has full rank, the above equations hold with A^{-1} replaced by the pseudo-inverse $A^{\dagger}=\left(A^{H} A\right)^{-1} A^{H} \in \mathbb{C}^{n \times m}$
- Given A, compute $A^{-1} \mathbf{b}$ from input \mathbf{b} ?
- Mathematically, identical to the problem just considered except that A is repalced by A^{-1}

Condition of matrix-vector multiplication (cont'd)

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be nonsingular and consider the equation $A \mathbf{x}=\mathbf{b}$. The problem of computing \mathbf{b} given \mathbf{x}, has condition number

$$
\begin{equation*}
\kappa=\|A\| \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \leq\|A\|\left\|A^{-1}\right\| \tag{1}
\end{equation*}
$$

with respect to perturbation of \mathbf{x}. The problem of computing \mathbf{x} given \mathbf{b}, has condition number

$$
\begin{equation*}
\kappa=\left\|A^{-1}\right\| \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|} \leq\|A\|\left\|A^{-1}\right\| \tag{2}
\end{equation*}
$$

with respect to perturbation of \mathbf{b}. If we use 2-norm, then the equality holds in (1) if \mathbf{x} is a multiple of a right singular vector of A corresponding to the minimal singular value σ_{m}. Likewise, the equality hold in (2) if \mathbf{b} is a multiple of a left singular vector of A corresponding to the maximal singular value σ_{1}.

Condition number of a matrix

- The product $\|A\|\left\|A^{-1}\right\|$ is the condition number of A (relative to the norm $\|\cdot\|)$, denoted by $\kappa(A)$

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

- The condition number is attached to a matrix, not a problem
- If $\kappa(A)$ is small, A is said to be well-conditioned; if $\kappa(A)$ is large, A is ill-conditioned.
- If A is singular, it is customary to write $\kappa(A)=\infty$
- If $\|\cdot\|=\|\cdot\|_{2}$, then $\|A\|=\sigma_{1}$, and $\left\|A^{-1}\right\|=1 / \sigma_{m}$, and thus

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{m}}
$$

in the 2-norm, which is the formula for computing 2-norm condition numbers of matrices.

- The ratio σ_{1} / σ_{m} can be interpreted as the eccentricity of the hyperellipse that is the image of the unit sphere of \mathbb{C}^{m} under A

Condition number of a matrix (cont'd)

- For a rectangular matrix $A \in C^{m \times n}$ of full rank, $m \geq n$, the condition number is defined in terms of pseudo-inverse

$$
\kappa(A)=\|A\|\left\|A^{\dagger}\right\|
$$

since A^{\dagger} is motivated by least squares problem, this definition is most useful with 2-norm, where we have

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}}
$$

Condition number of a system of equations

- Let \mathbf{b} be fixed, and consider the behavior of the problem $A \mapsto \mathbf{x}=A^{-1} \mathbf{b}$ when A is perturbed by infinitesimal δA, then

$$
(A+\delta A)(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}
$$

- Using $A \mathbf{x}=\mathbf{b}$ and dropping the term $(\delta A)(\delta \mathbf{x})$, we obtain $(\delta A) \mathbf{x}+A(\delta \mathbf{x})=0$, that is, $\delta \mathbf{x}=-A^{-1}(\delta A) \mathbf{x}$
- It implies $\|\delta \mathbf{x}\| \leq\left\|A^{-1}\right\|\|\delta A\|\|\mathbf{x}\|$, or equivalently

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\|\delta A\|}{\|A\|} \leq\left\|A^{-1}\right\|\|A\|=\kappa(A)
$$

- The equality in this bound will hold when δA is such that

$$
\left\|A^{-1}(\delta A) \mathbf{x}\right\|=\left\|A^{-1}\right\|\|\delta A\|\|\mathbf{x}\|
$$

and it can be shown that for any A and \mathbf{b} and norm $\|\cdot\|$, such perturbations of δA exists

Condition number of a system of equations (cont'd)

Theorem

Let \mathbf{b} be fixed and consider the problem of computing $\mathbf{x}=A^{-1} \mathbf{b}$ where A is square and nonsingular. The condition number of this problem with respect to perturbation in A is

$$
\kappa=\|A\|\left\|A^{-1}\right\|=\kappa(A)
$$

- Both theorems regarding matrix-vector multiplication and system of equations are of fundamental importance in numerical linear algebra
- They determine how accurately one can solve systems of equations
- If a problem $A \mathbf{x}=\mathbf{b}$ contains an ill-conditioned matrix A, one must always expect to "lose $\log _{10} \kappa(A)$ digits" in computing the solution (except under very special cases)

