EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 14
Overview

- Eigenvalue algorithms
- Schur decomposition
- Power iteration
Reading

- Chapter 25-27 of *Numerical Linear Algebra* by Llyod Trefethen and David Bau
- Chapter 7 of *Matrix Computations* by Gene Golub and Charles Van Loan
Eigenvalue algorithm

- **Shortcomings of obvious algorithms**
 - characteristic polynomial: Compute the coefficients of the characteristic polynomial and find the roots (an ill-conditioned problems in general)
 - it is well known that no formula exists for expressing the roots of an arbitrary polynomial, given its coefficients
 - Abel in 1824 proved that non analog of the quadratic formula can exist for polynomials of degree 5 or more

- **Power iteration**: The sequence

\[
\begin{align*}
\frac{x}{\|x\|}, & \quad \frac{Ax}{\|Ax\|}, & \quad \frac{A^2x}{\|A^2x\|}, & \quad \frac{A^3x}{\|A^3x\|}, & \quad \cdots
\end{align*}
\]

slowly converges, under certain assumptions, to an eigenvector corresponding to the largest eigenvalue of \(A \)
Eigenvalue solvers

- Best general purpose eigenvalue algorithms are based on a different principle: the computation of an eigenvalue revealing factorization of \(A \in \mathbb{C}^{m \times m} \) where the eigenvalues appear as entries of one of the factors
 - diagonalization: \(A = X\Lambda X^{-1} \) (if and only if \(A \) is nondefective)
 - unitary diagonalization: \(A = Q\Lambda Q^H \) (if and only if \(A \) is normal)
 - unitary triangularization (Schur factorization): \(A = QTQ^H \) (no matter whether \(A \) is defective or not)
- Most of these direct algorithms proceed in two phases:
 - a preliminary reduction from full to structured form
 - an iterative process for the final convergence
- Any eigenvalue solver must be iterative
- The goal is to produce sequences of numbers that converge rapidly toward eigenvalues
Schur factorization and diagonalization

- Most of the general purpose eigenvalue algorithms in use today proceed by computing the Schur factorization

\[A = QTQ^H \quad Q^H AQ = T \]

- Compute Schur factorization \(A = QTQ^H \) by transforming \(A \) using a sequence of elementary unitary similarity transformation \(X \mapsto Q_j^HXQ_j \), so the product

\[
\underbrace{Q_j^H \cdots Q_2^H Q_1^H}_Q \underbrace{A Q_1 Q_2 \cdots Q_j}_{Q^H}
\]

converges to an upper triangular matrix \(T \) as \(j \to \infty \)
Eigenvalue solvers (cont’d)

- If \(A \) is real but not symmetric, then in general it may have complex eigenvalues in conjugate pairs.
- An algorithm that computes the Schur factorization will have to be capable of generating complex outputs from real inputs.
- If \(A \) is Hermitian, then \(Q_j^H \cdots Q_2^H Q_1^H A Q_1 Q_2 \cdots Q_j \) is also Hermitian, and thus the limit of the converging sequence is both triangular and Hermitian, hence diagonal.
- This implies that the same algorithms that compute a unitary triangularization of a general matrix also compute a unitary diagonalization of a Hermitian matrix.
Two phases of eigenvalue computation

- In the first phase, a direct method is applied to produce an upper Hessenberg matrix, i.e., a matrix with zeros below the first subdiagonal.
- In the second phase, an iteration is applied to generate a formally infinite sequences of Hessenberg matrices that converge to a triangular form.

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix}
\]

\(A \neq A^H\) \quad \begin{bmatrix}
\times & \times & \times & \times \\
\end{bmatrix} \quad H \quad \begin{bmatrix}
\times & \times & \times \\
\end{bmatrix} \quad T
Two phases of eigenvalue computation (cont’d)

- If A is Hermitian, the two phase approach becomes faster
- The intermediate matrix is a Hermitian Hessenberg matrix, i.e., tridiagonal
- The final result is a Hermitian triangular matrix, i.e., diagonal

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times \\
\times & \times & \times \\
\times & \times & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times \\
\times \\
\times \\
\times \\
\times \\
\times \\
\end{bmatrix}
\]

$A = A^H$ \quad T \quad D
Reduction to Hessenberg or tridiagonal form

- To compute Schur decomposition $A = QTQ^H$, we would like to apply unitary similarity transformation to A and introduce zeros below the diagonal.

- One may apply Householder transformations on the left of A

$$
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$

- Unfortunately, to complete the similarity transformation, we need to multiply by Q_1 on the right of A.

- The zeros that were introduced by Householder transformation Q_1^H are destroyed by rotation of Q_1 in similarity transformation.
Reduction by Householder transformations

- The right strategy is to introduce zeros selectively
- Select a Householder reflector Q_1^H that leaves the first row unchanged
- When multiplied on the left of A, it forms linear combinations of only rows 2, \ldots, m to introduce zeros into rows 3, \ldots, m of the first column
- When multiplied on the right of $Q_1^H Q$, it leaves the first column unchanged, and forms linear combinations of columns 2, \ldots, m so it does not alter the zeros that have been introduced

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\text{ } & \text{ } & \text{ } & \text{ } & \text{ } \\
\text{0} & \text{ } & \text{ } & \text{ } & \text{ } \\
\text{0} & \text{ } & \text{ } & \text{ } & \text{ } \\
\text{0} & \text{ } & \text{ } & \text{ } & \text{ } \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
\]
Reduction by Householder transformations

- Same idea is repeated to introduce zeros into subsequent columns

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
\]

- Repeating this process \(m - 2 \) times, we have a product in Hessenberg form

\[
Q^H_{m-1} \cdots Q^H_2 Q^H_1 A Q_1 Q_2 \cdots Q_{m-2} = H
\]
Householder reduction to Hessenberg form

- Algorithm:

  ```
  for k = 1 to m − 2 do
      x = A_{k+1:m,k}
      v_k = \text{sign}(x_1)\|x\|_2 e_1 + x
      v_k = \frac{v_k}{\|v_k\|_2}
      A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2v_k(v_k^H A_{k+1:m,k:m})
      A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2(A_{1:m,k+1:m} v_k)v_k^H
  end for
  ```

- Work for Hessenberg reduction: $\sim \frac{10}{3} m^3$ or $O(m^3)$ flops
- If A is Hermitian, the algorithm will reduce A to tridiagonal form
- Since A is Hermitian, $Q^H A Q$ is also Hermitian, and any Hermitian Hessenberg matrix is tridiagonal
- Work for tridiagonal reduction: $\sim \frac{4}{3} m^3$ or $O(m^3)$ flops
Rayleigh quotient and inverse iteration

- First examine classical eigenvalue algorithms with real matrices
- **Rayleigh quotient** of a vector \(\mathbf{x} \in \mathbb{R}^m \) is the scalar

\[
r(\mathbf{x}) = \frac{\mathbf{x}^\top A\mathbf{x}}{\mathbf{x}^\top \mathbf{x}}
\]

- If \(\mathbf{x} \) is an eigenvector, then \(r(\mathbf{x}) = \lambda \) is the corresponding eigenvalue
- Given \(\mathbf{x} \), what scalar \(\alpha \) acts most like an eigenvalue for \(\mathbf{x} \) in the sense of minimizing \(\|A\mathbf{x} - \alpha\mathbf{x}\|_2 \)?
- An \(m \times 1 \) least squares of the form \(\mathbf{x}\alpha \approx A\mathbf{x} \) (\(\mathbf{x} \) is the matrix, \(\alpha \) is the unknown, \(A\mathbf{x} \) is the right hand side), and the solution is

\[
\alpha = (\mathbf{x}^\top \mathbf{x})^{-1}\mathbf{x}^\top (A\mathbf{x}) = r(\mathbf{x})
\]

- \(r(\mathbf{x}) \) is a natural eigenvalue estimate to consider if \(\mathbf{x} \) is close to, but not necessarily equal to, an eigenvector.
Gradient of Rayleigh quotient and eigenvector

- Consider $x \in \mathbb{R}^m$ as a variable so that r is a function: $\mathbb{R}^m \to \mathbb{R}$
- Interested in the local behavior of $r(x)$ when x is near an eigenvector
- One way to quantitatively approach this is to compute the partial derivatives of $r(x)$ with respect to the coordinate x_j

$$ \frac{\partial r(x)}{\partial x_j} = \frac{\partial}{\partial x_j} (x^\top A x) = \frac{(x^\top A x) \frac{\partial}{\partial x_j} (x^\top x)}{x^\top x} - \frac{(x^\top A x) \frac{\partial}{\partial x_j} (x^\top x)}{(x^\top x)^2} = \frac{2(Ax)_j}{x^\top x} - \frac{(x^\top A x) 2x_j}{(x^\top x)^2} = \frac{2}{x^\top x} (Ax - r(x)x)_j $$

- Collect these partial derivatives into an m-vector, we get the gradient of $r(x)$,

$$ \nabla r(x) = \frac{2}{x^\top x} (Ax - r(x)x) $$

- At an eigenvector x of A, the gradient of $r(x)$ is the zero vector
- Conversely, if $\nabla r(x) = 0$ with $x \neq 0$, then x is an eigenvector and $r(x)$ is the corresponding eigenvalue
The eigenvectors of A are the stationary points of the function $r(x)$. The eigenvalues of A are the values of $r(x)$ at these stationary points. Since $r(x)$ is independent of the scale of x, these stationary points lie along lines through the origin in \mathbb{R}^m. If we normalize x to unit sphere $\|x\| = 1$, they become isolated points. For \mathbb{R}^3, there are 3 orthogonal stationary points.
Convergence rate

Let \(q_J \) be one of the eigenvectors of \(A \), it can be shown

\[
 r(x) - r(q_J) = O(\|x - q_J\|^2) \quad \text{as} \quad x \to q_J
\]

(1)

- Expand \(x \) as a line combination of the eigenvectors \(q_1, \ldots, q_m \) of \(A \),
 \[
 x = \sum_{j=1}^{m} a_j q_j,
 \]
 then
 \[
 r(x) = \frac{\sum_{j=1}^{m} a_j^2 \lambda_j}{\sum_{j=1}^{m} a_j^2}
 \]

- Thus, \(r(x) \) is a weighted mean of the eigenvalues of \(A \), with the weights equal to the squares of the coordinates of \(x \) in the eigenvector basis.
- Due to this squaring of the coordinates, if \(|a_j/a_J| < \varepsilon \) for \(j \neq J \), then
 \[
 r(x) - r(q_J) = O(\varepsilon^2)
 \]
- Rayleigh quotient is a quadratically accurate estimate of an eigenvalue
Power iteration

- Produce a sequence $v^{(i)}$ that converges to an eigenvector corresponding to the largest eigenvalue of A
- Algorithm

 Initialize $v^{(0)}$ randomly with $\|v^{(0)}\| = 1$

 for $k = 1, 2, \ldots$ do

 $w = Av^{(k-1)}$ // apply A

 $v^{(k)} = \frac{w}{\|w\|}$ //normalize

 $\lambda^{(k)} = (v^{(k)})^\top Av^{(k)}$ // Rayleigh quotient

 end for
- Let v^0 denote the linear combination of the orthonormal eigenvectors q_i, we can analyze power iteration

 $v^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_m q_m$
- Since $v^{(k)}$ is a multiple of $A^k v^{(0)}$, we have some constant c_k

 $v^{(k)} = c_k A^k v^{(0)}$

 $= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \cdots + a_m \lambda_m^k q_m)$

 $= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2/\lambda_1)^k q_2 + \cdots + a_m (\lambda_m/\lambda_1)^k q_m)$
Theorem

Suppose $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_m| \geq 0$, and $q_1^\top v^{(0)} \neq 0$, then after k iterations

$$
\|v^{(k)} - (\pm q_1)\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \quad |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)
$$

as $k \to \infty$. The \pm sign means that at each step k, one or the other choice of sign is to be taken, and then the indicated bound holds.

Proof.

The first equation follows from the power iteration (2) since $a_1 = q_1^\top v^{(0)} \neq 0$ by assumption. The second one follows from this and quadratical error (1). If $\lambda_1 > 0$, then the \pm signs are all $+$ or all $-$, whereas if $\lambda_1 < 0$, they alternate.
Power iteration (cont’d)

- Can be used to compute the spectral radius (supremum among the absolute values of the spectrum) of a matrix

\[\rho(A) = \sup\{|\lambda_i|\}\]

where \(\lambda_i\) is an eigenvalue of \(A\)

- However, it has limited use
 - it can find only the eigenvector corresponding to the largest eigenvalue
 - the convergence is linear, reducing the error only by a constant factor
 \[\approx |\lambda_2/\lambda_1|\] at each iteration
 - the quality of this factor depends on having a largest eigenvalue that is significantly larger than the others

- Google uses it to compute the PageRank of documents for search

- More efficient than other methods of finding the dominant eigenvector for matrices that are well-conditioned and as sparse as the web