
EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced

Merced, CA 95344
http://faculty.ucmerced.edu/mhyang

Lecture 14

1 / 20

Overview

Eigenvalue algorithms

Schur decomposition

Power iteration

2 / 20

Reading

Chapter 25-27 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 7 of Matrix Computations by Gene Golub and Charles Van
Loan

3 / 20

Eigenvalue algorithm

Shortcomings of obvious algorithms
I characteristic polynomial: Compute the coefficients of the characteristic

polynomial and find the roots (an ill-conditioned problems in general)
I it is well known that no formula exists for expressing the roots of an

arbitrary polynomial, given its coefficients
I Abel in 1824 proved that non analog of the quadratic formula can exist

for polynomials of degree 5 or more

Power iteration: The sequence

x

‖x‖
,

Ax

‖Ax‖
,

A2x

‖A2x‖
,

A3x

‖A3x‖
, · · ·

slowly converges, under certain assumptions, to an eigenvector
corresponding to the largest eigenvalue of A

4 / 20

Eigenvalue solvers

Best general purpose eigenvalue algorithms are based on a different
principle: the computation of an eigenvalue revealing factorization of
A ∈ Cm×m where the eigenvalues appear as entries of one of the
factors

I diagonalization: A = XΛX−1 (if and only if A is nondefective)
I unitary diagonalization: A = QΛQH (if and only if A is normal)
I unitary triangularization (Schur factorization): A = QTQH (no matter

whether A is defective or not)

Most of these direct algorithms proceed in two phases:
I a preliminary reduction from full to structured form
I an iterative process for the final convergence

Any eigenvalue solver must be iterative

The goal is to produce sequences of numbers that converge rapidly
toward eigenvalues

5 / 20

Schur factorization and diagonalization

Most of the general purpose eigenvalue algorithms in use today
proceed by computing the Schur factorization

A = QTQH QHAQ = T

Compute Schur factorization A = QTQH by transforming A using a
sequence of elementary unitary similarity transformation
X 7→ QH

j XQj , so the product

QH
j · · ·QH

2 QH
1︸ ︷︷ ︸

QH

AQ1Q2 · · ·Qj︸ ︷︷ ︸
Q

converges to an upper triangular matrix T as j →∞

6 / 20

Eigenvalue solvers (cont’d)

If A is real but not symmetric, then in general it may have complex
eigenvalues in conjugate pairs

An algorithm that computes the Schur factorization will have to be
capable of generating complex outputs from real inputs

If A is Hermitian, then QH
j · · ·QH

2 QH
1 AQ1Q2 · · ·Qj is also Hermitian,

and thus the limit of the converging sequence is both triangular and
Hermitian, hence diagonal

This implies that the same algorithms that compute a unitary
triangularization of a general matrix also compute a unitary
diagonalization of a Hermitian matrix

7 / 20

Two phases of eigenvalue computation

In the first phase, a direct method is applied to produce an upper
Hessenberg matrix, i.e., a matrix with zeros below the first
subdiagonal

In the second phase, an iteration is applied to generate a formally
infinite sequences of Hessenberg matrices that converge to a
triangular form
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

→

× × × × ×
× × × × ×
× × × ×
× × ×
× ×

→

× × × × ×
× × × ×
× × ×
× ×
×

A 6= AH H T

8 / 20

Two phases of eigenvalue computation (cont’d)

If A is Hermitian, the two phase approach becomes faster

The intermediate matrix is a Hermitian Hessenberg matrix, i.e.,
tridiagonal

The final result is a Hermitian triangular matrix, i.e., diagonal
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

→

× ×
× × ×
× × ×
× × ×
× ×

→

×
×
×
×
×

A = AH T D

9 / 20

Reduction to Hessenberg or tridiagonal form

To compute Schur decomposition A = QTQH , we would like to apply
unitary similarity transformation to A and introduce zeros below the
diagonal

One may apply Householder transformations on the left of A
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →

� � � � �
0 � � � �
0 � � � �
0 � � � �
0 � � � �

→

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

A QH

1 · QH
1 A ·Q1 QH

1 AQ1

Unfortunately, to complete the similarity transformation, we need to
multiply by Q1 on the right of A

The zeros that were introduced by Householder transformation QH
1

are destroyed by rotation of Q1 in similarity transformation

10 / 20

Reduction by Householder transformations

The right strategy is to introduce zeros selectively

Select a Householder reflector QH
1 that leaves the first row unchanged

When multiplied on the left of A, it forms linear combinations of only
rows 2, . . . ,m to introduce zeros into rows 3, . . . ,m of the first
column

When multiplied on the right of QH
1 Q, it leaves the first column

unchanged, and forms linear combinations of columns 2, . . . ,m so it
does not alter the zeros that have been introduced

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →

× × × × ×
� � � � �
0 � � � �
0 � � � �
0 � � � �

→

× � � � �
× � � � �

� � � �
� � � �
� � � �

A QH

1 · QH
1 A ·Q1 QH

1 AQ1

11 / 20

Reduction by Householder transformations
Same idea is repeated to introduce zeros into subsequent columns
× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

→

× × × × ×
× × × × ×

� � � �
0 � � �
0 � � �

→

× × � � �
× × � � �
× � � �

� � �
� � �

QH

1 AQ1 QH
2 QH

1 AQ1 QH
2 QH

1 AQ1Q2

Repeating this process m − 2 times, we have a product in Hessenberg
form

× × × × ×
× × × × ×
× × × ×
× × ×
× ×

QH

m−1 · · ·QH
2 QH

1 A︸ ︷︷ ︸
QH

AQ1Q2 · · ·Qm−2︸ ︷︷ ︸
Q

= H

12 / 20

Householder reduction to Hessenberg form

Algorithm:

for k = 1 to m − 2 do
x = Ak+1:m,k

vk = sign(x1)‖x‖2e1 + x
vk = vk

‖vk‖2
Ak+1:m,k:m = Ak+1:m,k:m − 2vk(vHk Ak+1:m,k:m)
A1:m,k+1:m = A1:m,k+1:m − 2(A1:m,k+1:mvk)vHk

end for

Work for Hessenberg reduction: ∼ 10
3 m

3 or O(m3) flops

If A is Hermitian, the algorithm will reduce A to tridiagonal form

Since A is Hermitian, QHAQ is also Hermitian, and any Hermitian
Hessenberg matrix is tridiagonal

Work for tridiagonal reduction: ∼ 4
3m

3 or O(m3) flops

13 / 20

Rayleigh quotient and inverse iteration

First examine classical eigenvalue algorithms with real matrices

Rayleigh quotient of a vector x ∈ IRm is the scalar

r(x) =
x>Ax

x>x

If x is an eigenvector, then r(x) = λ is the corresponding eigenvalue

Given x, what scalar α acts most like an eigenvalue for x in the sense
of minimizing ‖Ax− αx‖2?

An m× 1 least squares of the form xα ≈ Ax (x is the matrix, α is the
unknown, Ax is the right hand side), and the solution is

α = (x>x)−1x>(Ax) = r(x)

r(x) is a natural eigenvalue estimate to consider if x is close to, but
not necessarily equal to, an eigenvector

14 / 20

Gradient of Rayleigh quotient and eigenvector

Consider x ∈ IRm as a variable so that r is a function: IRm → IR

Interested in the local behavior of r(x) when x is near an eigenvector

One way to quantitatively approach this is to compute the partial
derivatives of r(x) with respect to the coordinate xj

∂r(x)
∂xj

=
∂
∂xj

(x>Ax)

x>x
−

(x>Ax) ∂
∂xj

(x>x)

(x>x)2

=
2(Ax)j
x>x

− (x>Ax)2xj
(x>x)2

= 2
x>x

(Ax− r(x)x)j

Collect these partial derivatives into an m-vector, we get the gradient
of r(x),

∇r(x) =
2

x>x
(Ax− r(x)x)

At an eigenvector x of A, the gradient of r(x) is the zero vector

Conversely, if ∇r(x) = 0 with x 6= 0, then x is an eigenvector and
r(x) is the corresponding eigenvalue

15 / 20

Geometric perspective

The eigenvectors of A are the stationary points of the function r(x)

The eigenvalues of A are the values of r(x) at these stationary points

Since r(x) is independent of the scale of x, these stationary points lie
along lines through the origin in IRm

If we normalize x to unit sphere ‖x‖ = 1, they become isolated points

For IR3, there are 3 orthogonal stationary points

16 / 20

Convergence rate

Let qJ be one of the eigenvectors of A, it can be shown

r(x)− r(qJ) = O(‖x− qJ‖2) as x→ qJ (1)

Expand x as a line combination of the eigenvectors q1, . . . ,qm of A,
x =

∑m
j=1 ajqj , then

r(x) =

∑m
j=1 a

2
j λj∑m

j=1 a
2
j

Thus, r(x) is a weighted mean of the eigenvalues of A, with the
weights equal to the squares of the coordinates of x in the eigenvector
basis

Due to this squaring of the coordinates, if |aj/aJ | < ε for j 6= J, then
r(x)− r(qJ) = O(ε2)

Rayleigh quotient is a quadratically accurate estimate of an eigenvalue

17 / 20

Power iteration
Produce a sequence v(i) that converges to an eigenvector
corresponding to the largest eigenvalue of A
Algorithm

Initialize v(0) randomly with ‖v(0)‖ = 1
for k = 1, 2, . . . do

w = Av(k−1) // apply A
v(k) = w

‖w‖ //normalize

λ(k) = (v(k))>Av(k) // Rayleigh quotient
end for

Let v0 denote the linear combination of the orthonormal eigenvectors
qi , we can analyze power iteration

v(0) = a1q1 + a2q2 + · · ·+ amqm

Since v(k) is a multiple of Akv(0), we have some constant ck
v(k) = ckA

kv(0)

= ck(a1λ
k
1q1 + a2λ

k
2q2 + · · ·+ amλ

k
mqm)

= ckλ
k
1(a1q1 + a2(λ2/λ1)kq2 + · · ·+ am(λm/λ1)kqm)

(2)

18 / 20

Power iteration (cont’d)

Theorem

Suppose |λ1| > |λ2| ≥ · · · ≥ |λm| ≥ 0, and q>1 v
(0) 6= 0, then after k

iterations

‖v(k) − (±q1)‖ = O

(∣∣∣λ2λ1 ∣∣∣k
)
, |λ(k) − λ1| = O

(∣∣∣λ2λ1 ∣∣∣2k
)

as k →∞. The ± sign means that at each step k, one or the other choice
of sign is to be taken, and then the indicated bound holds.

Proof.

The first equation follows from the power iteration (2) since
a1 = q>1 v

(0) 6= 0 by assumption. The second one follows from this and
quadratical error (1). If λ1 > 0, then the ± signs are all + or all −,
whereas if λ1 < 0, they alternate.

19 / 20

Power iteration (cont’d)

Can be used to compute the spectral radius (supremum among the
absolute values of the spectrum) of a matrix

ρ(A) = sup{|λi |}

where λi is an eigenvalue of A

However, it has limited use
I it can find only the eigenvector corresponding to the largest eigenvalue
I the convergence is linear, reducing the error only by a constant factor
≈ |λ2/λ1| at each iteration

I the quality of this factor depends on having a largest eigenvalue that is
significantly larger than the others

Google uses it to compute the PageRank of documents for search

More efficient than other methods of finding the dominant eigenvector
for matrices that are well-conditioned and as sparse as the web

20 / 20

