### CSE 275 Matrix Computation

### Ming-Hsuan Yang

Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang



Lecture 13

1/22

### Overview

- Eigenvalue problem
- Schur decomposition
- Eigenvalue algorithms

# Reading

- Chapter 24 of *Numerical Linear Algebra* by Llyod Trefethen and David Bau
- Chapter 7 of *Matrix Computations* by Gene Golub and Charles Van Loan

## Eigenvalues and eigenvectors

Let A ∈ C<sup>m×m</sup> be a square matrix, a nonzero x ∈ C<sup>m</sup> is an eigenvector of A, and λ ∈ C is its corresponding eigenvalue if

$$A\mathbf{x} = \lambda \mathbf{x}$$

- Idea: the action of a matrix A on a subspace S ∈ C<sup>m</sup> may sometimes mimic scalar multiplication
- When it happens, the special subspace S is called an eigenspace, and any nonzero x ∈ S is an eigenvector
- The set of all eigenvalues of a matrix A is the spectrum of A, a subset of C denoted by Λ(A)

Eigenvalues and eigenvectors (cont'd)

#### $A\mathbf{x}=\lambda\mathbf{x}$

- Algorithmically: simplify solutions of certain problems by reducing a coupled system to a collection of scalar problems
- Physically: give insight into the behavior of evolving systems governed by linear equations, e.g., resonance (of musical instruments when struck or plucked or bowed), stability (of fluid flows with small perturbations)

## Eigendecomposition

• An eigendecomposition (eigenvalue decomposition) of a square matrix *A* is a factorization

$$A = X\Lambda X^{-1}$$

where X is a nonsingular and  $\Lambda$  is diagonal

• Equivalently,

$$AX = X\Lambda$$

$$A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix}$$

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

 λ<sub>j</sub> is an eigenvalue and j-th column of X is the corresponding eigenvector

### Interpretation using eigendecomposition

- Express a change of basis to "eigenvector coordinates"
- Let  $A\mathbf{x} = \mathbf{b}$  and  $A = X\Lambda X^{-1}$ , we have

$$(X^{-1}\mathbf{b}) = \Lambda(X^{-1}\mathbf{x})$$

- Thus, to compute Ax,
  - we can expand  $\mathbf{x}$  in the basis of columns of X, apply  $\Lambda$ ,
  - ▶ and interpret the result as a vector of coefficients of a linear combination of the columns of X

## Geometric multiplicity

- The set of eigenvectors corresponding to a single eigenvalue  $\lambda$ , together with the zero vector, forms a subspace of  $\mathbb{C}^m$  known as an eigenspace,  $E_{\lambda}$
- An eigenspace  $E_{\lambda}$  is an invariant subspace of A, i.e.,  $AE_{\lambda} \subseteq E_{\lambda}$
- The dimension of  $E_{\lambda}$  can be interpreted as the maximum number of linearly independent eigenvectors that can be found, all with the same eigenvalue  $\lambda$
- This number is the geometric multiplicity of  $\lambda$
- Geometric multiplicity can also be described as the dimension of the null space of  $A \lambda I$  since the null space is again  $E_{\lambda}$
- Related to the question whether a given matrix may be diagonalized by a suitable choice of coordinates

## Characteristic polynomial

The characteristic polynomial of A ∈ C<sup>m×m</sup>, denoted by p<sub>A</sub>, is the degree m polynomial

$$p_A(x) = \det(xI - A)$$

• Note *p* is monic (i.e., the coefficient of its degree *m* term is 1)

#### Theorem

 $\lambda$  is an eigenvalue of A if and only if  $p_A(\lambda) = 0$ 

### Proof.

This follows form the definition of an eigenvalue:

 $\lambda$  is an eigenvalue  $\iff$  there is a nonzero vector x s.t.  $\lambda x - Ax = 0$  $\iff \lambda I - A$  is singular  $\iff \det(\lambda I - A) = 0$ 

イロト イポト イヨト イヨト

# Characteristic polynomial (cont'd)

- Even if matrix A is real, some of its eigenvalues may be complex
- Physically, related to the phenomenon that real dynamical systems can have motions that oscillate as well as grow or decay
- Algorithmically, even if the input to a matrix eigenvalue problem is real, the output may have to be complex
- By the fundamental theorem of algebra, we can write *p<sub>A</sub>* in terms of their roots

$$p_A(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_m)$$

for some numbers  $\lambda_j \in \mathbb{C}$ 

- Algebraic multiplicity of an eigenvalue λ of A: its multiplicity as a root of p<sub>A</sub>
- An eigenvalue is simple if is algebraic multiplicity is 1
- Algebraic multiplicity is always as great as its geometric multiplicity
- There may not be sufficient eigenvectors to span the entire space

## Example

• Consider the matrices

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

- Both A and B have characteristic polynomial  $(z 2)^3$ , so there is a single eigenvalue  $\lambda = 2$  of algebraic multiplicity 3
- For A, we can choose three independent eigenvalectors, e.g.,  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ , and so the geometric multiplicity of  $\lambda = 2$  is 3
- For *B*, on the other hand, we can only have one single independent eigenvector, i.e., a scalar multiple of **e**<sub>1</sub>, so the geometric multiplicity of the eigenvalue is only 1
- It means that there are not sufficient number of independent eigenvectors to span *B*
- It also means that A can be diagonalized but not B

## Eigenvalue properties

- If X ∈ C<sup>m×m</sup> is nonsingular, then the map A → X<sup>-1</sup>AX is called a similarity transformation of A
- Two matrices A and B are similar if there is a similarity transformation relating one to the other, i.e., if there exists a nonsingular X ∈ C<sup>m×m</sup> s.t. B = X<sup>-1</sup>AX
- If X is nonsingular, then A and  $X^{-1}AX$  have the same characteristic polynomial eigenvalues, and algebraic and geometric multiplicities
- An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a defective eigenvalue
- A matrix that has one or more defective eigenvalues is a defective matrix
- Any diagonal matrix is nondefective, and both the algebraic and the geometric multiplicities of an eigenvalue λ are equal to the number of its occurrences along the diagonal

# Diagonalizability

### Theorem

An  $m \times m$  matrix A is nondefective if and only if it has an eigenvalue decomposition  $A = X\Lambda X^{-1}$ 

### Proof.

( $\Leftarrow$ ) Given an eigenvalue decomposition  $A = X\Lambda X^{-1}$ , we know  $\Lambda$  is similar to A (due to similarity transformation) with the same eigenvalues and the same multiplicities. Since  $\Lambda$  is a diagonal matrix, it is nondefective, and thus the same holds for A.

(⇒) A nondefective matrix must have *m* linearly independent eigenvectors as eigenvectors with different eigenvalues must be linearly independent, and each eigenvalue can contribute as many linearly independent eigenvectors as its multiplicity. If these *m* independent eigenvectors re formed into the columns of a matrix *X*, then *X* is nonsingular and we have  $AX = X\Lambda$ ,  $A = X\Lambda X^{-1}$ .

## Determinant and trace

#### Theorem

The determinant det(A) and trace tr(A) are equal to the product and the sum of eigenvalues of A, respectively, counted with algebraic multiplicity

$$\det(A) = \prod_{j=1}^m \lambda_j \quad \operatorname{tr}(A) = \sum_{j=1}^m \lambda_j$$

### Proof.

$$A = U\Sigma V^{T}, \det(A) = \det(U) \det(\Sigma) \det(V^{\top}) = \prod_{j=1}^{m} \lambda_{j}$$
$$p_{A}(x) = (x - \lambda_{1})(x - \lambda_{2}) \cdots (x - \lambda_{m})$$
$$= x^{m} - (\sum_{j=1}^{m} \lambda_{j})x^{m-1} + \cdots + \prod_{j=1}^{m} \lambda_{j}$$

On the other hand, from characteristic polynomial

$$p_A(x) = \det(xI - A)$$
  
=  $x^m - (\operatorname{tr}(A))x^{m-1} + \dots + \det(A)$ 

# Hermitian matrix

 Hermitian matrix: a square matrix A ∈ C with complex entries which is equal to its own conjugate transpose

$$A_{ij} = \overline{A_{ij}}, \quad A = A^H \quad (A = A^*)$$

where  $A^{H}$  (or  $A^{*}$ ) is the conjugate transpose of A, e.g.,

$$\begin{bmatrix} 3 & 2+i \\ 2-i & 1 \end{bmatrix}$$

- A complex square matrix A is normal if  $A^H A = A A^H$
- A complex square matrix A is a unitary matrix if  $A^H A = A A^H = I$
- A unitary matrix in which all entries are real is an orthogonal matrix
- Properties:
  - Real entries on the main diagonal
  - A matrix has only real entries is Hermitian if and only if it is a symmetric matrix
  - ► A real and symmetric matrix is a special case of a Hermitian matrix

### Unitary and orthogonal matrices

- Unitary matrix: a complex matrix Q ∈ C<sup>m×m</sup> whose columns (or rows) constitute an orthonormal basis
  - $Q^H Q = I$  $Q^H Q = I \iff QQ^H = I$

• 
$$Q^{-1} = Q^H$$

- $\blacksquare \|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2, \ \forall \mathbf{x} \in \mathbb{C}^m$
- Orthogonal matrix: a real matrix  $P \in {\rm I\!R}^{m \times m}$  whose columns (or rows) constitute an orthonormal basis

$$\blacktriangleright P^\top P = I$$

$$P^{\top}P = I \Longleftrightarrow PP^{\top} = I$$

► 
$$P^{-1} = P^{\top}$$

$$||P\mathbf{x}||_2 = ||\mathbf{x}||_2, \ \forall \mathbf{x} \in \mathrm{IR}^m$$

### Complex vector and matrix

• For complex vectors, **x**,

$$\|\mathbf{x}\|^2 = \mathbf{x}^H \mathbf{x}$$

• A is unitary if

$$\|A\mathbf{x}\|^2 = \mathbf{x}^H A^H A \mathbf{x} = \mathbf{x}^H \mathbf{x} = \|\mathbf{x}\|^2$$

Two vectors are orthogonal if

$$\mathbf{x}_1^H \mathbf{x}_2 = 0$$

then  $A\mathbf{x}_1$  and  $A\mathbf{x}_2$  are orthogonal under unitary transformation

$$\mathbf{x}_1^H A^H A \mathbf{x}_2 = \mathbf{x}_1^H \mathbf{x}_2 = \mathbf{0}$$

# Schur decomposition

### Theorem

Every square matrix can be factorized in Schur decomposition

$$\begin{array}{rcl} A & = & QTQ^{H}, & A \in \mathbb{C}^{m \times m} \\ T & = & Q^{H}AQ \end{array}$$

where Q is unitary and T is upper triangular, and the eigenvalues of A appear on the diagonal of T

- Play an important role in eigenvalue computation
- Any square matrix, defective or not, can be triangularized by unitary transformations
- The diagonal elements of a triangular matrix are its eigenvalues
- The unitary transformations preserve eigenvalues

# Schur decomposition (cont'd)

Proof.

For m = 1, trivial case. For m > 1, assume that all  $(m - 1) \times (m - 1)$ matrices are unitary similar to an upper triangular matrix, and consider an  $m \times m$  matrix A. Suppose that  $(\lambda, \mathbf{x})$  is an eigenpair for A and  $\|\mathbf{x}\|_2 = 1$ . We can construct a Householder reflector  $R = R^H = R^{-1}$  with property that  $R\mathbf{x} = \mathbf{e}_1$  or  $\mathbf{x} = R\mathbf{e}_1$ . Thus  $\mathbf{x}$  is the first column in R, and so  $R = [\mathbf{x}|V]$ ,

$$R^{H}AR = RA\left[\mathbf{x}|V\right] = R\left[\lambda\mathbf{x}|AV\right] = \left[\lambda\mathbf{e}_{1}|R^{H}AV\right] = \begin{bmatrix}\lambda & \mathbf{x}^{H}AV\\ \mathbf{0} & V^{H}AV\end{bmatrix}$$

Since  $V^H AV$  is  $(m-1) \times (m-1)$ , the induction hypothesis insures that there exists a unitary matrix Q s.t.  $Q^H(V^H AV)Q = \tilde{T}$  is upper triangular. If  $U = R \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Q \end{bmatrix}$ , then U is unitary (as  $U^H = U^{-1}$ ), and  $U^H AU = \begin{bmatrix} \lambda & \mathbf{x}^H AVQ \\ \mathbf{0} & Q^H V^H AVQ \end{bmatrix} = \begin{bmatrix} \lambda & \mathbf{x}^H AVQ \\ \mathbf{0} & \tilde{T} \end{bmatrix} = T$ 

is upper triangular

Diagonalization and eigenvalue problems I

- Sometimes not only  $m \times m$  matrix A may have m linearly independent eigenvectors, but also they are orthogonal
- In such cases, A is unitarily diagonalizable
- A square matrix A is unitarily diagonalizable if there exists a unitary matrix Q such that

$$A = Q \Lambda Q^H$$

where  $\Lambda$  is diagonal

#### Theorem

A Hermitian matrix is unitarily diagonalizable, and its eigenvalues are real

#### Theorem

A matrix is unitarily diagonalizable if and only if it is normal

# Diagonalization and eigenvalue problems II

• Two matrices A and B, diagonalizable or not, are similar if they are related by

$$A = QBQ^{-1}$$

and the transformation of B into A (or vice versa) is called a similarity transformation

• If A is diagonalizable

$$\begin{array}{rcl} AQ &=& Q\Lambda \\ A\mathbf{q}_i &=& \lambda_i \mathbf{q}_i \end{array}$$

where  $\lambda_i$  and  $\mathbf{q}_i$  are solutions of the eigenvalue problem

$$A\mathbf{x} = \lambda \mathbf{x}$$

• Derive this equation from the requirement of diagonalizing a matrix by a similarity transformation

# Eigenvalue revealing factorization

- A diagonalization  $A = X\Lambda X^{-1}$  exists if and only if A is nondefective
- A unitary diagonalization  $A = Q \Lambda Q^H$  exits if and only if A is normal
- A unitary triangularization (Schur factorization)  $A = QTQ^{H}$  always exists
- Will use one of these factorization to compute eigenvalues
- In general, we will use Schur factorization as this applies without restriction
- If A is normal, then Schur form comes out diagonal and its eigenvalues are real
- If A is Hermitian, then we can take advantage of symmetry with half as much work or less than is required for general A