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Overview

Eigenvalue problem

Schur decomposition

Eigenvalue algorithms
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Reading

Chapter 24 of Numerical Linear Algebra by Llyod Trefethen and
David Bau

Chapter 7 of Matrix Computations by Gene Golub and Charles Van
Loan
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Eigenvalues and eigenvectors

Let A ∈ Cm×m be a square matrix, a nonzero x ∈ Cm is an
eigenvector of A, and λ ∈ C is its corresponding eigenvalue if

Ax = λx

Idea: the action of a matrix A on a subspace S ∈ Cm may sometimes
mimic scalar multiplication

When it happens, the special subspace S is called an eigenspace, and
any nonzero x ∈ S is an eigenvector

The set of all eigenvalues of a matrix A is the spectrum of A, a subset
of C denoted by Λ(A)
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Eigenvalues and eigenvectors (cont’d)

Ax = λx

Algorithmically: simplify solutions of certain problems by reducing a
coupled system to a collection of scalar problems

Physically: give insight into the behavior of evolving systems
governed by linear equations, e.g., resonance (of musical instruments
when struck or plucked or bowed), stability (of fluid flows with small
perturbations)
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Eigendecomposition

An eigendecomposition (eigenvalue decomposition) of a square matrix
A is a factorization

A = XΛX−1

where X is a nonsingular and Λ is diagonal

Equivalently,

AX = XΛ

A
[
x1 x2 · · · xm

]
=
[
x1 x2 · · · xm

]

λ1

λ2
. . .

λm


Axj = λjxj

λj is an eigenvalue and j-th column of X is the corresponding
eigenvector
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Interpretation using eigendecomposition

Express a change of basis to “eigenvector coordinates”

Let Ax = b and A = XΛX−1, we have

(X−1b) = Λ(X−1x)

Thus, to compute Ax,
I we can expand x in the basis of columns of X , apply Λ,
I and interpret the result as a vector of coefficients of a linear

combination of the columns of X
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Geometric multiplicity

The set of eigenvectors corresponding to a single eigenvalue λ,
together with the zero vector, forms a subspace of Cm known as an
eigenspace, Eλ

An eigenspace Eλ is an invariant subspace of A, i.e., AEλ ⊆ Eλ

The dimension of Eλ can be interpreted as the maximum number of
linearly independent eigenvectors that can be found, all with the same
eigenvalue λ

This number is the geometric multiplicity of λ

Geometric multiplicity can also be described as the dimension of the
null space of A− λI since the null space is again Eλ

Related to the question whether a given matrix may be diagonalized
by a suitable choice of coordinates
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Characteristic polynomial

The characteristic polynomial of A ∈ Cm×m, denoted by pA, is the
degree m polynomial

pA(x) = det(xI − A)

Note p is monic (i.e., the coefficient of its degree m term is 1)

Theorem

λ is an eigenvalue of A if and only if pA(λ) = 0

Proof.

This follows form the definition of an eigenvalue:

λ is an eigenvalue ⇐⇒ there is a nonzero vector x s.t. λx − Ax = 0
⇐⇒ λI − A is singular
⇐⇒ det(λI − A) = 0
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Characteristic polynomial (cont’d)

Even if matrix A is real, some of its eigenvalues may be complex

Physically, related to the phenomenon that real dynamical systems
can have motions that oscillate as well as grow or decay

Algorithmically, even if the input to a matrix eigenvalue problem is
real, the output may have to be complex

By the fundamental theorem of algebra, we can write pA in terms of
their roots

pA(x) = (x − λ1)(x − λ2) · · · (x − λm)

for some numbers λj ∈ C
Algebraic multiplicity of an eigenvalue λ of A: its multiplicity as a
root of pA

An eigenvalue is simple if is algebraic multiplicity is 1

Algebraic multiplicity is always as great as its geometric multiplicity

There may not be sufficient eigenvectors to span the entire space
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Example

Consider the matrices

A =

2 0 0
0 2 0
0 0 2

 , B =

2 1 0
0 2 1
0 0 2


Both A and B have characteristic polynomial (z − 2)3, so there is a
single eigenvalue λ = 2 of algebraic multiplicity 3

For A, we can choose three independent eigenvalectors, e.g.,
e1, e2, e3, and so the geometric multiplicity of λ = 2 is 3

For B, on the other hand, we can only have one single independent
eigenvector, i.e., a scalar multiple of e1, so the geometric multiplicity
of the eigenvalue is only 1

It means that there are not sufficient number of independent
eigenvectors to span B

It also means that A can be diagonalized but not B
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Eigenvalue properties

If X ∈ Cm×m is nonsingular, then the map A 7→ X−1AX is called a
similarity transformation of A

Two matrices A and B are similar if there is a similarity
transformation relating one to the other, i.e., if there exists a
nonsingular X ∈ Cm×m s.t. B = X−1AX

If X is nonsingular, then A and X−1AX have the same characteristic
polynomial eigenvalues, and algebraic and geometric multiplicities

An eigenvalue whose algebraic multiplicity exceeds its geometric
multiplicity is a defective eigenvalue

A matrix that has one or more defective eigenvalues is a defective
matrix

Any diagonal matrix is nondefective, and both the algebraic and the
geometric multiplicities of an eigenvalue λ are equal to the number of
its occurrences along the diagonal

12 / 22



Diagonalizability

Theorem

An m ×m matrix A is nondefective if and only if it has an eigenvalue
decomposition A = XΛX−1

Proof.

(⇐) Given an eigenvalue decomposition A = XΛX−1, we know Λ is similar
to A (due to similarity transformation) with the same eigenvalues and the
same multiplicities. Since Λ is a diagonal matrix, it is nondefective, and
thus the same holds for A.
(⇒) A nondefective matrix must have m linearly independent eigenvectors
as eigenvectors with different eigenvalues must be linearly independent,
and each eigenvalue can contribute as many linearly independent
eigenvectors as its multiplicity. If these m independent eigenvectors re
formed into the columns of a matrix X , then X is nonsingular and we have
AX = XΛ, A = XΛX−1.
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Determinant and trace

Theorem

The determinant det(A) and trace tr(A) are equal to the product and the
sum of eigenvalues of A, respectively, counted with algebraic multiplicity

det(A) =
m∏
j=1

λj tr(A) =
m∑
j=1

λj

Proof.

A = UΣV T , det(A) = det(U) det(Σ) det(V>) =
m∏
j=1

λj

pA(x) = (x − λ1)(x − λ2) · · · (x − λm)
= xm − (

∑m
j=1 λj)x

m−1 + · · ·+
∏m

j=1 λj

On the other hand, from characteristic polynomial

pA(x) = det(xI − A)
= xm − (tr(A))xm−1 + · · ·+ det(A)
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Hermitian matrix

Hermitian matrix: a square matrix A ∈ C with complex entries which
is equal to its own conjugate transpose

Aij = Aij , A = AH (A = A∗)

where AH (or A∗) is the conjugate transpose of A, e.g.,[
3 2 + i

2− i 1

]
A complex square matrix A is normal if AHA = AAH

A complex square matrix A is a unitary matrix if AHA = AAH = I

A unitary matrix in which all entries are real is an orthogonal matrix

Properties:
I Real entries on the main diagonal
I A matrix has only real entries is Hermitian if and only if it is a

symmetric matrix
I A real and symmetric matrix is a special case of a Hermitian matrix
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Unitary and orthogonal matrices

Unitary matrix: a complex matrix Q ∈ Cm×m whose columns (or
rows) constitute an orthonormal basis

I QHQ = I
I QHQ = I ⇐⇒ QQH = I
I Q−1 = QH

I ‖Qx‖2 = ‖x‖2, ∀x ∈ Cm

Orthogonal matrix: a real matrix P ∈ IRm×m whose columns (or
rows) constitute an orthonormal basis

I P>P = I
I P>P = I ⇐⇒ PP> = I
I P−1 = P>

I ‖Px‖2 = ‖x‖2, ∀x ∈ IRm
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Complex vector and matrix

For complex vectors, x,
‖x‖2 = xHx

A is unitary if

‖Ax‖2 = xHAHAx = xHx = ‖x‖2

Two vectors are orthogonal if

xH1 x2 = 0

then Ax1 and Ax2 are orthogonal under unitary transformation

xH1 A
HAx2 = xH1 x2 = 0

17 / 22



Schur decomposition

Theorem

Every square matrix can be factorized in Schur decomposition

A = QTQH , A ∈ Cm×m

T = QHAQ

where Q is unitary and T is upper triangular, and the eigenvalues of A
appear on the diagonal of T

Play an important role in eigenvalue computation

Any square matrix, defective or not, can be triangularized by unitary
transformations

The diagonal elements of a triangular matrix are its eigenvalues

The unitary transformations preserve eigenvalues
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Schur decomposition (cont’d)

Proof.

For m = 1, trivial case. For m > 1, assume that all (m − 1)× (m − 1)
matrices are unitary similar to an upper triangular matrix, and consider an
m ×m matrix A. Suppose that (λ, x) is an eigenpair for A and ‖x‖2 = 1.
We can construct a Householder reflector R = RH = R−1 with property
that Rx = e1 or x = Re1. Thus x is the first column in R, and so
R =

[
x|V

]
,

RHAR = RA
[
x|V

]
= R

[
λx|AV

]
=
[
λe1|RHAV

]
=

[
λ xHAV
0 VHAV

]
Since VHAV is (m − 1)× (m − 1), the induction hypothesis insures that
there exists a unitary matrix Q s.t. QH(VHAV )Q = T̃ is upper triangular.

If U = R

[
1 0
0 Q

]
, then U is unitary (as UH = U−1), and

UHAU =

[
λ xHAVQ
0 QHVHAVQ

]
=

[
λ xHAVQ

0 T̃

]
= T

is upper triangular
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Diagonalization and eigenvalue problems I

Sometimes not only m ×m matrix A may have m linearly
independent eigenvectors, but also they are orthogonal

In such cases, A is unitarily diagonalizable

A square matrix A is unitarily diagonalizable if there exists a unitary
matrix Q such that

A = QΛQH

where Λ is diagonal

Theorem

A Hermitian matrix is unitarily diagonalizable, and its eigenvalues are real

Theorem

A matrix is unitarily diagonalizable if and only if it is normal
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Diagonalization and eigenvalue problems II

Two matrices A and B, diagonalizable or not, are similar if they are
related by

A = QBQ−1

and the transformation of B into A (or vice versa) is called a
similarity transformation

If A is diagonalizable
AQ = QΛ
Aqi = λiqi

where λi and qi are solutions of the eigenvalue problem

Ax = λx

Derive this equation from the requirement of diagonalizing a matrix
by a similarity transformation
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Eigenvalue revealing factorization

A diagonalization A = XΛX−1 exists if and only if A is nondefective

A unitary diagonalization A = QΛQH exits if and only if A is normal

A unitary triangularization (Schur factorization) A = QTQH always
exists

Will use one of these factorization to compute eigenvalues

In general, we will use Schur factorization as this applies without
restriction

If A is normal, then Schur form comes out diagonal and its
eigenvalues are real

If A is Hermitian, then we can take advantage of symmetry with half
as much work or less than is required for general A
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