EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 11

Overview

- Gram-Schmidt process
- QR decomposition
- Gram-Schmidt triangular orthogonalization

Reading

- Chapter 7 and Chapter 8 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 5 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 5 of Matrix Analysis and Applied Linear Algebra by Carl Meyer

Geometric properties of orthonormal basis

- Let the columns of $U=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]$ are orthonormal, $U^{\top} U=I$
- If $\mathbf{w}=U \mathbf{x}$, then
- mapping $\mathbf{w}=U \mathbf{x}$ is isometric: it preserves distance (as $\|\mathbf{w}\|^{2}=\|\mathbf{z}\|^{2}$)
- inner products are preserved: if $\mathbf{w}_{1}=U \mathbf{x}_{1}$ and $\mathbf{w}_{2}=U \mathbf{x}_{2}$, then

$$
\left\langle\mathbf{w}_{1}, \mathbf{w}_{2}\right\rangle=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle
$$

- angles are preserved: $\angle\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)=\angle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- Multiplication by U preserves inner products, angles, and distances
- It follows that $U^{-1}=U^{\top}$ and hence also $U U^{\top}=I$
- For any $\mathbf{x}, \mathbf{x}=U U^{\top} \mathbf{x}$, i.e.,

$$
\mathbf{x}=\sum_{i=1}^{n}\left(\mathbf{u}_{i}^{\top} \mathbf{x}\right) \mathbf{u}_{i}
$$

- $\mathbf{u}_{i}^{\top} \mathbf{x}$ is called the component of \mathbf{x} in the direction of \mathbf{u}_{i}
- $\mathbf{a}=U^{\top} \mathbf{x}$ resolves \mathbf{x} into the vector of its \mathbf{u}_{i} components
- $\mathbf{x}=U \mathbf{a}$ reconstructs \mathbf{x} from its \mathbf{u}_{i} components
- $\mathbf{x}=U \mathbf{a}=\sum_{i=1}^{n} a_{i} \mathbf{u}_{i}$ is called the expansion of \mathbf{x}

Examples

- Rotation by θ in \mathbb{R}^{2} is given by

$$
\mathbf{y}=U_{\theta} \mathbf{x}, U_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

since $\mathbf{e}_{1}=[\cos \theta, \sin \theta]^{\top}, \mathbf{e}_{2}=[-\sin \theta, \cos \theta]^{\top}$

- Reflection across line $\mathbf{x}_{2}=x_{1} \tan (\theta / 2)$ is given by

$$
\mathbf{y}=U_{\theta} \mathbf{x}, U_{\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

since $\mathbf{e}_{1}=[\cos \theta, \sin \theta]^{\top}, \mathbf{e}_{2}=[\sin \theta,-\cos \theta]^{\top}$

Gram-Schmidt process

- Given independent vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{m}$, Gram-Schmidt process finds orthonormal vectors, $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ such that

$$
\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)=\operatorname{span}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{r}\right)
$$

- Thus, $\mathbf{q}_{1}, \ldots, \mathbf{q}_{r}$ are orthonormal basis for $\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right)$
- Idea: first orthogonalized each vector w.r.t. previous ones and then normalize result to have unit norm
- $\mathbf{v}_{1}=\mathbf{x}_{1}$
- $\mathbf{q}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \quad$ (normalize)
- $\mathbf{v}_{2}=\mathbf{x}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{2}\right) \mathbf{q}_{1}$ (remove \mathbf{q}_{1} component from \mathbf{x}_{2})
- $\mathbf{q}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|} \quad$ (normalize)
- $\mathbf{v}_{3}=\mathbf{x}_{3}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{2}$ (remove, $\mathbf{q}_{1}, \mathbf{q}_{2}$ components)
- $\mathbf{q}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}$
- etc.
- Find orthonormal basis incrementally

Geometric interpretation of Gram-Schmidt process

- Gram-Schmidt process:
- $\mathbf{v}_{1}=\mathbf{x}_{1}$
- $\mathbf{q}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \quad$ (normalize)
- $\mathbf{v}_{2}=\mathbf{x}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{2}\right) \mathbf{q}_{1}$ (remove \mathbf{q}_{1} component from \mathbf{x}_{2})
- $\mathbf{q}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|} \quad$ (normalize)
- $\mathbf{v}_{3}=\mathbf{x}_{3}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{2}$ (remove, $\mathbf{q}_{1}, \mathbf{q}_{2}$ components)
- $\mathbf{q}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}$
- etc.
- $\forall i$, we have

$$
\begin{aligned}
\mathbf{x}_{i} & =\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{1}+\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{2}+\cdots+\left(\mathbf{q}_{i-1}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{i-1}+\left\|\mathbf{v}_{i}\right\| \mathbf{q}_{i} \\
& =r_{1 i} \mathbf{q}_{1}+r_{2 i} \mathbf{q}_{2}+\cdots+r_{i i} \mathbf{q}_{i}
\end{aligned}
$$

QR decomposition

- In matrix form, $A=Q R$ where $A \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{m \times n}, R \in \mathbb{R}^{n \times n}$:

- $Q^{\top} Q=I$, and R is upper triangular and invertible
- Usually computed using a variation of Gram-Schmidt process which is less sensitive to numerical errors
- Can also be computed by Householder transformation or Givens rotations
- Columns of Q are orthonormal basis in $\operatorname{ran}(A)$

$$
Q^{\top} A=R
$$

General Gram-Schmidt process

- If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are dependent, we find $\mathbf{v}_{j}=0$ for some j, which means \mathbf{x}_{j} is linearly dependent on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{j-1}$
- Modified algorithm: when we have $\mathbf{v}_{j}=0$, skip to the next vector \mathbf{x}_{j+1} and continue

$$
\begin{aligned}
& k=0 \\
& \text { for } \quad i=1, \ldots, n \\
& \left\{\begin{array}{l}
\mathbf{v}=\mathbf{x}_{i}-\sum_{j=1}^{k} \mathbf{q}_{j} \mathbf{q}_{j}^{\top} \mathbf{x}_{i} ; \\
\text { if } \mathbf{v} \neq 0\left\{k=k+1 ; \mathbf{q}_{k}=\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\} ;
\end{array}\right. \\
& \}
\end{aligned}
$$

Example

- Consider the matrix

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right] \\
\mathbf{v}_{1}=\mathbf{x}_{1}, \mathbf{q}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
-1
\end{array}\right] \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{2}\right) \mathbf{q}_{1}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right], \quad \mathbf{q}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \\
\mathbf{v}_{3}=\mathbf{x}_{3}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{q}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

Example (cont'd)

- Then we have

$$
\begin{gathered}
R=Q^{\top} A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]^{\top}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & 2 \sqrt{2} \\
0 & -2 & -1 \\
0 & 0 & \sqrt{3}
\end{array}\right] \\
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\
0 & -1 & 0 \\
0 & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & 2 \sqrt{2} \\
0 & -2 & -1 \\
0 & 0 & \sqrt{3}
\end{array}\right]
\end{gathered}
$$

Properties of QR decomposition

- Find orthonormal basis for $\operatorname{ran}(A)$ directly
- Let $A=B C$ with $B \in \mathbb{R}^{m \times p}, C \in \mathbb{R}^{p \times n}, p=\operatorname{rank}(A)$
- To check whether $\mathbf{y} \in \operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$: apply Gram-Schmidt procedure to $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{y}\right]$
- If $A=Q_{1} R_{1}$ with $\operatorname{rank}(A)=p$, the full QR factorization is

$$
A=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]
$$

where $\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]$ is orthogonal, i.e., columns of $Q_{2} \in \mathbb{R}^{m \times(m-p)}$ are orthonormal, orthogonal to Q_{1}

- To find Q_{2}, one can use any matrix \widetilde{A} s.t. $[A \widetilde{A}]$ is full rank (e.g., $\widetilde{A}=I$), and then apply general Gram-Schmidt process
- Q_{1} are orthonormal vectors obtained form columns of A
- Q_{2} are orthonormal vectors obtained from extra columns \widetilde{A}

Complementary subspaces

- $\operatorname{ran}\left(Q_{1}\right)$ and $\operatorname{ran}\left(Q_{2}\right)$ are complementary subspaces since
- they are orthogonal (i.e., every vector in the first subspace is orthogonal to every vector in the second subspace)
- the sum is \mathbb{R}^{m} (i.e., every vector in \mathbb{R}^{m} can be expressed as a sum of two vectors, one from each subspace)
$\operatorname{ran}\left(Q_{1}\right) \stackrel{\perp}{+} \operatorname{ran}\left(Q_{2}\right)=\mathbb{R}^{m} \operatorname{ran}\left(Q_{2}\right)=\operatorname{ran}\left(Q_{1}\right)^{\perp}\left(\operatorname{ran}\left(Q_{1}\right)=\operatorname{ran}\left(Q_{2}\right)^{\perp}\right)$
- We know $\operatorname{ran}\left(Q_{1}\right)=\operatorname{ran}(A)$; what is its orthogonal complement $\operatorname{ran}\left(Q_{2}\right)$?

Complementary subspaces

- From $A^{\top}=\left[\begin{array}{ll}R_{1}^{\top} & 0\end{array}\right]\left[\begin{array}{l}Q_{1}^{\top} \\ Q_{2}^{\top}\end{array}\right]$, we have

$$
A^{\top} \mathbf{z}=0 \Longleftrightarrow Q_{1}^{\top} \mathbf{z}=0 \Longleftrightarrow \mathbf{z} \in \operatorname{ran}\left(Q_{2}\right)
$$

so $\operatorname{ran}\left(Q_{2}\right)=\operatorname{ran}\left(A^{\top}\right)$ (i.e., columns of Q_{2} are an orthonormal basis for $\operatorname{ran}\left(A^{\top}\right)$

- We conclude: $\operatorname{ran}(A)$ and null $\left(A^{\top}\right)$ are complementary subspaces
- $\operatorname{ran}(A) \stackrel{\perp}{+} \operatorname{null}\left(A^{\top}\right)=\mathbb{R}^{m}$ (recall $A \in \mathbb{R}^{m \times p}$
- $\operatorname{ran}(A)^{\perp}=\operatorname{null}\left(A^{\top}\right)$ (and null $\left(A^{\top}\right)^{\perp}=\operatorname{ran}(A)$
- called orthogonal decomposition induced by $A \in \mathbb{R}^{m \times p}$

Least squares via QR decomposition

- $A \in \mathbb{R}^{m \times n}, A=Q R$ with $Q^{\top} Q=I, R \in \mathbb{R}^{n \times n}$
- The pseudo inverse is

$$
\left(A^{\top} A\right)^{-1} A^{\top}=\left(R^{\top} Q^{\top} Q R\right)^{-1} R^{\top} Q^{\top}=R^{-1} Q^{\top}
$$

- The projected point, $\mathbf{x}_{/ s}=R^{-1} Q^{\top} \mathbf{y}$
- The projection matrix

$$
A\left(A^{\top} A\right)^{-1} A^{\top}=A R^{-1} Q^{\top}=Q Q^{\top}
$$

Least squares via full QR factorization

- Full QR factorization

$$
A=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]
$$

where $\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right] \in \mathbb{R}^{m \times m}$ is orthogonal, $R_{1} \in \mathbb{R}^{n \times n}$ is upper triangular and invertible

- Multiplication by orthogonal matrix

$$
\begin{aligned}
\|A \mathbf{x}-\mathbf{y}\|^{2} & =\left\|\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \mathbf{x}-\mathbf{y}\right\|^{2} \\
& =\left\|\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]^{\top}\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \mathbf{x}-\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]^{\top} \mathbf{y}\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
R_{1} \mathbf{x}-Q_{1}^{\top} \mathbf{y} \\
-Q_{2}^{\top} \mathbf{y}
\end{array}\right]\right\|^{2} \\
& =\left\|R_{1} \mathbf{x}-Q_{1}^{\top} \mathbf{y}\right\|^{2}+\left\|Q_{2}^{\top} \mathbf{y}\right\|^{2}
\end{aligned}
$$

- Can be minimized by choosing $\mathbf{x}_{/ s}=R_{1}^{-1} Q_{1}^{\top} \mathbf{y}$

Least squares via full QR factorization (cont'd)

- Least squares minimization

$$
\|A \mathbf{x}-\mathbf{y}\|^{2}=\left\|R_{1} \mathbf{x}-Q_{1}^{\top} \mathbf{y}\right\|^{2}+\left\|Q_{2}^{\top} \mathbf{y}\right\|^{2}
$$

- Optimal solution $\mathbf{x}_{/ s}=R_{1}^{-1} Q_{1}^{\top} \mathbf{y}$
- Residual of the optimal \mathbf{x} is

$$
A \mathbf{x}_{/ s}-\mathbf{y}=-Q_{2} Q_{2}^{\top} \mathbf{y}
$$

- $Q_{1} Q_{1}^{\top}$ gives projection onto $\operatorname{ran}(A)$
- $Q_{2} Q_{2}^{\top}$ gives projection onto $\operatorname{ran}(A)^{\perp}$

Gram-Schmidt as triangular orthogonalization

- Steps:
- $\mathbf{v}_{1}=\mathbf{x}_{1}$
- $\mathbf{q}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \quad$ (normalize)
- $\mathbf{v}_{2}=\mathbf{x}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{2}\right) \mathbf{q}_{1}=\left(I-\mathbf{q}_{1} \mathbf{q}_{1}^{\top}\right) \mathbf{x}_{2} \quad$ (remove \mathbf{q}_{1} component from $\left.\mathbf{x}_{2}\right)$
- $\mathbf{q}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|} \quad$ (normalize)
- $\mathbf{v}_{3}=\mathbf{x}_{3}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{2}=\left(I-\mathbf{q}_{1} \mathbf{q}_{1}^{\top}-\mathbf{q}_{2} \mathbf{q}_{2}^{\top}\right) \mathbf{x}_{3}=$ $\left(I-\mathbf{q}_{1} \mathbf{q}_{1}^{\top}\right)\left(I-\mathbf{q}_{2} \mathbf{q}_{2}^{\top}\right) \mathbf{x}_{3}$ (remove, $\mathbf{q}_{1}, \mathbf{q}_{2}$ components)
$-\mathbf{q}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}$
- etc.

$$
\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}
\end{array}\right]
$$

$\left[\begin{array}{cccc}r_{11} & r_{12} & \cdots & r_{1 n} \\ & r_{22} & \cdots & \\ & & \ddots & \vdots \\ & & & r_{n n}\end{array}\right]$

Gram-Schmidt as triangular orthogonalization (cont'd)

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
& r_{22} & \cdots & \\
& & \ddots & \vdots \\
& & & r_{n n}
\end{array}\right] } \\
& \mathbf{x}_{1}=r_{11} \mathbf{q}_{1} \\
& \mathbf{x}_{2}=r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2}=\frac{r_{12}}{r_{11}} \mathbf{x}_{1}+r_{22} \mathbf{q}_{2}=\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{2}\right) \mathbf{q}_{1}+r_{22} \mathbf{q}_{2} \\
& \mathbf{x}_{3}=r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{33} \mathbf{q}_{3}=\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{1}+\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{3}\right) \mathbf{q}_{2}+r_{33} \mathbf{q}_{3} \\
& \vdots \\
& \mathbf{x}_{n}=r_{1 n} \mathbf{q}_{1}+r_{2 n} \mathbf{q}_{2}+\cdots+r_{n n} \mathbf{q}_{n} \\
& \mathbf{x}_{i}=\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{1}+\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{2}+\cdots+\left(\mathbf{q}_{i-1}^{\top} \mathbf{x}_{i}\right) \mathbf{q}_{i-1}+\left\|\widetilde{\mathbf{q}}_{i}\right\| \mathbf{q}_{i} \\
&=r_{1 i} \mathbf{q}_{1}+r_{2 i} \mathbf{q}_{2}+\cdots+r_{i i} \mathbf{q}_{i} \\
& r_{i j}=\mathbf{q}_{i}^{\top} \mathbf{x}_{j}(i \neq j)
\end{aligned}
$$

Gram-Schmidt as triangular orthogonalization (cont'd)

- Gram-Schmidt process

$$
\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
& r_{22} & \cdots & \\
& & \ddots & \vdots \\
& & & r_{n n}
\end{array}\right]
$$

- At the j-th step, want to find a unit vector $\mathbf{q}_{j} \in\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{j}\right\}$ that is orthogonal to $\mathbf{q}_{1}, \ldots \mathbf{q}_{j-1}$

$$
\begin{aligned}
\mathbf{v}_{j} & =\mathbf{x}_{j}-\left(\mathbf{q}_{1}^{\top} \mathbf{x}_{j}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{\top} \mathbf{x}_{j}\right) \mathbf{q}_{2}-\cdots-\left(\mathbf{q}_{j-1}^{\top} \mathbf{x}_{j}\right) \mathbf{q}_{j-1} \\
\mathbf{q}_{1} & =\frac{\mathbf{x}_{1}}{r_{11}} \\
\mathbf{q}_{2} & =\frac{\mathbf{x}_{2}-r_{12} \mathbf{q}_{1}}{r_{22}}=\frac{\left(I-\mathbf{q}_{1} \mathbf{q}_{1}^{\top}\right) \mathbf{x}_{2}}{\left\|\left(I-\mathbf{q}_{1} \mathbf{q}_{1}^{\top}\right) \mathbf{x}_{2}\right\|}=\frac{P_{2} \mathbf{x}_{2}}{\left\|P_{2} \mathbf{x}_{2}\right\|} \\
& \vdots \\
\mathbf{q}_{n} & =\frac{\mathbf{x}_{n}-\sum_{i=1}^{n-1} r_{i n} \mathbf{q}_{i}}{r_{n n}}=\frac{\left(I-Q_{n-1} Q_{n-1}^{\top}\right) \mathbf{x}_{n}}{\left\|\left(I-Q_{n-1} Q_{n-1}^{\top}\right) \mathbf{x}_{n}\right\|}=\frac{P_{n} \mathbf{x}_{n}}{\left\|P_{n} \mathbf{x}_{n}\right\|} \\
r_{i j} & =\mathbf{q}_{i}^{\top} \mathbf{x}_{j}(i \neq j) \\
\left|r_{j j}\right| & =\left\|\mathbf{x}_{j}-\sum_{i=1}^{j} r_{i j} \mathbf{q}_{i}\right\|_{2} \quad\left(\text { often choose } \quad r_{j j}>0\right)
\end{aligned}
$$

Gram-Schmidt as triangular orthogonalization (cont'd)

- Let $A \in \mathbb{R}^{m \times n}, m \geq n$ be a matrix of full rank with columns \mathbf{x}_{i}, consider the sequence of formulas

$$
\mathbf{q}_{1}=\frac{P_{1} \mathbf{x}_{1}}{\left\|P_{1} \mathbf{x}_{1}\right\|}, \mathbf{q}_{2}=\frac{P_{2} \mathbf{x}_{2}}{\left\|P_{2} \mathbf{x}_{2}\right\|}, \ldots, \mathbf{q}_{n}=\frac{P_{n} \mathbf{x}_{n}}{\left\|P_{n} \mathbf{x}_{n}\right\|}
$$

where $P_{j} \in \mathbb{R}^{m \times m}$ of rank $m-(j-1)$ projects \mathbf{x} onto the space orthogonal to $\mathbf{q}_{1}, \ldots, \mathbf{q}_{j-1}\left(P_{1}=I\right.$ when $\left.j=1\right)$

- Projection P_{j} can be represented explicitly
- Let Q_{j-1} denote the $m \times(j-1)$ matrix containing the first $j-1$ columns of Q

$$
Q_{j-1}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{j-1}
\end{array}\right]
$$

then

$$
P_{j}=I-Q_{j-1} Q_{j-1}^{\top}
$$

Modified Gram-Schmidt process

- Recall for rank-one orthogonal projection with $\mathbf{q} \in \mathbb{R}^{m}$

$$
P_{\mathbf{q}}=\frac{\mathbf{q q}^{\top}}{\mathbf{q}^{\top} \mathbf{q}}
$$

- The complements are rank $m-1$ orthogonal projections

$$
P_{\perp \mathbf{q}}=l-\frac{\mathbf{q q}^{\top}}{\mathbf{q}^{\top} \mathbf{q}}
$$

- By definition of P_{j}

$$
P_{j}=P_{\perp \mathbf{q}_{j-1}} \cdots P_{\perp \mathbf{q}_{2}} P_{\perp \mathbf{q}_{1}}
$$

where $P_{1}=l$, and thus

$$
\mathbf{v}_{j}=P_{\perp \mathbf{q}_{j-1}} \cdots P_{\perp \mathbf{q}_{2}} P_{\perp \mathbf{q}_{1}} \mathbf{x}_{j}
$$

Modified Gram-Schmidt process (cont'd)

- For numerical stability, evaluating the following formulas in order (for now consider an algorithm is considered as stable if it is not too sensitive to the effects of rounding errors)

$$
\begin{array}{rlrl}
\mathbf{v}_{j}^{(1)} & =\mathbf{x}_{j}, \\
\mathbf{v}_{j}^{(2)} & =P_{\perp \mathbf{q}_{1}} \mathbf{v}_{j}^{(1)} & =\mathbf{v}_{j}^{(1)}-\mathbf{q}_{1} \mathbf{q}_{1}^{\top} \mathbf{v}_{j}^{(1)}, \\
\mathbf{v}_{j}^{(3)} & =P_{\perp \mathbf{q}_{2}} \mathbf{v}_{j}^{(2)} & =\mathbf{v}_{j}^{(2)}-\mathbf{q}_{2} \mathbf{q}_{2}^{\top} \mathbf{v}_{j}^{(2)}, \\
& \vdots & \vdots \\
\mathbf{v}_{j}=\mathbf{v}_{j}^{(j)} & =P_{\perp \mathbf{q}_{j-1}} \mathbf{v}_{j}^{(j-1)} & =\mathbf{v}_{j}^{(j-1)}-\mathbf{q}_{j-1} \mathbf{q}_{j-1}^{\top} \mathbf{v}_{j}^{(j-1)}
\end{array}
$$

- Projection matrix $P_{\perp \mathbf{q}_{i}}$ can be applied to $\mathbf{v}_{j}^{(i)}$ for each $j>i$ immediately after \mathbf{q}_{i} is known
- $\mathbf{v}_{1}=\mathbf{v}_{1}^{(1)}=\mathbf{x}_{1}, \mathbf{q}_{1}=\frac{1}{r_{11}} \mathbf{v}_{1}^{(1)}$
- $\mathbf{v}_{2}=\mathbf{v}_{2}^{(2)}=\mathbf{v}_{2}^{(1)}-\mathbf{q}_{1} \mathbf{q}_{1}^{\top} \mathbf{v}_{2}^{(1)}=\mathbf{v}_{2}^{(1)}-\left(\frac{1}{r_{11}} \mathbf{v}_{1}^{(1)}\right) r_{12}$
- $\mathbf{v}_{3}=\mathbf{v}_{3}^{(3)}=\mathbf{v}_{3}^{(2)}-\mathbf{q}_{2} \mathbf{q}_{2}^{\top} \mathbf{v}_{3}^{(2)}$,

$$
\mathbf{v}_{3}^{(2)}=\mathbf{v}_{3}^{(1)}-\mathbf{q}_{1} \mathbf{q}_{1}^{\top} \mathbf{v}_{3}^{(1)}=\mathbf{v}_{3}^{(1)}-\left(\frac{1}{r_{11}} \mathbf{v}_{1}^{(1)}\right) r_{13}
$$

Modified Gram-Schmidt algorithm

- Steps

$$
\begin{gathered}
\mathbf{v}_{j}^{(1)}=\mathbf{x}_{j} \\
\vdots \\
\mathbf{v}_{j}=\mathbf{v}_{j}^{(j)}=P_{\perp \mathbf{q}_{j-1}} \mathbf{v}_{j}^{(j-1)}=\mathbf{v}_{j}^{(j-1)}-\mathbf{q}_{j-1} \mathbf{q}_{j-1}^{\top} \mathbf{v}_{j}^{(j-1)}
\end{gathered}
$$

- Algorithm:

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \mathbf{v}_{i}=\mathbf{x}_{i} \\
& \text { end for } \\
& \text { for } i=1 \text { to } n \text { do } \\
& \qquad r_{i i}=\left\|\mathbf{v}_{i}\right\| \\
& \mathbf{q}_{i}=\frac{\mathbf{v}_{i}}{r_{i i}} \\
& \quad \text { for } j=i+1 \text { to } n \text { do } \\
& \quad r_{i j}=\mathbf{q}_{i}^{\top} \mathbf{v}_{j} \\
& \quad \mathbf{v}_{j}=\mathbf{v}_{j}-r_{i j} \mathbf{q}_{i} \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

Complexity of Gram-Schmidt process

- Algorithmically, complexity of general or modified Gram-Schmidt process requires $\sim 2 m n^{2}$ flops for an $m \times n$ matrix
- Geometrically, it can be easily seen that the complexity is $\sim 2 m n^{2}$ flops

- As $m, n \rightarrow \infty$, the figure converges to a right triangular prism, with volume $m n^{2} / 2$, multiply four flops per unit volume gives $2 m n^{2}$ flops

Gram-Schmidt as triangular orthogonalization

- The projection matrix $P_{j}=I-Q_{j-1} Q_{j-1}^{\top}$ can be represented explicitly

$$
\begin{aligned}
\mathbf{x}_{1} & =r_{11} \mathbf{q}_{1}\left(\mathbf{q}_{1}=\frac{1}{r_{11}} \mathbf{x}_{1}\right) \\
\mathbf{x}_{2} & =r_{12} \mathbf{q}_{1}+r_{22} \mathbf{q}_{2}=\frac{r_{12}}{r_{11}} \mathbf{x}_{1}+r_{22} \mathbf{q}_{2}\left(\mathbf{q}_{2}=\frac{1}{r_{22}}\left(\mathbf{x}_{2}-\frac{r_{12}}{r_{11}} \mathbf{x}_{1}\right)\right) \\
\mathbf{x}_{3} & =r_{13} \mathbf{q}_{1}+r_{23} \mathbf{q}_{2}+r_{33} \mathbf{q}_{3}=\frac{r_{13}}{r_{11}} \mathbf{x}_{1}+r_{22} \mathbf{q}_{2}+r_{33} \mathbf{q}_{3} \\
& \vdots \\
\mathbf{x}_{i} & =r_{1 i} \mathbf{q}_{1}+r_{2 i} \mathbf{q}_{2}+\cdots+r_{i i} \mathbf{q}_{i}
\end{aligned}
$$

- The first iteration multiply the first column \mathbf{x}_{1} by $1 / r_{11}$ and then subtract $r_{1 j}$ times the result from each of the remaining columns \mathbf{x}_{j}
- Equivalent to right-multiplication by a matrix R_{1}

$$
\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{v}_{2}^{(2)} & \cdots & \mathbf{v}_{n}^{(2)}
\end{array}\right]
$$

Gram-Schmidt triangular orthogonalization (cont'd)

- At step i the modified Gram-Schmidt algorithm subtracts $r_{i j} / r_{i i}$ times column i of the current A from columns $j>i$ and replaces column i by $1 / r_{i i}$ times itself
- This corresponds to multiplication by an upper triangular matrix R_{i}

$$
R_{2}=\left[\begin{array}{cccc}
1 & & & \\
& \frac{1}{r_{22}} & \frac{-r_{23}}{r_{22}} & \cdots \\
& & 1 & \\
& & & \ddots
\end{array}\right], R_{3}=\left[\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & \frac{1}{r_{33}} & \frac{-r_{34}}{r_{33}} & \cdots \\
& & & & \ddots
\end{array}\right], \cdots
$$

- At the end, we have

$$
A \underbrace{R_{1} R_{2} \cdots R_{n}}_{R^{-1}}=Q
$$

- This shows that the Gram-Schmidt algorithm is a method of triangular orthogonalization

