EECS 275 Matrix Computation

Ming-Hsuan Yang

Electrical Engineering and Computer Science
University of California at Merced
Merced, CA 95344
http://faculty.ucmerced.edu/mhyang
UCMERCED

Lecture 10

Overview

- Gaussian elimination
- LU decomposition
- Solving linear systems
- Cholesky decomposition

Reading

- Chapter 20, 21 and 23 of Numerical Linear Algebra by Llyod Trefethen and David Bau
- Chapter 3 and 4 of Matrix Computations by Gene Golub and Charles Van Loan
- Chapter 3 of Matrix Analysis and Applied Linear Algebra by Carl Meyer

Projection

- Recall let $S \subset \mathbb{R}^{n}$ be a subspace, $P \in \mathbb{R}^{n \times n}$ is the orthogonal projection (projector) onto S if $\operatorname{ran}(P)=S, P^{2}=P$, and $P^{\top}=P$
- If $\mathbf{v} \in \operatorname{ran}(P)$, then $P \mathbf{v}=\mathbf{v}$

$$
\text { As } \mathbf{v} \in \operatorname{ran}(P), \mathbf{v}=P \mathbf{x} \text {, and thus } P \mathbf{v}=P^{2} \mathbf{x}=P \mathbf{x}=\mathbf{v}
$$

(\mathbf{v} lies exactly on its own shadow).

- Likewise, if $\mathbf{v} \in \operatorname{null}(P)$, then $P \mathbf{v}=\mathbf{0}$
- For least squares, $P=A\left(A^{\top} A\right)^{-1} A^{\top}$, and for $\mathbf{v} \in \operatorname{ran}(A), P \mathbf{v}=\mathbf{v}$

$$
\text { As } \mathbf{v} \in \operatorname{ran}(A), \mathbf{v}=A \mathbf{x} \text {, and thus } P \mathbf{v}=A\left(A^{\top} A\right)^{-1} A^{\top} A \mathbf{x}=\mathbf{v}
$$

- Recall if $\mathbf{u} \in \mathbb{R}^{m}$, then $\frac{\mathbf{u u ^ { \top }}}{\mathbf{u}^{\top} \mathbf{u}}$ is an orthogonal projection, and $I-\frac{\mathbf{u} \mathbf{u}^{\top}}{\mathbf{u}^{\top} \mathbf{u}}$ is an orthogonal projection to $\operatorname{null}(A)$
- It follows

$$
P_{A}=A\left(A^{\top} A\right)^{-1} A^{\top} \quad P_{\perp A}=I-A\left(A^{\top} A\right)^{-1} A^{\top}
$$

Quadratic form

- A function $f: \mathbb{R}^{n} \rightarrow R$ has quadratic form

$$
f(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j}
$$

- Often assume A is symmetric

$$
\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top}\left(\left(A+A^{\top}\right) / 2\right) \mathbf{x}
$$

- Where $\left(\left(A+A^{\top}\right) / 2\right)$ is called the symmetric part of A

$$
\begin{gathered}
\|B \mathbf{x}\|^{2}=\mathbf{x}^{\top} B^{\top} B \mathbf{x} \\
d_{M}^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\top} \mathcal{C}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
f(x, y)=a x^{2}+b x y+c y^{2}, f(\mathbf{x})=\mathbf{x}^{\top} M \mathbf{x}, M=\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right]
\end{gathered}
$$

- Uniqueness: If $\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} B \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{n}$ and $A=A^{\top}, B=B^{\top}$, then $A=B$
- $\{\mathbf{x} \mid f(\mathbf{x})=a\}$ is called a quadratic surface
- $\{\mathbf{x} \mid f(\mathbf{x}) \leq a\}$ is called a quadratic region

Positive definite

- Recall a matrix $A \in R^{n \times n}$ is positive definite if $\mathbf{x}^{\top} A \mathbf{x}>0$ for all nonzero $\mathrm{x} \in R^{n}$
- Consider a 2-by-2 symmetric case, if

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is positive definite then

$$
\begin{aligned}
& \mathbf{x}=(1,0)^{\top} \Rightarrow \mathbf{x}^{\top} A \mathbf{x}=a_{11}>0 \\
& \mathbf{x}=(0,1)^{\top}
\end{aligned} \Rightarrow \mathbf{x}^{\top} A \mathbf{x}=a_{22}>0 .
$$

- The last two equations imply $\left\|a_{12}\right\| \leq\left(a_{11}+a_{22}\right) / 2$ and the largest entry in A is on the diagonal and that is positive
- A symmetric positive definite matrix has a weighty diagonal

Matrix decomposition

- LU decomposition: $A=L U$, applicable to square matrix A
- Cholesky decomposition: $A=U^{\top} U$ where U is upper triangular with positive diagonal entries, applicable to square, symmetric, positive definite matrix A
- QR decomposition: $A=Q R$, where Q is an m-by- m orthogonal matrix and R is an m-by- n upper triangular matrix, applicable to m-by- n matrix A
- Eigendecomposition: $A=Q D Q^{-1}$ where D is a diagonal matrix formed from the eigenvalues of A, and columns of Q are the corresponding eigenvectors of A, applicable to square matrix A
- Schur decomposition: $A=Q T Q^{\top}$ where Q is an orthogonal matrix, and T is a block upper triangular matrix, applicable to square matrix A
- Singular value decomposition: $A=U \Sigma V^{\top}$, where Σ is a non-negative diagonal matrix of singular values, and the columns of U are eigenvectors of $A A^{\top}$, and V are eigenvectors of $A^{\top} A$

Gaussian elimination

- For the linear system

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}=9 \\
& 6 x_{1}+7 x_{2}=4
\end{aligned}
$$

- Multiply the first equation by 2 and subtract it from the second equation, we get

$$
\begin{aligned}
3 x_{1}+5 x_{2} & =9 \\
& -3 x_{2}
\end{aligned}=-14
$$

which is the Gaussian elimination for $A \mathbf{x}=\mathbf{b}$

- In general form, we want to factorize A into a lower triangular and upper triangular matrices, $A=L U$

$$
\left[\begin{array}{ll}
3 & 5 \\
6 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & 5 \\
0 & -3
\end{array}\right]
$$

Gaussian elimination (cont'd)

- With $A=L U$, the solution of $A \mathbf{x}=\mathbf{b}$ is found by two step triangular solve process

$$
\begin{aligned}
A \mathbf{x} & =L U \mathbf{x}=\mathbf{b} \\
L \mathbf{y} & =\mathbf{b} \\
\mathbf{y} & =L^{-1} \mathbf{b} \\
\mathbf{x} & =U^{-1} \mathbf{y}
\end{aligned}
$$

- Back substitution

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}
$$

Gauss transformation

- Need a zeroing process for Gaussian elimination, e.g., for $m=2$, if $x_{1} \neq 0$ and $\tau=x_{2} / x_{1}$,

$$
\left[\begin{array}{cc}
1 & 0 \\
-\tau & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]
$$

- More generally, for $\mathbf{x} \in \mathbb{R}^{n}$ with $x_{i} \neq 0$, let

$$
\boldsymbol{\tau}^{\top}=(\underbrace{0, \ldots, 0}_{k}, \tau_{k+1}, \ldots, \tau_{n}), \quad \tau_{i}=\frac{x_{i}}{x_{k}}, \quad i=k+1, \ldots, n
$$

where τ_{k} is the pivot, and define $M_{k}=I-\tau \mathbf{e}_{k}^{\top}$, then

$$
\begin{aligned}
& M_{k} \mathbf{x}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & & 1 & 0 & & 0 \\
0 & & -\tau_{k+1} & 1 & & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -\tau_{n} & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
x_{k+1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right] \\
& \left(-\tau_{k+1} x_{k}+x_{k+1}=0, \tau_{k+1}=x_{k+1} / x_{k}\right)
\end{aligned}
$$

Gauss transformation (cont'd)

- $M_{k}=I-\boldsymbol{\tau} \mathbf{e}_{k}^{\top}$ is a Gauss transformation
- The first k components of $\boldsymbol{\tau} \in \mathbb{R}^{m}$ are zero
- The Gaussian transformation is unit lower triangular
- The vector $\boldsymbol{\tau}$ is called the Gauss vector, and the components of $\tau(k+1: n)$ are called multipliers
- Assume $A \in \mathbb{R}^{n \times n}$, Gaussian transformations M_{1}, \ldots, M_{n-1} can usually be found such that $M_{n-1} \ldots M_{2} M_{1} A=U$ is upper triangular, e.g.,

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right], \boldsymbol{\tau}_{1}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right], M_{1}=I-\boldsymbol{\tau}_{1} \mathbf{e}_{1}^{\top}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]
$$

Gauss transformation (cont'd)

- Upper triangularizing

$$
M_{1} A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right]
$$

likewise

$$
M_{2}=I-\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \mathbf{e}_{2}^{\top}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right], M_{2}\left(M_{1} A\right)=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]
$$

- From this, we have a matrix $A^{(k-1)}=M_{k-1} \cdots M_{1} A$ that is upper triangular in columns 1 to $k-1$
- The multipliers in M_{k} are based on $A^{(k-1)}(k+1: n, k)$. In particular, we need $A_{k k}^{(k-1)} \neq 0$ to proceed
- The entry $A_{k k}$ must be checked to avoid a zero divide. These quantities are referred to as the pivots, and their relative magnitude turns out to be critically important

LU factorization

- With Gauss transforms M_{1}, \ldots, M_{n-1} such that $M_{n-1} \cdots M_{1} A=U$ is upper triangular
- It is easy to verify that if $M_{k}=I-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{\top}$, then its inverse $M_{k}^{-1}=I+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{\top}$
- More importantly,

$$
A=L U
$$

where

$$
L=M_{1}^{-1} \cdots M_{n-1}^{-1} \quad U=M_{n-1} \cdots M_{1} A
$$

can be uniquely factorized

- It is clear that L is a unit lower triangular matrix as each M_{k}^{-1} is unit lower triangular
- Solving n-by- n linear questions with back substitutions via triangular matrices

$$
A \mathbf{x}=L U \mathbf{x}=L \mathbf{y}=\mathbf{b} \Rightarrow \mathbf{y}=L^{-1} \mathbf{b} \quad \mathbf{x}=U^{-1} \mathbf{y}
$$

Solving linear system

- Given

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]
$$

$$
L=M_{1}^{-1} M_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right], \text { and } U=M_{2}\left(M_{1} A\right)=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]
$$

- If $\mathbf{b}=[1,1,1]^{\top}$, then $\mathbf{y}=[1,-1,0]^{\top}$ solves $L \mathbf{y}=\mathbf{b}$, and $\mathbf{x}=[-1 / 3,1 / 3,0]^{\top}$ solves $U \mathbf{x}=\mathbf{y}$
- Note L is lower triangular with unit diagonal

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

Pivoting

- Consider LU factorization of A

$$
A=\left[\begin{array}{cc}
0.0001 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10000 & 1
\end{array}\right]\left[\begin{array}{cc}
0.0001 & 1 \\
0 & -9999
\end{array}\right]=L U
$$

with relatively small pivots

- Can get around by interchanging rows with a permutation matrix

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

then

$$
P A=\left[\begin{array}{cc}
1 & 1 \\
0.0001 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0.0001 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 0.9999
\end{array}\right]
$$

and the triangular factors are composed of acceptably small entries

Permutation matrix

- Permutation matrix: an identity matrix with rows re-ordered

$$
P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

- P is orthogonal and $P^{-1}=P^{\top}$
- $P A$ is the row permuted version of A, and $A P$ is the column permuted version of A

Partial pivoting

- To get the smallest possible multipliers, need to have A_{11} to be the largest entry in the first column

$$
A=\left[\begin{array}{ccc}
3 & 17 & 10 \\
2 & 4 & -2 \\
6 & 18 & -12
\end{array}\right], \quad E_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
2 & 4 & -2 \\
3 & 17 & 10
\end{array}\right]
$$

and the Gauss transformation

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right] \Longrightarrow M_{1} E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
0 & -2 & 2 \\
0 & 8 & 16
\end{array}\right]
$$

- To get the smallest possible multiplier in M_{2}, we need to swap rows 2 and 3

Partial pivoting (cont'd)

$$
E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text {, and } M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 4 & 1
\end{array}\right]
$$

then

$$
M_{2} E_{2} M_{1} E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
0 & 8 & 16 \\
0 & 0 & 16
\end{array}\right]
$$

- The particular row interchange strategy is called partial pivoting

$$
\begin{gathered}
M_{n-1} E_{n-1} \ldots M_{1} E_{1} A=U \\
P A=L U
\end{gathered}
$$

where $P=E_{n-1} \cdots E_{1}$ (also known as LU decomposition with partial pivoting or LUP decomposition)

- Solve $P A \mathbf{x}=L U \mathbf{x}=P \mathbf{b}$, i.e., first solve $L \mathbf{y}=P \mathbf{b}$ and then $U \mathbf{x}=\mathbf{y}$
- See also complete pivoting and numerical stability issues

LDU factorization

- Asymmetry in LU factorization as the lower factor has 1's on its diagonal
- Can be remedied by factorizing the diagonal entries

$$
\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & \cdots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
u_{11} & 0 & \cdots & 0 \\
0 & u_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{n n}
\end{array}\right]\left[\begin{array}{cccc}
1 & \frac{u_{12}}{u_{11}} & \cdots & \frac{u_{1 n}}{u_{11}} \\
0 & 1 & \cdots & \frac{u_{2 n}}{u_{22}} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- $A=L U$ can be scaled so that L and U are unit triangular, i.e., all the diagonal entries of L and U are one, so that $A=L D U$ where D is a diagonal matrix
- When A is symmetric,

$$
A=L D L^{\top}
$$

Existence and uniqueness

- An invertible matrix has an LU factorization if and only if all its leading principal minors are nonzeros, i.e., $\operatorname{det}\left(A_{i i}\right) \neq 0, \forall i=1, \ldots, n$
- The factorization is unique if we require that the diagonal of L or U consists of ones
- The matrix has a unique LDU factorization under the same conditions
- For a (not necessarily invertible) matrix, the exact necessary and sufficient conditions under which a not necessarily invertible matrix has an LU factorization are unknown
- Every matrix, square or not, has a LUP decomposition where L and P are square matrices but U has the same shape as A

Cholesky decomposition

- Preserving and exploiting matrix symmetry
- A symmetric matrix A possessing an LU factorization where each pivot is positive, i.e., positive definite
- A is positive definite if and only if A can be uniquely factored as $A=R^{\top} R$ where R is an upper triangular matrix with positive diagonal entries
- For symmetric matrix

$$
A=L D L^{\top}
$$

where $D=\operatorname{diag}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $p_{i}>0$

- Setting $R=D^{1 / 2} L^{\top}$,

$$
A=L D^{1 / 2} D^{1 / 2} L^{\top}=R^{\top} R
$$

- Cholesky factorization:

$$
A=R^{\top} R
$$

where R is an upper triangular matrix with positive diagonal entries, and called Cholesky factor

Cholesky decomposition (cont'd)

- Conversely, if $A=R^{\top} R$ where R is upper triangular matrix with positive diagonal, then one can factor out the diagonal entries R so that $R=D U$ where U is upper triangular matrix with unit diagonal
- Consequently, $A=U^{\top} D^{2} U$ is the LDU factorization of A, and thus the pivots must be positive
- Suppose $A=R_{1}^{\top} R_{1}=R_{2}^{\top} R_{2}$, and factor out the diagonal entries with $R_{1}=D_{1} U_{1}$ and $R_{2}=D_{2} U_{2}$
- It follows that

$$
A=U_{1}^{\top} D_{1}^{2} U_{1}=U_{2}^{\top} D_{2}^{2} U_{2}
$$

- The uniqueness of LDU factors forces $U_{1}=U_{2}$ as well as $D_{1}=D_{2}$, and therefore $R_{1}=R_{2}$

Cholesky algorithm

- Let $A=R^{\top} R=L D L^{\top}$

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right]\left[\begin{array}{ccc}
L_{11} & L_{21} & L_{31} \\
0 & L_{22} & L_{32} \\
0 & 0 & L_{33}
\end{array}\right] \\
A_{13} \\
A_{23} \\
A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
L_{11}^{2} & L_{21} L_{11} & L_{31} L_{11} \\
L_{21} L_{11} & L_{21}^{2}+L_{22}^{2} & L_{31} L_{21}+L_{32} L_{22} \\
L_{31} L_{11} & L_{31} L_{21}+L_{32} L_{22} & L_{31}^{2}+L_{32}^{2}+L_{33}^{2}
\end{array}\right] .
$$

- No need for pivoting
- Complexity: $(1 / 3) n^{3}$ flops, i.e., $O\left(n^{3}\right)$ (only half of the matrix is processed)

