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Overview

Gaussian elimination

LU decomposition

Solving linear systems

Cholesky decomposition
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Reading

Chapter 20, 21 and 23 of Numerical Linear Algebra by Llyod
Trefethen and David Bau

Chapter 3 and 4 of Matrix Computations by Gene Golub and Charles
Van Loan

Chapter 3 of Matrix Analysis and Applied Linear Algebra by Carl
Meyer
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Projection

Recall let S ⊂ IRn be a subspace, P ∈ IRn×n is the orthogonal
projection (projector) onto S if ran(P) = S , P2 = P, and P> = P

If v ∈ ran(P), then Pv = v

As v ∈ ran(P), v = Px, and thus Pv = P2x = Px = v

(v lies exactly on its own shadow).

Likewise, if v ∈ null(P), then Pv = 0

For least squares, P = A(A>A)−1A>, and for v ∈ ran(A), Pv = v

As v ∈ ran(A), v = Ax, and thus Pv = A(A>A)−1A>Ax = v

Recall if u ∈ IRm, then uu>

u>u
is an orthogonal projection, and I − uu>

u>u
is an orthogonal projection to null(A)

It follows

PA = A(A>A)−1A> P⊥A = I − A(A>A)−1A>
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Quadratic form

A function f : IRn → R has quadratic form

f (x) = x>Ax =
n∑

i=1

n∑
j=1

Aijxixj

Often assume A is symmetric

x>Ax = x>((A + A>)/2)x

where ((A + A>)/2) is called the symmetric part of A
Examples:

‖Bx‖2 = x>B>Bx
d2
M = (x− µ)>C−1(x− µ)

f (x , y) = ax2 + bxy + cy2, f (x) = x>Mx, M =

[
a b/2

b/2 c

]
Uniqueness: If x>Ax = x>Bx for x ∈ IRn and A = A>, B = B>, then
A = B

{x|f (x) = a} is called a quadratic surface

{x|f (x) ≤ a} is called a quadratic region
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Positive definite

Recall a matrix A ∈ Rn×n is positive definite if x>Ax > 0 for all
nonzero x ∈ Rn

Consider a 2-by-2 symmetric case, if

A =

[
a11 a12
a21 a22

]
is positive definite then

x = (1, 0)> ⇒ x>Ax = a11 > 0
x = (0, 1)> ⇒ x>Ax = a22 > 0
x = (1, 1)> ⇒ x>Ax = a11 + 2a12 + a22 > 0
x = (1,−1)> ⇒ x>Ax = a11 − 2a12 + a22 > 0

The last two equations imply ‖a12‖ ≤ (a11 + a22)/2 and the largest
entry in A is on the diagonal and that is positive

A symmetric positive definite matrix has a weighty diagonal
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Matrix decomposition

LU decomposition: A = LU, applicable to square matrix A

Cholesky decomposition: A = U>U where U is upper triangular with
positive diagonal entries, applicable to square, symmetric, positive
definite matrix A

QR decomposition: A = QR, where Q is an m-by-m orthogonal
matrix and R is an m-by-n upper triangular matrix, applicable to
m-by-n matrix A

Eigendecomposition: A = QDQ−1 where D is a diagonal matrix
formed from the eigenvalues of A, and columns of Q are the
corresponding eigenvectors of A, applicable to square matrix A

Schur decomposition: A = QTQ> where Q is an orthogonal matrix,
and T is a block upper triangular matrix, applicable to square matrix
A

Singular value decomposition: A = UΣV>, where Σ is a non-negative
diagonal matrix of singular values, and the columns of U are
eigenvectors of AA>, and V are eigenvectors of A>A
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Gaussian elimination

For the linear system

3x1 + 5x2 = 9
6x1 + 7x2 = 4

Multiply the first equation by 2 and subtract it from the second
equation, we get

3x1 + 5x2 = 9
− 3x2 = −14

which is the Gaussian elimination for Ax = b

In general form, we want to factorize A into a lower triangular and
upper triangular matrices, A = LU[

3 5
6 7

]
=

[
1 0
2 1

] [
3 5
0 −3

]
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Gaussian elimination (cont’d)

With A = LU, the solution of Ax = b is found by two step triangular
solve process

Ax = LUx = b
Ly = b
y = L−1b
x = U−1y

Back substitution

xi = (bi −
n∑

j=i+1

uijxj)/uii
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Gauss transformation
Need a zeroing process for Gaussian elimination, e.g., for m = 2, if
x1 6= 0 and τ = x2/x1,[

1 0
−τ 1

] [
x1
x2

]
=

[
x1
0

]
More generally, for x ∈ IRn with xi 6= 0, let

τ> = (0, . . . , 0︸ ︷︷ ︸
k

, τk+1, . . . , τn), τi =
xi
xk
, i = k + 1, . . . , n

where τk is the pivot, and define Mk = I − τe>k , then

Mkx =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 1 0 0
0 −τk+1 1 0
...

...
...

...
. . .

...
0 · · · −τn 0 · · · 1





x1
...
xk
xk+1

...
xn


=



x1
...
xk
0
...
0


(−τk+1xk + xk+1 = 0, τk+1 = xk+1/xk)
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Gauss transformation (cont’d)

Mk = I − τe>k is a Gauss transformation

The first k components of τ ∈ IRm are zero

The Gaussian transformation is unit lower triangular

The vector τ is called the Gauss vector, and the components of
τ (k + 1 : n) are called multipliers

Assume A ∈ IRn×n, Gaussian transformations M1, . . . ,Mn−1 can
usually be found such that Mn−1 . . .M2M1A = U is upper triangular,
e.g.,

A =

 1 4 7
2 5 8
3 6 10

 , τ 1 =

 0
2
3

 ,M1 = I − τ 1e
>
1 =

 1 0 0
−2 1 0
−3 0 1
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Gauss transformation (cont’d)

Upper triangularizing

M1A =

 1 4 7
0 −3 −6
0 −6 −11


likewise

M2 = I −

 0
0
2

 e>2 =

 1 0 0
0 1 0
0 −2 1

 ,M2(M1A) =

 1 4 7
0 −3 −6
0 0 1


From this, we have a matrix A(k−1) = Mk−1 · · ·M1A that is upper
triangular in columns 1 to k − 1

The multipliers in Mk are based on A(k−1)(k + 1 : n, k). In particular,

we need A
(k−1)
kk 6= 0 to proceed

The entry Akk must be checked to avoid a zero divide. These
quantities are referred to as the pivots, and their relative magnitude
turns out to be critically important
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LU factorization

With Gauss transforms M1, . . . ,Mn−1 such that Mn−1 · · ·M1A = U is
upper triangular

It is easy to verify that if Mk = I − τ (k)e>k , then its inverse
M−1k = I + τ (k)e>k
More importantly,

A = LU

where
L = M−11 · · ·M

−1
n−1 U = Mn−1 · · ·M1A

can be uniquely factorized

It is clear that L is a unit lower triangular matrix as each M−1k is unit
lower triangular

Solving n-by-n linear questions with back substitutions via triangular
matrices

Ax = LUx = Ly = b⇒ y = L−1b x = U−1y
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Solving linear system

Given

A =

1 4 7
2 5 8
3 6 10



L = M−11 M−12 =

1 0 0
2 1 0
3 2 1

 , and U = M2(M1A) =

1 4 7
0 −3 −6
0 0 1


If b = [1, 1, 1]>, then y = [1,−1, 0]> solves Ly = b, and
x = [−1/3, 1/3, 0]> solves Ux = y

Note L is lower triangular with unit diagonal

A =

1 4 7
2 5 8
3 6 10

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33
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Pivoting

Consider LU factorization of A

A =

[
0.0001 1

1 1

]
=

[
1 0

10000 1

] [
0.0001 1

0 −9999

]
= LU

with relatively small pivots

Can get around by interchanging rows with a permutation matrix

P =

[
0 1
1 0

]
then

PA =

[
1 1

0.0001 1

]
=

[
1 0

0.0001 1

] [
1 1
0 0.9999

]
and the triangular factors are composed of acceptably small entries
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Permutation matrix

Permutation matrix: an identity matrix with rows re-ordered

P =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


P is orthogonal and P−1 = P>

PA is the row permuted version of A, and AP is the column permuted
version of A
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Partial pivoting

To get the smallest possible multipliers, need to have A11 to be the
largest entry in the first column

A =

3 17 10
2 4 −2
6 18 −12

 , E1 =

0 0 1
0 1 0
1 0 0

 , E1A =

6 18 −12
2 4 −2
3 17 10


and the Gauss transformation

M1 =

 1 0 0
−1/3 1 0
−1/2 0 1

 =⇒ M1E1A =

6 18 −12
0 −2 2
0 8 16


To get the smallest possible multiplier in M2, we need to swap rows 2
and 3
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Partial pivoting (cont’d)

E2 =

1 0 0
0 0 1
0 1 0

 , and M2 =

1 0 0
0 1 0
0 1/4 1


then

M2E2M1E1A =

6 18 −12
0 8 16
0 0 16


The particular row interchange strategy is called partial pivoting

Mn−1En−1 . . .M1E1A = U
PA = LU

where P = En−1 · · ·E1 (also known as LU decomposition with partial
pivoting or LUP decomposition)

Solve PAx = LUx = Pb, i.e., first solve Ly = Pb and then Ux = y

See also complete pivoting and numerical stability issues
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LDU factorization

Asymmetry in LU factorization as the lower factor has 1’s on its
diagonal

Can be remedied by factorizing the diagonal entries
u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 =


u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn




1 u12
u11

· · · u1n
u11

0 1 · · · u2n
u22

...
...

. . .
...

0 0 · · · 1


A = LU can be scaled so that L and U are unit triangular, i.e., all the
diagonal entries of L and U are one, so that A = LDU where D is a
diagonal matrix

When A is symmetric,
A = LDL>
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Existence and uniqueness

An invertible matrix has an LU factorization if and only if all its
leading principal minors are nonzeros, i.e., det(Aii ) 6= 0,∀i = 1, . . . , n

The factorization is unique if we require that the diagonal of L or U
consists of ones

The matrix has a unique LDU factorization under the same conditions

For a (not necessarily invertible) matrix, the exact necessary and
sufficient conditions under which a not necessarily invertible matrix
has an LU factorization are unknown

Every matrix, square or not, has a LUP decomposition where L and P
are square matrices but U has the same shape as A
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Cholesky decomposition

Preserving and exploiting matrix symmetry

A symmetric matrix A possessing an LU factorization where each
pivot is positive, i.e., positive definite

A is positive definite if and only if A can be uniquely factored as
A = R>R where R is an upper triangular matrix with positive
diagonal entries

For symmetric matrix
A = LDL>

where D = diag(p1, p2, . . . , pn) and pi > 0

Setting R = D1/2L>,

A = LD1/2D1/2L> = R>R

Cholesky factorization:
A = R>R

where R is an upper triangular matrix with positive diagonal entries,
and called Cholesky factor
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Cholesky decomposition (cont’d)

Conversely, if A = R>R where R is upper triangular matrix with
positive diagonal, then one can factor out the diagonal entries R so
that R = DU where U is upper triangular matrix with unit diagonal

Consequently, A = U>D2U is the LDU factorization of A, and thus
the pivots must be positive

Suppose A = R>1 R1 = R>2 R2, and factor out the diagonal entries with
R1 = D1U1 and R2 = D2U2

It follows that
A = U>1 D2

1U1 = U>2 D2
2U2

The uniqueness of LDU factors forces U1 = U2 as well as D1 = D2,
and therefore R1 = R2
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Cholesky algorithm

Let A = R>R = LDL>

A =

L11 0 0
L21 L22 0
L31 L32 L33

L11 L21 L31
0 L22 L32
0 0 L33


A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

 L211 L21L11 L31L11
L21L11 L221 + L222 L31L21 + L32L22
L31L11 L31L21 + L32L22 L231 + L232 + L233


Lj ,j =

√
Aj ,j −

∑j−1
k=1 L

2
j ,k

Li ,j = 1
Lj,j

(
Ai ,j −

∑j
k=1 Li ,kLj ,k

)
for i > j

No need for pivoting

Complexity: (1/3)n3 flops, i.e., O(n3) (only half of the matrix is
processed)
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