This set covers chapters $12-15$ of the book Numerical Optimization by Nocedal and Wright.
From the book, the following exercises: $12.4,12.5,12.15,12.16,12.18,12.19,12.20,12.21,13.2,13.3,14.1$. In addition, the exercises below. There are no Matlab programming exercises.

Exercise 1. Apply the KKT conditions (th. 12.1) to the problem

$$
\min _{\mathbf{p} \in \mathbb{R}^{n}} f+\mathbf{g}^{T} \mathbf{p}+\frac{1}{2} \mathbf{p}^{T} \mathbf{B} \mathbf{p} \text { s.t. }\|\mathbf{p}\|_{2} \leq \Delta
$$

Relate your results to theorem 4.3 (book, p. 78).

Exercise 2. Write a linear program in standard form (eq. (13.1)) to find a point $\mathbf{x} \in \mathbb{R}^{2}$ satisfying $2 x_{1}+x_{2} \leq 10$, $\mathbf{x} \geq 0$ that minimises $\left|x_{1}-2 x_{2}\right|+\left|-3 x_{1}-x_{2}\right|$. Use the KKT conditions to show that $\mathbf{x}=\binom{0}{0}$ is a solution.

Exercise 3. Determine the range of values for the parameter $a \in \mathbb{R}$ such that $\mathbf{x}=\binom{4}{3}$ is the optimal solution to $\max _{\mathbf{x} \in \mathbb{R}^{2}} a x_{1}+x_{2}$ subject to $x_{1}^{2}+x_{2}^{2} \leq 25, x_{1}-x_{2} \leq 1, \mathbf{x} \geq 0$.

Exercise 4. Given the constrained optimisation problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{3}}\left(x_{1}+1\right)^{2}+x_{2}^{2}+x_{3}^{2} \text { subject to } x_{3}=0, x_{1} \geq 0, x_{1}+x_{2} \geq 2
$$

1. Solve it by writing the KKT and second-order conditions.
2. Solve the KKT system that results if we assume that the equality constraint is active and:
(i) No inequality constraints are active.
(ii) Exactly one inequality constraint is active (2 cases).
(iii) All inequality constraints are active.

Verify the solution corresponds to one of the cases in (ii).

