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Introduction to computer vision

Computer vision has been around since the 1960s. Recent developments:

• Increasing availability of cheap, powerful cameras (e.g. digital cameras, webcams) and other
sensors.

• Increasing availability of massive amounts of image and multimedia content on the web
(e.g. face databases, streaming video or image-based communication).

• Increasing availability of cheap, powerful computers (processor speed and memory capac-
ity).

• Introduction of techniques from machine learning and statistics (complex, data-driven mod-
els and algorithms).

Three related areas:

2D
image(s)

3D
world

Computer vision

Computer graphics

Image
processing

• Computer graphics: representation of a 3D scene in 2D image(s).

• Computer vision: recovery of information about the 3D world from 2D image(s); the inverse
problem of computer graphics.

• Image processing: operate one one image to produce another image (e.g. denoising, deblur-
ring, enhancement, deconvolution—in particular in medical imaging).

Some problems of computer vision:

• Structure-from-motion (3D reconstruction from multiple views, stereo reconstruction)

• Shape-from-X (single image):

– shape-from-texture

– shape-from-shading

– shape-from-focus

• Segmentation

• Tracking

• Object recognition
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A few applications of computer vision:

• Structure-from-motion:

– Throw away motion, keep structure: image-based rendering (e.g. 3D models of build-
ings, etc. for architecture or entertainment industry)

– Throw away structure, keep motion: mobile robot control (we know the structure but
not the robot location)

• Image collections:

– Image retrieval: find me pictures containing cars and trees

– Image annotation: textual description of objects in image

• Finding faces in a group picture, crowd, etc.

• Recovering articulated pose of a person from a video

• Medical applications:

– Image enhancement

– Segmentation of brain

– Image registration or alignment: compare brains of different people, or brains be-
fore/after lesion

– Blood vessels: track cells

– Unobstrusive patient monitoring

• HCI: track eye motion; recognize physical gestures (e.g. sign language)
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Mean-shift clustering

Represent each pixel xn, n = 1, . . . , N by a feature vector as in spectral clustering, typically
position & intensity (i, j, I) or colour (i, j, L∗, u∗, v∗).

Idea: define a function that represents the density of the data set {xn}Nn=1 ⊂ RD, then declare
each maximum as a cluster representative and assign each pixel to a maximum via the mean-shift
algorithm.
Kernel density estimate (smooth multivariate histogram) with bandwidth σ:

p(x) =
N∑

n=1

p(n)p(x|n) =
1

N

N∑
n=1

K

(
x− xn

σ

)
x ∈ RD

The kernel K satisfies
∫

K(x) dx = 1 and K(x) ≥ 0 (so the kernel is a pdf). Typical kernels:

• Gaussian (infinite support): K
(

x−xn

σ

) ∝ exp
(
−1

2

∥∥x−xn

σ

∥∥2
)

• Epanechnikov (finite support): K
(

x−xn

σ

) ∝ {
0,

∥∥x−xn

σ

∥∥ > 0

1− ∥∥x−xn

σ

∥∥2
, otherwise

.
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Mean-shift algorithm for Gaussian kde: maxima (also minima, saddle points) of p(x) satisfy

0 = ∇p(x) ∝ − 1

N

N∑
n=1

e−
1
2‖x−xn

σ ‖2
(

x− xn

σ2

)
∝ p(x)

N∑
n=1

p(n|x)(x− xn) =⇒ x =
N∑

n=1

p(n|x)xn = f(x)

with “shifts” x− xn (thus ∇p(x) ∝ mean shift) and posterior probabilities (by Bayes’ th.)

p(n|x) =
p(x|n)p(n)

p(x)
=

exp
(−1

2
‖(x− xn)/σ‖2)∑N

n′=1 exp
(−1

2
‖(x− xn′)/σ‖2

) .

This shows that the fixed points of f are stationary points of p, and suggests defining a fixed-point
iterative scheme by starting from a data point xn and iteratively applying f till convergence (and
repeating this for all pixels). It is possible to prove that this algorithm converges from nearly
any initial x to a maximum with linear convergence rate (in fact it is an EM algorithm).

Advantages:

• Nonparametric clustering: only need to set σ.

• No step size needed.
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• Works well with clusters having complex shapes.

• The number of clusters is determined automatically by σ.

Disadvantages:

• The mean-shift iteration is slow.

• Large total computational cost: O(kN 2) where k = average number of mean-shift iterations
per pixel (k ≈ 20–100). Accelerations are possible that produce almost the same segmentation.

Gaussian mean-shift (GMS) algorithm

for n ∈ {1, . . . , N} For each data point

x← xn Starting point

repeat Iteration loop

∀n: p(n|x)←
exp

(

− 1
2
‖(x−xn)σ‖2

)

PN
n′=1 exp

(

− 1
2
‖(x−xn′ )/σ‖2

)

x←
∑N

n=1 p(n|x)xn Update x

until x’s update < tol
zn ← x Maximum

end
connected-components({zn}

N
n=1) Clusters

Gaussian blurring mean-shift (GBMS) algorithm

repeat Iteration loop

for m ∈ {1, . . . , N} For each data point

∀n: p(n|xm)←
exp

(

− 1
2
‖(xm−xn)/σ‖2

)

PN
n′=1 exp

(

− 1
2
‖(xm−xn′ )/σ‖2

)

ym ←
∑N

n=1 p(n|xm)xn One GMS step

end
∀m: xm ← ym Update whole data set

until stop
connected-components({xn}

N
n=1) Clusters

Figure 1: Pseudocode. The “connected-components” step collects all equivalent but numerically
slightly different points.

Mean-shift blurring clustering

Like mean-shift clustering, but actually move data points at each step. It obtains very similar
segmentations to those of mean-shift clustering but quite faster (cubic convergence rate for
Gaussian clusters): the total computational cost is still O(kN 2) but k is quite smaller (k ≈
5). It is related to spectral clustering, since effectively the algorithm is iterating (X ← PX,
update P) where X = (x1, . . . ,xN) and P = D−1A (stochastic, random-walk matrix), and
Amn = exp

(−1
2
‖(xm − xn)/σ‖2) are the Gaussian affinities and D = diag (

∑N
n=1 Amn) the

degree matrix.

Exercises

1. Derive the mean-shift algorithm for a general kernel K.

2. Prove that the mean-shift algorithm is gradient ascent on p(x) with an adaptive step size.

3. Derive the mean-shift algorithm for the Gaussian kde with a bandwidth that is a full
covariance matrix Σn for each point.
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Figure 2: Segmentation results with GMS for hand 50× 40.
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[7] Miguel Á. Carreira-Perpiñán. Gaussian mean shift is an EM algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence.
To appear.

21






























































