This set covers chapters 16-19 of the book Numerical Optimization by Nocedal and Wright, 2nd ed.
From the book, the following exercises: $16.1-3,16.6,16.10,16.15-16,16.20-21,17.4,17.11,18.5,19.12-13$. In addition, the exercises below. There are no Matlab programming exercises. However, you may find it useful to plot the objective function, constraints and auxiliary functions (e.g. the quadratic-penalty function) with fcontour.
IV.1. Quadratic programming. Consider the Markowitz model of portfolio optimization (example 16.1 in the book):

$$
\max _{\mathbf{x} \in \mathbb{R}^{n}} q(\mathbf{x})=\mathbf{x}^{T} \boldsymbol{\mu}-\kappa \mathbf{x}^{T} \mathbf{G} \mathbf{x} \quad \text { subject to } \quad \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}
$$

where $\kappa \geq 0, \boldsymbol{\mu}>\mathbf{0}, \mathbf{G}$ is symmetric positive definite and $\mathbf{e}=(1, \ldots, 1)^{T}$. W.l.o.g. assume that the largest component of $\boldsymbol{\mu}$ is the first $\left(\mu_{1} \geq \mu_{i}, i=1, \ldots, n\right)$.
(i) Suppose that $g_{i i}>g_{i j}, i=1, \ldots, n$. Show that, for a solution to be at one corner of the feasible polytope, namely $\mathbf{x}^{*}=(1,0, \ldots, 0)^{T}$, the following condition must hold:

$$
\kappa \leq \kappa_{a} \text { with } \kappa_{a}=\min _{i=2, \ldots, n} \frac{\mu_{1}-\mu_{i}}{2\left(g_{11}-g_{1 i}\right)}
$$

Interpret this solution. (Hint: apply the KKT and 2nd-order conditions to \mathbf{x}^{*}.)
(ii) Suppose that the sum of each column of \mathbf{G}^{-1} is positive. Show that, for a solution to have only positive components $(\mathbf{x}>\mathbf{0})$, the following condition must hold:

$$
\kappa>\kappa_{c} \text { with } \kappa_{c}=\frac{1}{2} \mathbf{e}^{T} \mathbf{G}^{-1} \boldsymbol{\mu}-\frac{1}{2} \mathbf{e}^{T} \mathbf{G}^{-1} \mathbf{e}\left(\min _{i=1, \ldots, n} \frac{\left(\mathbf{G}^{-1} \boldsymbol{\mu}\right)_{i}}{\left(\mathbf{G}^{-1} \mathbf{e}\right)_{i}}\right)
$$

What is the solution \mathbf{x}^{*} ? What is the solution for $\kappa \rightarrow \infty$?
(iii) Consider a different portfolio optimization problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{x}^{T} \mathbf{G} \mathbf{x} \quad \text { subject to } \quad \boldsymbol{\mu}^{T} \mathbf{x} \geq \kappa, \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}
$$

where $\kappa \geq 0$ as before. What is the largest κ for which this problem is feasible? (Hint: formulate as an LP $\kappa=\max \overline{\boldsymbol{\mu}}^{T} \mathbf{x}$ s.t. $\mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}$; guess its solution and prove it is a solution using the KKT conditions.)

IV.2. Quadratic-penalty, augmented-Lagrangian, log-barrier and interior-point methods.

(i) Consider the constrained optimization problem $\min _{\mathbf{x}} x_{1}^{2}+x_{2}^{2}$ s.t. $x_{1}+x_{2}=1$. Find the solution $\left(\mathbf{x}^{*}, \lambda^{*}\right)$ of this problem using the KKT and second-order conditions. Write the quadratic-penalty function $Q(\mathbf{x} ; \mu)$ and its gradient $\nabla_{\mathbf{x}} Q(\mathbf{x} ; \mu)$ and Hessian $\nabla_{\mathbf{x} \mathbf{x}}^{2} Q(\mathbf{x} ; \mu)$. Show that: $Q(\mathbf{x} ; \mu)$ has a single minimiser \mathbf{x}_{k} for each $\mu_{k}>0$; this minimiser tends to the solution \mathbf{x}^{*} of the problem as $\mu_{k} \rightarrow \infty$; the Lagrange multiplier estimate $\lambda_{k} \approx-\mu_{k} c\left(\mathbf{x}_{k}\right)$ (eq. (17.10) in the book) tends to the Lagrange multiplier λ^{*} at the solution as $\mu_{k} \rightarrow \infty$; the Hessian of the penalty function at the minimiser becomes progressively more ill-conditioned as $\mu_{k} \rightarrow \infty$, i.e., cond $\left(\nabla_{\mathbf{x} \mathbf{x}}^{2} Q\left(\mathbf{x}_{k} ; \mu_{k}\right)\right) \rightarrow \infty$.
(ii) As in (i) but using the augmented-Lagrangian function $\mathcal{L}_{A}(\mathbf{x}, \lambda ; \mu)$ where the variable λ_{k} is updated as $\lambda_{k+1} \leftarrow$ $\lambda_{k}-\mu_{k} c\left(\mathbf{x}_{k}\right)$ (eq. (17.39) in the book).
Also, prove that the sequence of iterates $\left(\mathbf{x}_{k}, \lambda_{k}\right)$ converges to the solution even if μ_{k} is kept at a constant value $\mu>0$ (i.e., we do not drive $\mu_{k} \rightarrow \infty$), and give the convergence order. How does it depend on μ ?
(iii) As in (i) but for the problem $\min _{\mathbf{x}} x_{1}^{2}+x_{2}^{2}$ s.t. $x_{1} \geq 1$ using the \log-barrier function $P(\mathbf{x} ; \mu)$ and where the Lagrange multiplier estimate is $\lambda_{k} \approx \frac{\mu_{k}}{c\left(\mathbf{x}_{k}\right)}$ (eq. (19.47) in the book).
(iv) For the problem in (iii), write the system of perturbed KKT equations $\mathbf{F}(\ldots)=\mathbf{0}$ for an interior-point method; solve it and find the primal-dual central path; compute the Jacobian \mathbf{J} of \mathbf{F} and indicate how to obtain the Newton step; show that \mathbf{J} does not become progressively more ill-conditioned as we approach the solution.
IV.3. Convex equality-constrained quadratic programming using quadratic-penalty and augmentedLagrangian methods. Consider the strictly convex equality-constrained QP:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{T} \mathbf{G} \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \quad \text { subject to } \quad \mathbf{A} \mathbf{x}=\mathbf{b}
$$

where \mathbf{G} is symmetric pd and $\mathbf{A}_{m \times n}$ has full rank with $m<n$.
(i) Solve the QP, giving an explicit expression for the solution, i.e., the KKT point ($\mathrm{x}^{*}, \boldsymbol{\lambda}^{*}$).
(ii) Write the quadratic-penalty function $Q(\mathbf{x} ; \mu)$, prove it is strictly convex and find its minimizer $\mathbf{x}(\mu)$ and its Lagrange multiplier estimates $\boldsymbol{\lambda}(\mu)=-\mu(\mathbf{A x}(\mu)-\mathbf{b})$ explicitly. Prove $\mathbf{x}(\mu) \xrightarrow[\mu \rightarrow \infty]{ } \mathbf{x}^{*}$ and $\boldsymbol{\lambda}(\mu) \xrightarrow[\mu \rightarrow \infty]{ } \boldsymbol{\lambda}^{*}$. Hint: use the Sherman-Morrison-Woodbury formula.
(iii) Write the augmented-Lagrangian function $\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda} ; \mu)$, prove it is strictly convex and find its minimizer $\mathbf{x}(\boldsymbol{\lambda} ; \mu)$ and the update for $\boldsymbol{\lambda}$ explicitly. Prove $\mathbf{x}(\boldsymbol{\lambda} ; \mu) \xrightarrow[\mu \rightarrow \infty]{ } \mathbf{x}^{*}$ and $\boldsymbol{\lambda}(\mu) \xrightarrow[\mu \rightarrow \infty]{ } \boldsymbol{\lambda}^{*}$.
Now we keep the penalty parameter fixed to a value $\mu>0$. Prove that iterating the update for $\boldsymbol{\lambda}$ also converges to the solution, and determine the convergence order. Hint: $\|\mathbf{M u}\| \leq\|\mathbf{M}\|\|\mathbf{u}\|$, using the L_{2} norm for vectors and matrices, i.e., $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}$ and $\|\mathbf{M}\|=$ largest singular value of \mathbf{M}.
IV.4. Generalized spectral problem. Prove the following theorem. Consider the optimisation problem

$$
\begin{equation*}
\max _{\mathbf{X}} \operatorname{tr}\left(\mathbf{X A X}^{T}\right) \quad \text { s.t. } \quad \mathbf{X B X}^{T}=\mathbf{I} \tag{1}
\end{equation*}
$$

where $\mathbf{X} \in \mathbb{R}^{L \times N}, L<N, \mathbf{A}, \mathbf{B} \in \mathbb{R}^{N \times N}, \mathbf{A}$ is symmetric and \mathbf{B} is symmetric positive definite. Let $\mathbf{C}=\mathbf{B}^{-\frac{1}{2}} \mathbf{A B}^{-\frac{1}{2}}$ have spectral representation $\mathbf{C}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$ and assume its eigenvalues are distinct though not necessarily positive. Then, the solution of (1) is unique and given by $\mathbf{X}=\mathbf{U}_{L}^{T} \mathbf{B}^{-\frac{1}{2}}$, where $\mathbf{U}_{L}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{L}\right)$ are the leading L eigenvectors of \mathbf{C}.

