
EECS260 Optimization Project #1

Fall semester 2015 Miguel Á. Carreira-Perpiñán

This project studies the following unconstrained optimisationmethods, all using the line-search strategy: Newton-
CG; nonlinear conjugate gradients; quasi-Newton. It consists of programming some Matlab functions and
running them on some examples, commenting on the results. The references below are for the book Numerical Opti-

mization, 2nd ed. by Nocedal and Wright.
Note: you may discuss issues with each other, but you have to produce your own solutions for every part.

I Matlab functions

Write the following Matlab functions, using the templates provided and following strictly the convention given for
the input and output arguments:

1. Olincg: linear conjugate gradient (algorithm 5.2) to solve a positive-definite linear system Ax = b.

2. Olincg1: modification of Olincg that stops iterating when encountering negative or zero curvature directions.
This is intended to be called from Onewtoncg.

3. Onewtoncg: line-search Newton-CG (algorithm 7.1), using linesearch and Olincg1. Use the same convergence
criterion as in Osteepdesc, i.e., stop when ‖∇f(xk)‖ ≤ tol OR k ≥ maxit (tolerance achieved or maximum
number of iterations achieved). The argument convcrit determines what forcing sequence to pass to Olincg1:
ηk = 0.5 for ’linear’, ηk = min (0.5,

√

‖∇f(xk)‖) for ’superlinear’, and ηk = min (0.5, ‖∇f(xk)‖) for
’quadratic’.

4. Oprcg: three nonlinear conjugate gradients methods: Polak-Ribière, Fletcher-Reeves (algorithm 5.4) and Hestenes-
Stiefel.

5. Obfgs: three quasi-Newton methods: BFGS (algorithm 6.1), DFP and SR1.

6. For each problem tested in the evaluation, write one driver file that sets up the problem, solves it and displays
the results. As an example, see driver0.m. Since the combinations of different tol, different forcing sequence,
etc. result in several problems, just send me 4 representative drivers, one for each of Olincg, Onewtoncg, Oprcg
and Obfgs.

Important notes:

• Sometimes, these methods may compute directions that are not descent, or may have some other problem.
Explain how you solve such issues.

• Ensure your code (and drivers) is fast. It should solve any of the problems we try (which are small) in a
few seconds.

Programming advice:

• Write the functions in the order above. Use my functions fcontours, plotseq, Fquad, Osteepdesc, linesearch, convseq, etc.

• Make sure you understand how Osteepdesc (and linesearch) works because your Onewtoncg, etc. programs should look very similar
to it. Follow the convention in Osteepdesc for:

– default values for arguments

– passing as an argument an arbitrary function handle and its parameters: f, paramf

– obtaining the value of the function, gradient and Hessian: [ff g H] = f(x’,paramf:);

• To get more decimals in Matlab do format long. Use set(gca,’DataAspectRatio’,[1 1 1]); to avoid distorted plots.

• Program thinking of n dimensions, not 2. It’s more general and usually easier.

• Avoid fancy features I don’t ask for: error-checking of arguments, informative messages, etc. This is not a programming course.

• You may find useful the following Matlab construct to solve linear systems: x0 = A \ b; will solve A*x = b. The corresponding
error A*x0 - b should be around 10−13 or less unless A is ill-conditioned.

• The function numgradhess.m is useful to check numerically whether the expressions for your gradient and Hessian are correct.

1



II Evaluation

Once you have correctly programmed the algorithms, explore them as follows.

1. Olincg. Test it with a system where A is the Hilbert matrix of order n (aij = 1

i+j−1
for i, j = 1 . . . , n),

b = (1, . . . , 1)T and with initial point x0 = 0. Try dimensions n = 3, 5, 8, 12, 20. Use the following Matlab
functions: hilb, cond.

(a) Report the condition number of A and the number of iterations required to reduce the norm of the residual
rk = Axk − b below 10−6. Discuss the results in view of theorem 5.1.

(b) Plot fk and ‖rk‖ (the latter using semilogy) as a function of the iteration index k. At each iteration, does
the value of fk decrease? How about the value of ‖rk‖?

2. Onewtoncg. Apply it to the Rosenbrock function in 2 dimensions (eq. (2.22) in the book) from two initial points
x0 = (1.2, 1.2) and x0 = (−1.2, 1) (cf. exercise 3.1).

(a) Plot the iterates over the function contours (use fcontours and plotseq). Plot ‖xk − x∗‖ (where x∗ is the
exact minimiser) and f(xk) as a function of k. Report the number of Newton iterations, and the number
of CG iterations ran inside each Newton iteration. How large is the condition number of ∇2f(x∗)?

(b) Explore the effects of the following and comment on the results:

i. The value of tol, e.g. try 10−6 and 10−10.

ii. The line search: use different values of the initial step length, e.g. α = 1, 0.5, 0.2. Also, try not using
a line search at all and fixing the step length to α = 1.

iii. The forcing sequence (use convseq to estimate empirically the convergence rate).

(c) Repeat everything for Osteepdesc and compare the results with those of Onewtoncg, in terms on conver-
gence rate, number of iterations and (roughly) in terms of actual computational cost.

(d) Consider now the Rosenbrock function in n dimensions (see exercise 7.1 in the book). Try the previous
algorithms for n = 100 from the initial point x = (−1,−1, . . . ,−1)T . How do your results change? You can
plot the first 2 dimensions of xk to get an idea of the algorithms’ progress.

(e) Finally, run driver0.m, which runs Onewtoncg with function F6 1b (n dimensions). Comment on the
results.

3. Oprcg, Obfgs: repeat a similar evaluation as for Onewtoncg. In particular, estimate the convergence rate
empirically.

In the evaluation, do not simply report results and above all do not flood me with plots or tables without explanation.
You should run your algorithms under various conditions such as those mentioned above and ensure you understand
their behaviour and how it compares with their theoretical properties. After you have done that exploration on your
own, summarise it clearly and concisely in the report. A few representative plots are enough. Have the 4 driver files
recreate figures or tables as necessary (e.g. by calling your Obfgs with appropriate arguments) and refer to them in
the report (so you don’t have to include them in the report).

III What you have to submit

Follow the following instructions strictly. Email me the following packed into a single file (project1.tar.gz
or project1.zip) and with email subject [EECS260] Project 1:

1. Your code for the Matlab functions (Olincg.m, Olincg1.m, Onewtoncg.m, Oprcg.m, Obfgs.m), and the 4 repre-
sentative driver files (driver1.m, driver2.m, driver3.m, driver4.m). Do not include any other functions (e.g.
fcontours.m).

2. Your evaluation of the methods in a single PDF file (evaluation.pdf). Do not include there the methods’
actual results (figures, tables), instead have the driver files reproduce them (I will run the driver files and check
it against your evaluation).

Use file names as above and do not include any other files besides those. If your project was done by a group of 2
students or more, send me only one file and briefly describe in the evaluation what each member did for the project.

2


