
EECS260 Optimization Project #2

Fall semester 2014 Miguel Á. Carreira-Perpiñán

This project studies the quadratic-penalty method for constrained optimisation (chapter 17 of the book
Numerical Optimization by Nocedal and Wright, 2nd. ed.; read carefully section 17.1). It consists of some problems
to be solved analytically (in paper); programming some Matlab functions; and running them on some examples,
commenting on the results.

Note: you may discuss issues with each other, but you have to produce your own solutions for every part.
We will consider the general constrained optimisation problem

min
x∈Rn

f(x) subject to

{

ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I

using the following unconstrained optimisation methods to solve the subproblem:

1. Steepest descent (Osteepdesc.m).

2. Newton-CG (Onewtoncg.m).

I Paper exercises

1. Consider the quadratic-penalty function Q(x;µ) of eq. (17.7):

Q(x;µ) = f(x) +
µ

2

∑

i∈E

c2i (x) +
µ

2

∑

i∈I

([ci(x)]
−)2.

Write the expressions for Q, ∇xQ and ∇2
xx

Q in terms of f , ∇f , ∇2f , ci, ∇ci, ∇
2ci.

2. Assuming f and all the constraints have continuous second derivatives:

(a) Show that ∇xQ(x;µ) is continuous ∀x ∈ R
n, µ > 0.

(b) Give a condition for ∇2
xx

Q(x;µ) to be continuous ∀x ∈ R
n, µ > 0. Apply it to the case where ci(x) =

1
2x

TAix+ bT
i x+ ci (quadratic constraints).

Given this, comment on the applicability of the unconstrained optimisation methods.

3. Consider the Lagrange multiplier estimates

λ
(k)
i = −µkci(xk)

given in eq. (17.10) for the equality-constrained case. Guess how they may be extended to the inequality-
constrained case. Hint: what happens with eq. (17.10) for an inequality constraint ci which is inactive at a KKT
point x∗?

4. The convergence criterion (to a stationary point) that we used for unconstrained optimisation is ‖∇f(xk)‖ < τ

for some tolerance τ . Write an appropriate convergence criterion to a KKT point (take into account the result
of I.3).

5. (Optional.) The equation for the tangent to the path x(µ) is (see the course notes)

d∇xQ(x(µ);µ)

dµ
= ∇2

xx
Q(x;µ) ẋ+

∂∇xQ(x;µ)

∂µ
= 0 ẋ =

dx

dµ
∈ R

n

where ẋ is the path tangent. This gives a linear system Hẋ = b for ẋ. Write the expressions for H and b.
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II Matlab functions

Write the following Matlab functions, using the templates provided and following strictly the convention given for
the input and output arguments:

1. Q.m: quadratic-penalty function. Use your expressions from I.1. See fcontours.m for passing functions and their
arguments as arguments of Q.

2. Oqpenalty.m: quadratic-penalty method. Follow the algorithmic framework 17.1.

(a) Decide yourself on how to implement the updates for µk and τk.

(b) To compute the new starting point xs
k+1, implement two versions:

• xs
k+1 ← xs

k, i.e., we simply use the minimiser of Q(x;µk) as the starting point for minimising Q(x;µk+1).

• (Optional) xs
k+1 ← xk + (µk+1 − µk)ẋ, i.e., we use the value predicted by the path tangent. For this,

write a function Qinit.m that implements your solution to I.5.

(c) For the “final convergence test” use your criterion of I.4 and also a limit maxit on the number of iterations
(essential to debug the code, and to avoid infinite loops with e.g. unbounded problems).

3. Unconstrained optimisation functions: you will use Osteepdesc.m and Onewtoncg.m. A particular unconstrained
optimisation solver, say Onewtoncg, will be passed to Oqpenalty.m as in this example (see qpdriver0.m):

[X,LE,...] = Oqpenalty(f,paramf,E,paramE,I,paramI,@Onewtoncg,{convcrit},x0,mu0,tol,maxit)

The template Oqpenalty.m already contains a line to call the unconstrained optimisation solver (passed in the
input arguments O and paramO):

[X1,F1] = O(@Q,{f,paramf,E,paramE,I,paramI,mu},x’,tau,maxit2,paramO{:});.

which mimics the way we would call Onewtoncg directly:

[X,F] = Onewtoncg(f,paramf,x0,tol,maxit,convcrit).

To see more examples of how to call functions of functions in Matlab using function handles, see fcontours.m.
This receives as input arguments an objective function and several equality and inequality constraints and plots
them. Note e.g. the use of E{i}([X(:) Y(:)],paramE{i}{:}) to apply the ith equality constraint to the points
in [X(:) Y(:)].

4. Consider exercise 18.3 in the book. Program a driver file qpdriver18 3.m; and two functions (F18 3f.m for f

and F18 3c3 for c3) to compute the necessary functions, gradients and Hessians (note that for c1 and c2 you
can simply use Fquad.m). Follow the same style as in Fquad. Hint: you can simplify the task by using these
identities:

ef has gradient ef∇f and Hessian ef (∇2f +∇f∇fT )

f2 has gradient 2f∇f and Hessian 2(f∇2f +∇f∇fT )

and checking the output of your F18 3f.m and F18 3c3.m with numgradhess.m. See also the sample output
provided in the file qpdriver18 3.txt.

Note: ensure your code (and drivers) is fast. It should solve any of the problems we try (which are small) in a
few seconds.

It will be most efficient if you (1) do the paper exercises first, (2) write the functions in the order above, and (3)
test Q and Oqpenalty with combinations of Fquad, visualising the results with fcontours (see also the programming
advice in project #1). I have provided a sample driver file qpdriver0.m that sets up a constrained optimisation
problem, solves it and displays the result.
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III Evaluation

The objective is to evaluate your implementation Oqpenalty of the quadratic-penalty method on some test problems.
You will report your results on: the problem in the provided file qpdriver0.m; exercises 12.19 and 16.1 (already solved
in the homework); and exercise 18.3 (in n = 5 dimensions).

To gain understanding of the method’s performance, use different combinations of:

• Starting point x0.

• Updates for µk, τk.

• Starting point xs
k for the unconstrained optimisation solver (xk or the path tangent extrapolation).

• Unconstrained optimisation solver: Osteepdesc, Onewtoncg.

For each problem, write a different driver file1 (based on qpdriver0.m) that sets it up, calls Oqpenalty and collects
and plots/tabulates the following information:

1. Plots the contours of Q(x;µk), the constraints and the minimiser xk (call fcontours from within Oqpenalty

after each unconstrained minimisation of Q).

2. Plots the contours of f and the constraints, and the sequence of minimisers xk (call fcontours and plotseq

from qpdriver0.m after Oqpenalty has finished).

3. Tabulates or plots the following information (obtained from the output arguments of Oqpenalty) as a func-
tion of µk: f(xk); ‖∇f(xk)‖; cond

(

∇2
xx

Q
)

; value of your convergence criterion; number of iterations of the
unconstrained optimisation solver.

4. For exercise 18.3, do not plot anything, simply report at the end: the solution (x∗,λ∗); and an estimate of
the computational cost it took to solve the problem (e.g. the number of iterations of Oqpenalty and the total
number of iterations of the unconstrained optimisation solver; or the CPU time). Note there is an erratum in
this exercise (see the errata list): x0 and x∗ are swapped.

Here are some specific questions to answer, based on your theoretical understanding and your experiments:

1. Comment on your results in view of our theoretical understanding:

(a) Applicability: does the particular combination work (e.g. Onewtoncg with inequality constraints)? Why or
why not?

(b) Efficiency: computational cost.

2. What can you say about the shape of the contours of Q near the boundary of the feasible set? (for equality
constraints, and for inequality constraints). Hint: remember I.2.

3. Consider problems where f is linear or quadratic and all the constraints ci are linear (i.e., LP and QP):

(a) What can you say (in theory and given the experiments) about the performance of the different uncon-
strained optimisation methods with the quadratic-penalty function Q? (i.e., not for the constrained problem,
just for Q). Consider the particular cases of: LP with equalities only; LP with inequalities only.

(b) How does the quadratic-penalty method compare with other methods for LP or QP (active-set, gradient-
projection, interior-point methods)?

4. What happens if the problem: has several solutions; or is unbounded; or is infeasible? (try some experiment).

5. What is the convergence rate of the constrained method? How can we accelerate it? Does it depend on the
unconstrained optimizer? Use convseq on the last few iterates to investigate this question.

Optional: you may check or compare your results with the Matlab Optimization Toolbox.
Hints : debug your Q.m and Oqpenalty.m functions using the problem of qpdriver0.m, which is quite simple, and

then move to the other, more difficult problems. Make sure you understand well the problem of qpdriver0.m, e.g. the
number of solutions and how to converge to them. It is very helpful to plot Q(x;µ) for several µ before trying to run

Oqpenalty.m to find out about good x0 and µ0.

1Note that when the objective function or the constraints are quadratic or linear you need not program them, just set up values for A,

b and c and use Fquad.
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IV What you have to submit

Follow the following instructions strictly. Email me the following packed into a single file (project2.tar.gz
or project2.zip) and with email subject [EECS260] Project 2:

1. Your code for the Matlab functions (Q.m, Oqpenalty.m); one driver file per problem tested (qpdriver12 19.m,
qpdriver16 1.m, qpdriver18 3.m); and Matlab functions for the objective and constraints in those problems,
if they can’t be coded with e.g. Fquad (F18 3f.m, F18 3c3.m, possibly some more). Do not include any other
functions (e.g. fcontours.m).

2. Your evaluation of the methods and your solutions to part I in a single PDF file (evaluation.pdf). Do not
include there the methods’ actual results (figures, tables), instead have the driver files reproduce them (I will
run the driver files and check it against your evaluation).

Use file names as above and do not include any other files besides those. If your project was done by a group of 2
students or more, send me only one file and briefly describe in the evaluation what each member did for the project.

4


