This set covers chapters 16–19 of the book Numerical Optimization by Nocedal and Wright, 2nd ed.

From the book, the following exercises: 16.1–3, 16.6, 16.10, 16.15–16, 16.20–21, 17.4, 17.11, 18.5, 19.12–13. In addition, the exercises below. There are no Matlab programming exercises. However, you may find it useful to plot the objective function, constraints and auxiliary functions (e.g. the quadratic-penalty function) with fcontour.

IV.1. Quadratic programming. Consider the Markowitz model of portfolio optimization (example 16.1 in the book):

$$\max_{\mathbf{x}\in\mathbb{R}^n}q(\mathbf{x}) = \mathbf{x}^T\boldsymbol{\mu} - \kappa\mathbf{x}^T\mathbf{G}\mathbf{x} \quad \text{subject to} \quad \mathbf{e}^T\mathbf{x} = 1, \ \mathbf{x} \ge \mathbf{0}$$

where $\kappa \geq 0$, $\mu > 0$, **G** is symmetric positive definite and $\mathbf{e} = (1, \ldots, 1)^T$. W.l.o.g. assume that the largest component of $\boldsymbol{\mu}$ is the first $(\mu_1 \geq \mu_i, i = 1, \ldots, n)$.

(i) Suppose that $g_{ii} > g_{ij}$, i = 1, ..., n. Show that, for a solution to be at one corner of the feasible polytope, namely $\mathbf{x}^* = (1, 0, ..., 0)^T$, the following condition must hold:

$$\kappa \leq \kappa_a$$
 with $\kappa_a = \min_{i=2,\dots,n} \frac{\mu_1 - \mu_i}{2(g_{11} - g_{1i})}$.

Interpret this solution. (Hint: apply the KKT and 2nd-order conditions to \mathbf{x}^* .)

(ii) Suppose that the sum of each column of \mathbf{G}^{-1} is positive. Show that, for a solution to have only positive components $(\mathbf{x} > \mathbf{0})$, the following condition must hold:

$$\kappa > \kappa_c$$
 with $\kappa_c = \frac{1}{2} \mathbf{e}^T \mathbf{G}^{-1} \boldsymbol{\mu} - \frac{1}{2} \mathbf{e}^T \mathbf{G}^{-1} \mathbf{e} \left(\min_{i=1,\dots,n} \frac{(\mathbf{G}^{-1} \boldsymbol{\mu})_i}{(\mathbf{G}^{-1} \mathbf{e})_i} \right).$

What is the solution \mathbf{x}^* ? What is the solution for $\kappa \to \infty$?

(iii) Consider a different portfolio optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \mathbf{G} \mathbf{x} \qquad \text{subject to} \qquad \boldsymbol{\mu}^T \mathbf{x} \ge \kappa, \ \mathbf{e}^T \mathbf{x} = 1, \ \mathbf{x} \ge \mathbf{0}$$

where $\kappa \geq 0$ as before. What is the largest κ for which this problem is feasible? (Hint: formulate as an LP $\kappa = \max \mu^T \mathbf{x}$ s.t. $\mathbf{e}^T \mathbf{x} = 1$, $\mathbf{x} \geq \mathbf{0}$; guess its solution and prove it is a solution using the KKT conditions.)

IV.2. Quadratic-penalty, augmented-Lagrangian, log-barrier and interior-point methods.

- (i) Consider the constrained optimization problem $\min_{\mathbf{x}} x_1^2 + x_2^2$ s.t. $x_1 + x_2 = 1$. Find the solution $(\mathbf{x}^*, \lambda^*)$ of this problem using the KKT and second-order conditions. Write the quadratic-penalty function $Q(\mathbf{x}; \mu)$ and its gradient $\nabla_{\mathbf{x}} Q(\mathbf{x}; \mu)$ and Hessian $\nabla_{\mathbf{xx}}^2 Q(\mathbf{x}; \mu)$. Show that: $Q(\mathbf{x}; \mu)$ has a single minimiser \mathbf{x}_k for each $\mu_k > 0$; this minimiser tends to the solution \mathbf{x}^* of the problem as $\mu_k \to \infty$; the Lagrange multiplier estimate $\lambda_k \approx -\mu_k c(\mathbf{x}_k)$ (eq. (17.10) in the book) tends to the Lagrange multiplier λ^* at the solution as $\mu_k \to \infty$; the Hessian of the penalty function at the minimiser becomes progressively more ill-conditioned as $\mu_k \to \infty$, i.e., cond $(\nabla_{\mathbf{xx}}^2 Q(\mathbf{x}_k; \mu_k)) \to \infty$.
- (ii) As in (i) but using the augmented-Lagrangian function $\mathcal{L}_A(\mathbf{x}, \lambda; \mu)$ where the variable λ_k is updated as $\lambda_{k+1} \leftarrow \lambda_k \mu_k c(\mathbf{x}_k)$ (eq. (17.39) in the book).
- (iii) As in (i) but for the problem $\min_{\mathbf{x}} x_1^2 + x_2^2$ s.t. $x_1 \ge 1$ using the log-barrier function $P(\mathbf{x}; \mu)$ and where the Lagrange multiplier estimate is $\lambda_k \approx \frac{\mu_k}{c(\mathbf{x}_k)}$ (eq. (19.47) in the book).
- (iv) For the problem in (iii), write the system of perturbed KKT equations $\mathbf{F}(...) = \mathbf{0}$ for an interior-point method; solve it and find the primal-dual central path; compute the Jacobian \mathbf{J} of \mathbf{F} and indicate how to obtain the Newton step; show that \mathbf{J} does not become progressively more ill-conditioned as we approach the solution.

IV.3. Generalized spectral problem. Prove the following theorem. Consider the optimisation problem

$$\max_{\mathbf{X}} \operatorname{tr} \left(\mathbf{X} \mathbf{A} \mathbf{X}^{T} \right) \quad \text{s.t.} \quad \mathbf{X} \mathbf{B} \mathbf{X}^{T} = \mathbf{I}$$
(1)

where $\mathbf{X} \in \mathbb{R}^{L \times N}$, L < N, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{N \times N}$, \mathbf{A} is symmetric and \mathbf{B} is symmetric positive definite. Let $\mathbf{C} = \mathbf{B}^{-\frac{1}{2}} \mathbf{A} \mathbf{B}^{-\frac{1}{2}}$ have spectral representation $\mathbf{C} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ and assume its eigenvalues are distinct though not necessarily positive. Then, the solution of (1) is unique and given by $\mathbf{X} = \mathbf{U}_L^T \mathbf{B}^{-\frac{1}{2}}$, where $\mathbf{U}_L = (\mathbf{u}_1, \dots, \mathbf{u}_L)$ are the leading L eigenvectors of \mathbf{C} .