
EECS260 Optimization Homework set #4

Fall semester 2011 Miguel Á. Carreira-Perpiñán

This set covers chapters 16–19 of the book Numerical Optimization by Nocedal and Wright, 2nd ed.

From the book, the following exercises: 16.1–3, 16.6, 16.10, 16.15–16, 16.20–21, 17.4, 17.11, 18.5, 19.12–13. In
addition, the exercises below. There are no Matlab programming exercises. However, you may find it useful to plot
the objective function, constraints and auxiliary functions (e.g. the quadratic-penalty function) with fcontour.

IV.1. Quadratic programming. Consider the Markowitz model of portfolio optimization (example 16.1 in
the book):

max
x∈Rn

q(x) = xT
µ− κxTGx subject to eTx = 1, x ≥ 0

where κ ≥ 0, µ > 0, G is symmetric positive definite and e = (1, . . . , 1)T . W.l.o.g. assume that the largest
component of µ is the first (µ1 ≥ µi, i = 1, . . . , n).

(i) Suppose that gii > gij , i = 1, . . . , n. Show that, for a solution to be at one corner of the feasible polytope,
namely x∗ = (1, 0, . . . , 0)T , the following condition must hold:

κ ≤ κa with κa = min
i=2,...,n

µ1 − µi

2(g11 − g1i)
.

Interpret this solution. (Hint: apply the KKT and 2nd-order conditions to x∗.)

(ii) Suppose that the sum of each column of G−1 is positive. Show that, for a solution to have only positive
components (x > 0), the following condition must hold:

κ > κc with κc =
1

2
eTG−1

µ−
1

2
eTG−1e

(

min
i=1,...,n

(G−1
µ)i

(G−1e)i

)

.

What is the solution x∗? What is the solution for κ→∞?

(iii) Consider a different portfolio optimization problem:

min
x∈Rn

xTGx subject to µ
Tx ≥ κ, eTx = 1, x ≥ 0

where κ ≥ 0 as before. What is the largest κ for which this problem is feasible? (Hint: formulate as an LP
κ = maxµTx s.t. eTx = 1, x ≥ 0; guess its solution and prove it is a solution using the KKT conditions.)

IV.2. Quadratic-penalty, augmented-Lagrangian, log-barrier and interior-point methods.

(i) Consider the constrained optimization problem minx x
2
1 + x2

2 s.t. x1 + x2 = 1. Find the solution (x∗, λ∗)
of this problem using the KKT and second-order conditions. Write the quadratic-penalty function Q(x;µ)
and its gradient ∇xQ(x;µ) and Hessian ∇2

xx
Q(x;µ). Show that: Q(x;µ) has a single minimiser xk for

each µk > 0; this minimiser tends to the solution x∗ of the problem as µk → ∞; the Lagrange multiplier
estimate λk ≈ −µkc(xk) (eq. (17.10) in the book) tends to the Lagrange multiplier λ∗ at the solution as
µk → ∞; the Hessian of the penalty function at the minimiser becomes progressively more ill-conditioned
as µk →∞, i.e., cond

(

∇2
xx

Q(xk;µk)
)

→∞.

(ii) As in (i) but using the augmented-Lagrangian function LA(x, λ;µ) where the variable λk is updated as
λk+1 ← λk − µkc(xk) (eq. (17.39) in the book).

(iii) As in (i) but for the problem minx x
2
1 + x2

2 s.t. x1 ≥ 1 using the log-barrier function P (x;µ) and where the
Lagrange multiplier estimate is λk ≈

µk

c(xk)
(eq. (19.47) in the book).

(iv) For the problem in (iii), write the system of perturbed KKT equations F(. . . ) = 0 for an interior-point
method; solve it and find the primal-dual central path; compute the Jacobian J of F and indicate how to
obtain the Newton step; show that J does not become progressively more ill-conditioned as we approach
the solution.



IV.3. Generalized spectral problem. Prove the following theorem. Consider the optimisation problem

max
X

tr
(

XAXT
)

s.t. XBXT = I (1)

where X ∈ R
L×N , L < N , A,B ∈ R

N×N , A is symmetric and B is symmetric positive definite. Let C =
B−

1

2AB−
1

2 have spectral representation C = UΛUT and assume its eigenvalues are distinct though not neces-
sarily positive. Then, the solution of (1) is unique and given by X = UT

LB
−

1

2 , where UL = (u1, . . . ,uL) are the
leading L eigenvectors of C.


