
EECS260 Optimization Project #3
Spring semester 2010 Miguel Á. Carreira-Perpiñán

This project studies the quadratic-penalty method for constrained optimisation (chapter 17 of the book
Numerical Optimization by Nocedal and Wright, 2nd. ed.; read carefully section 17.1). It consists of some
problems to be solved analytically (in paper); programming some Matlab functions; and running them on some
examples, commenting on the results.

Note: you may discuss issues with each other, but you have to produce your own solutions for every part.
We will consider the general constrained optimisation problem

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

using the following unconstrained optimisation methods to solve the subproblem:

1. Steepest descent (Osteepdesc.m).

2. Newton-CG (Onewtoncg.m).

I Paper exercises

1. Consider the quadratic-penalty function Q(x;µ) of eq. (17.7):

Q(x;µ) = f(x) +
µ

2

∑
i∈E

c2i (x) +
µ

2

∑
i∈I

([ci(x)]−)2.

Write the expressions for Q, ∇xQ and ∇2
xxQ in terms of f , ∇f , ∇2f , ci, ∇ci, ∇2ci.

2. Assuming f and all the constraints have continuous second derivatives:

(a) Show that ∇xQ(x;µ) is continuous ∀x ∈ Rn, µ > 0.

(b) Give a condition for ∇2
xxQ(x;µ) to be continuous ∀x ∈ Rn, µ > 0. Apply it to the case where

ci(x) = 1
2x

T Aix + bT
i x + ci (quadratic constraints).

Given this, comment on the applicability of the unconstrained optimisation methods.

3. Consider the Lagrange multiplier estimates

λ
(k)
i = −µkci(xk)

given in eq. (17.10) for the equality-constrained case. Guess how they may be extended to the inequality-
constrained case. Hint: what happens with eq. (17.10) for an inequality constraint ci which is inactive at a
KKT point x∗?

4. The convergence criterion (to a stationary point) that we used for unconstrained optimisation is ‖∇f(xk)‖ <
τ for some tolerance τ . Write an appropriate convergence criterion to a KKT point (take into account the
result of I.3).

5. (Optional.) The equation for the tangent to the path x(µ) is (see the course notes)

d∇xQ(x(µ);µ)
dµ

= ∇2
xxQ(x;µ) ẋ +

∂∇xQ(x;µ)
∂µ

= 0 ẋ =
dx
dµ
∈ Rn

where ẋ is the path tangent. This gives a linear system Hẋ = b for ẋ. Write the expressions for H and b.

1



II Matlab functions

Write the following Matlab functions, using the templates provided and following strictly the convention
given for the input and output arguments:

1. Q.m: quadratic-penalty function. Use your expressions from I.1. See fcontours.m for passing functions and
their arguments as arguments of Q.

2. Oqpenalty.m: quadratic-penalty method. Follow the algorithmic framework 17.1.

(a) Decide yourself on how to implement the updates for µk and τk.

(b) To compute the new starting point xs
k+1, implement two versions:

• xs
k+1 ← xs

k, i.e., we simply use the minimiser of Q(x;µk) as the starting point for minimising
Q(x;µk+1).

• (Optional) xs
k+1 ← xk + (µk+1 − µk)ẋ, i.e., we use the value predicted by the path tangent. For

this, write a function Qinit.m that implements your solution to I.5.

(c) For the “final convergence test” use your criterion of I.4 and also a limit maxit on the number of
iterations (essential to debug the code, and to avoid infinite loops with e.g. unbounded problems).

3. Unconstrained optimisation functions: you will use Osteepdesc.m and Onewtoncg.m. A particular un-
constrained optimisation solver, say Onewtoncg, will be passed to Oqpenalty.m as in this example (see
qpdriver0.m):

[X,LE,...] = Oqpenalty(f,paramf,E,paramE,I,paramI,@Onewtoncg,{convcrit},x0,mu0,tol,maxit)

The template Oqpenalty.m already contains a line to call the unconstrained optimisation solver (passed in
the input arguments O and paramO):

[X1,F1] = O(@Q,{f,paramf,E,paramE,I,paramI,mu},x’,tau,maxit2,paramO{:});.

which mimics the way we would call Onewtoncg directly:

[X,F] = Onewtoncg(f,paramf,x0,tol,maxit,convcrit).

To see more examples of how to call functions of functions in Matlab using function handles, see fcontours.m.
This receives as input arguments an objective function and several equality and inequality constraints and
plots them. Note e.g. the use of E{i}([X(:) Y(:)],paramE{i}{:}) to apply the ith equality constraint
to the points in [X(:) Y(:)].

4. Consider exercise 18.3 in the book. Program a driver file qpdriver18 3.m; and two functions (F18 3f.m for
f and F18 3c3 for c3) to compute the necessary functions, gradients and Hessians (note that for c1 and c2
you can simply use Fquad.m). Follow the same style as in Fquad. Hint: you can simplify the task by using
these identities:

ef has gradient ef∇f and Hessian ef (∇2f +∇f∇fT )
f2 has gradient 2f∇f and Hessian 2(f∇2f +∇f∇fT )

and checking the output of your F18 3f.m and F18 3c3.m with numgradhess.m.

It will be most efficient if you (1) do the paper exercises first, (2) write the functions in the order above, and (3) test
Q and Oqpenalty with combinations of Fquad, visualising the results with fcontours (see also the programming
advice in project #1). I have provided a sample driver file qpdriver0.m that sets up a constrained optimisation
problem, solves it and displays the result.

2



III Evaluation

The objective is to evaluate your implementation Oqpenalty of the quadratic-penalty method on some test
problems. You will report your results on exercise 18.3 and on any 2 problems of the following (already solved in
the homework, and easily coded by calling Fquad): 12.19, 12,20, 12,21, 16.1, III.3, III.4, III.2(i).

To gain understanding of the method’s performance, use different combinations of:

• Starting point x0.

• Updates for µk, τk.

• Starting point xs
k for the unconstrained optimisation solver (xk or the path tangent extrapolation).

• Unconstrained optimisation solver: Osteepdesc, Onewtoncg.

For each problem, write a different driver file1 (based on qpdriver0.m) that sets it up, calls Oqpenalty and
collects and plots/tabulates the following information:

1. Plots the contours of Q(x;µk), the constraints and the minimiser xk (call fcontours from within Oqpenalty
after each unconstrained minimisation of Q).

2. Plots the contours of f and the constraints, and the sequence of minimisers xk (call fcontours and plotseq
from qpdriver0.m after Oqpenalty has finished).

3. Tabulates or plots the following information (obtained from the output arguments of Oqpenalty) as a
function of µk: f(xk); ‖∇f(xk)‖; cond

(
∇2

xxQ
)
; value of your convergence criterion; number of iterations

of the unconstrained optimisation solver.

4. For exercise 18.3, do not plot anything, simply report at the end: the solution (x∗,λ∗); and an estimate of
the computational cost it took to solve the problem (e.g. the number of iterations of Oqpenalty and the
total number of iterations of the unconstrained optimisation solver; or the CPU time). Note there is an
erratum in this exercise (see the errata list): x0 and x∗ are swapped.

Here are some specific questions to answer:

1. Comment on your results in view of our theoretical understanding:

(a) Applicability: does the particular combination work (e.g. Onewtoncg with inequality constraints)?
Why or why not?

(b) Efficiency: computational cost.

2. What can you say about the shape of the contours of Q near the boundary of the feasible set? (for equality
constraints, and for inequality constraints). Hint: remember I.2.

3. Consider problems where f and all the constraints ci are quadratic:

(a) What can you say (in theory and given the experiments) about the performance of the different un-
constrained optimisation methods with the quadratic-penalty function Q? (i.e., not for the constrained
problem, just for Q).

(b) For quadratic-programming problems (when the constraints are linear), how does the quadratic-penalty
method compare with other methods for quadratic programming (active-set, gradient-projection, interior-
point methods)?

4. What happens if the problem: has several solutions; or is unbounded; or is infeasible? (try some experiment).

5. What is the convergence rate of the constrained method? How can we accelerate it? Does it depend on the
unconstrained optimizer? Use convseq on the last few iterates to investigate this question.

Optional: you may check or compare your results with the Matlab Optimization Toolbox.
1Note that when the objective function or the constraints are quadratic or linear you need not program them, just set up values

for A, b and c and use Fquad.

3



IV What you have to submit

Email me the following packed into a single file (project3.tar.gz or project3.zip) and with email subject
[EECS260] Project 3:

1. Your evaluation of the methods and your solutions to part I in a single PDF file (evaluation.pdf). Do
not include there the methods’ actual results (figures, tables), instead have the driver files reproduce them
(I will run the driver files and check it against your evaluation).

2. Your code for the Matlab functions (Q.m, Oqpenalty.m, F18 3f.m, F18 3c3.m), and one driver file per
problem tested (qpdriver18 3.m, qpdriver1.m, qpdriver2.m). Do not include any other functions (e.g.
fcontours.m).

Use file names as above and do not include any other files besides those.

4


