
CSE260 Optimization Project #1

Spring 2008 Miguel Á. Carreira-Perpiñán

This project studies the following unconstrained optimisation methods, all using the line-search strategy:
Newton-CG; nonlinear conjugate gradients; quasi-Newton. It consists of programming some Matlab
functions and running them on some examples, commenting on the results. The references below are for the book
Numerical Optimization, 2nd ed. by Nocedal and Wright.

Note: you may discuss issues with each other, but you have to produce your own solutions for every part.

I Matlab functions

Write the following Matlab functions, using the templates provided and following strictly the convention
given for the input and output arguments:

1. linesearch: backtracking line search (algorithm 3.1). Use the following defaults: initial step length α = 1,
rate of decrease of the step length ρ = 0.8, sufficient-decrease Wolfe condition c = 10−4. (Encapsulating
the line search in a separate function allows us to use this line search in other optimisation algorithms, and
to modify the line search without affecting functions that call it.)

2. Olincg: linear conjugate gradient (algorithm 5.2) to solve a positive-definite linear system Ax = b.

3. Olincg1: modification of Olincg that stops iterating when encountering negative or zero curvature direc-
tions. This is intended to be called from Onewtoncg.

4. Onewtoncg: line-search Newton-CG (algorithm 7.1), using linesearch and Olincg1. Use the same con-
vergence criterion as in Osteepdesc, i.e., stop when ‖∇f(xk)‖ ≤ tol OR k ≥ maxit (tolerance achieved
or maximum number of iterations achieved). The argument convcrit determines what forcing sequence
to pass to Olincg1: ηk = 0.5 for ’linear’, ηk = min (0.5,

√

‖∇f(xk)‖) for ’superlinear’, and ηk =
min (0.5, ‖∇f(xk)‖) for ’quadratic’.

5. Oprcg: three nonlinear conjugate gradients methods: Polak-Ribière, Fletcher-Reeves (algorithm 5.4) and
Hestenes-Stiefel.

6. Obfgs: three quasi-Newton methods: BFGS (algorithm 6.1), DFP and SR1.

7. For each problem tested in the evaluation, write one driver file that sets up the problem, solves it and
displays the results. As an example, see driver1.m. Since the combinations of different tol, different
forcing sequence, etc. result in several problems, just send me 4 representative drivers, one for each of
Olincg, Onewtoncg, Oprcg and Obfgs.

Sometimes, these methods may not compute descent directions, or have some other problem. Explain how you
solve such issues.

Programming advice:

• Write the functions in the order above. Use my functions fcontours, plotseq, etc.

• Make sure you understand how Osteepdesc works because your Onewtoncg, etc. programs should look very similar to it. Follow

the convention in Osteepdesc for:

– default values for arguments

– passing as an argument an arbitrary function handle and its parameters: f, paramf

– obtaining the value of the function, gradient and Hessian: [ff g H] = f(x’,paramf:);

• To get more decimals in Matlab do format long. Use set(gca,’DataAspectRatio’,[1 1 1]); to avoid distorted plots.

• Program thinking of n dimensions, not 2. It’s more general and usually easier.

• Avoid fancy features I don’t ask for: error-checking of arguments, informative messages, etc. This is not a programming course.

• You may find useful the following Matlab construct to solve linear systems: x0 = A \ b; will solve A*x = b. The corresponding

error A*x0 - b should be around 10−13 or less unless A is ill-conditioned.

1



II Evaluation

Note: do not simply report results; discuss them (clearly and concisely).

1. Olincg. Test it with a system where A is the Hilbert matrix of order n (aij = 1

i+j−1
for i, j = 1 . . . , n),

b = (1, . . . , 1)T and with initial point x0 = 0. Try dimensions n = 3, 5, 8, 12, 20. Use the following
Matlab functions: hilb, cond.

(a) Report the condition number of A and the number of iterations required to reduce the norm of the
residual rk = Axk − b below 10−6. Discuss the results in view of theorem 5.1.

(b) Plot fk and ‖rk‖ (the latter using semilogy) as a function of the iteration index k. At each iteration,
does the value of fk decrease? How about the value of ‖rk‖?

2. Onewtoncg. Apply it to the Rosenbrock function in 2 dimensions (eq. (2.22) in the book) from two initial
points x0 = (1.2, 1.2) and x0 = (−1.2, 1) (cf. exercise 3.1).

(a) Plot the iterates over the function contours (use fcontours and plotseq). Plot ‖xk − x∗‖ (where x∗

is the exact minimiser) and f(xk) as a function of k. Report the number of Newton iterations, and
the number of CG iterations ran inside each Newton iteration. How large is the condition number of
∇2f(x∗)?

(b) Explore the effects of the following and comment on the results:

i. The value of tol, e.g. try 10−6 and 10−10.

ii. The line search: use different values of the initial step length, e.g. α = 1, 0.5, 0.2. Also, try not
using a line search at all and fixing the step length to α = 1.

iii. The forcing sequence (use convseq to estimate empirically the convergence rate).

(c) Repeat everything for Osteepdesc and compare the results with those of Onewtoncg, in terms on
convergence rate, number of iterations and (roughly) in terms of actual computational cost.

(d) Finally, run driver1.m, which runs Onewtoncg with function F6 1b (n dimensions). Comment on the
results.

3. Oprcg, Obfgs: repeat a similar evaluation as for Onewtoncg. In particular, estimate the convergence rate
empirically.

III What you have to submit

Email me the following packed into a single file (tar.gz or zip) and with email subject [CSE260] Project 1:

1. Your code for the Matlab functions (linesearch, Olincg, Olincg1, Onewtoncg, Oprcg, Obfgs), and the 4
representative driver files.

2. Your evaluation of the methods in a single PDF file. Do not include there the methods’ actual results
(figures, tables), instead have the driver file reproduce them (I will run the driver file and check it against
your evaluation).

2


