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CSE176 Introduction to Machine Learning Homework set #1
Fall semester 2023 Miguel Á. Carreira-Perpiñán
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For use only of UC Merced CSE176 Fall 2023 students.

Exercise 1: Bayes’ rule (6 points). Suppose that 0.1% of all credit card transactions are fraudulent. And suppose
that there is a deployed ML model to automatically detect fraud which has a 0.2% false positive rate and a 0.5% false
negative rate (“positive” refers to the fraudulent class).

1. (3 points) The ML model labels Transaction A as positive. What is the probability that transaction A is actually
fraudulent?

2. (3 points) The ML model labels Transaction B as negative. What is the probability that transaction B is actually
valid (non-fraudulent)?

Exercise 2: Bayesian decision theory: losses and risks (11 points). Consider a classification problem with K
classes, using a loss λik ≥ 0 if we choose class i when the input actually belongs to class k, for i, k ∈ {1, . . . ,K}.

1. (2 points) Write the expression for the expected risk Ri(x) for choosing class i as the class for a pattern x, and the
rule for choosing the class for x.

Consider a two-class problem with losses given by the matrix λik =
(

0 1
λ21 0

)
.

2. (3 points) Give the optimal decision rule in the form “p(C1|x) > . . . ” as a function of λ21.

3. (3 points) Imagine we consider both misclassification errors as equally costly. When is class 1 chosen (for what
values of p(C1|x))?

4. (3 points) Imagine we want to be very conservative when choosing class 2 and we seek a rule of the form “p(C2|x) >
0.9” (i.e., choose class 2 when its posterior probability exceeds 90%). What should λ21 be?

Exercise 3: association rules (6 points). Given the following data of transactions at a supermarket, calculate the
support and confidence values of the following association rules: beer → diapers, diapers → beer, beer → milk, milk →
beer, milk → diapers, diapers → milk. What is the best rule to use in practice?

transaction # items in basket

1 milk, diapers
2 milk
3 beer, milk
4 beer, milk, diapers
5 beer
6 milk, diapers

Exercise 4: true- and false-positive rates (10 points). We have a dataset withN = 5 points for binary classification
as given by the following table, where xn is a pattern, yn its ground-truth label (1 = positive class, 2 = negative class)
and p(C1|xn) the posterior probability produced by some probabilistic classification algorithm:

n 1 2 3 4 5

yn 1 2 2 1 1
p(C1|xn) 0.9 0.2 0.7 0.5 0.4

We use a classification rule of the form “p(C1|x) > θ” where θ ∈ [0, 1] is a threshold.

1. (8 points) Give, for all possible values of θ ∈ [0, 1], the predicted labels and the corresponding confusion matrix and
classification error.

2. (2 points) Plot the corresponding pairs (fp, tp) as an ROC curve.
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Exercise 5: least-squares regression (14 points). Consider the following model, with parameters Θ = {α1, α2, α3} ⊂
R and an input x ∈ R:

h(x;α1, α2, α3) = α1 + α2x+ α3e
−x ∈ R.

1. (2 points) Write the general expression of the least-squares error function of a model h(x; Θ) with parameters Θ
given a sample {(xn, yn)}Nn=1.

2. (2 points) Apply it to the above model, simplifying it as much as possible.

3. (6 points) Find the least-squares estimate for the parameters.

4. (4 points) Assume the values {xn}Nn=1 are uniformly distributed in the interval [0, 2π]. Can you find a simpler,

approximate way to find the least-squares estimate ? Hint : approximate 1
N

∑N
n=1 f(xn) by an integral.

Exercise 6: maximum likelihood estimate (15 points). Consider a real random variable x ∈ R which the following
probability density function:

p(x;σ) =
x

σ2
e−

1
2 ( xσ )

2

x ≥ 0

where the parameter is σ > 0.

1. (2 points) Verify that
∫∞
0
p(x) dx = 1.

2. (2 points) Write the general expression of the log-likelihood of a density p(x; Θ) with parameters Θ for an iid sample
x1, . . . , xN ∈ R.

3. (5 points) Apply it to the above distribution, simplifying it as much as possible.

4. (6 points) Find the maximum likelihood estimate for the parameters.

Exercise 7: exponential classifiers (18 points). We have a binary classification problem on an input x ≥ 0 where
the distribution of class k ∈ {1, 2} is exponential (with parameter λk ≥ 0):

p(x|Ck) = λk e
−λkx x ≥ 0

and each class has a prior probability p(Ck). All the parameters {p(Ck), λk}2k=1 have been fixed in a previous training
step. Assume λ2 > λ1.

1. (2 points) Verify that
∫∞
0
p(x|Ck) dx = 1.

2. (2 points) Write the general expression for the posterior distribution p(Ck|x) (using Bayes’ theorem).

3. (5 points) Apply it to our case and simplify the result as much as possible.

4. (4 points) Consider the usual classification rule “predict class 1 if p(C1|x) > 1
2”. Apply it to our case and determine

the region of input space (x ≥ 0) that belongs to each class, and the class boundaries.

5. (5 points) Define class discriminant functions gk(x) = log p(x|Ck)+log p(Ck) for k ∈ {1, 2}, where the class predicted
for x is arg maxk=1,...,K gk(x). Verify they produce the same class boundaries.

Exercise 8: multivariate Bernoulli distribution (20 points). Consider a multivariate Bernoulli distribution where
θ ∈ [0, 1]D are the parameters and x ∈ {0, 1}D the binary random vector:

p(x;θ) =

D∏
d=1

θxdd (1− θd)1−xd .

1. (5 points) Compute the maximum likelihood estimate for θ given a sample X = {x1, . . . ,xN}.

Let us do document classification using a D-word dictionary (element d in xn is 1 if word d is in document n and
0 otherwise) using a multivariate Bernoulli model for each class. Assume we have K document classes for which we
have already obtained the values of the optimal parameters θk = (θk1, . . . , θkD)T and prior distribution p(Ck) = πk, for
k = 1, . . . ,K, by maximum likelihood.

2. (2 points) Write the discriminant function gk(x) for a probabilistic classifier in general (not necessarily Bernoulli),
and the rule to make a decision.



do
no
t d
ist
rib
ut
e

3. (5 points) Apply it to the multivariate Bernoulli case with K classes. Show that gk(x) is linear on x, i.e., it can be
written as gk(x) = wT

k x + wk0 and give the expression for wk and wk0.

4. (3 points) Consider K = 2 classes. Show the decision rule can be written as “if wTx +w0 > 0 then choose class 1”,
and give the expression for w and w0.

5. (5 points) Compute the numerical values of w and w0 for a two-word dictionary where π1 = 0.6, θ1 = ( 0.4
0.1 ) and

θ2 = ( 0.3
0.5 ). Plot in 2D all the possible values of x ∈ {0, 1}D and the boundary corresponding to this classifier.


