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The objective of this lab is for you explore the behavior of several types of support vector machines (SVMs) for binary
classification, and apply them to some datasets. The TA will first demonstrate the results of the algorithms on a toy
dataset, and then you will replicate those results, and further explore the datasets with the algorithms.

We provide you with the following:

• The scripts lab10 linsvm.m and lab10 kersvm.m set up the problem (toy dataset with linear and kernel SVM,
respectively) and plot various figures. The actual SVM algorithms are implemented in the functions below.

• The function linsvmtrain.m trains a linear SVM (taking input vectors in D dimensions); it handles both the
optimal separating hyperplane case and the soft margin hyperplane case. See also the function linsvm.m.

• The function svm2train.m trains a nonlinear (kernel) SVM (taking input vectors in D dimensions). See also the
function svm2.m.

I Datasets

Construct your own toy datasets in 2D to visualize the result easily and be able to understand the algorithm, such as
Gaussian classes with no or some overlap, or classes with curved shapes as in the 2moons dataset.

II Using SVMs

Review Most types of SVMs define a constrained optimization problem where the objective function is convex
quadratic and the constraints (equalities or inequalities) are linear. Such problems are called convex quadratic programs
(QPs). They have a unique solution, which can be found by solving either the original, primal QP, or the dual QP.

To solve a QP, we use Matlab’s Optimization Toolbox, specifically the following two functions:

• quadprog: this solves any kind of QP. All we have to do is put the QP for the SVM (primal or dual) in the form
required by quadprog (see help quadprog). As output arguments, it returns everything we need to construct
the SVM discriminant function g(x) (the optimal solution and/or its Lagrange multipliers).

• optimoptions: this is not strictly necessary, but we can use it to select which QP solver to use and various
other options or parameters (what to display, the maximum number of iterations, whether we want to provide an
initialization, etc.). A good choice is the active-set algorithm because (with small problems) it reliably identifies
the support vectors:
options = optimoptions(’quadprog’,’Algorithm’,’active-set’,’MaxIter’,1000);

... = quadprog(...,options);

Annoyingly, Matlab has discontinued the active-set algorithm from version 2016a onwards. So we just use
Matlab’s default algorithm; however, it often misidentifies some support vectors.

Then, we implement the following types of SVM in linsvmtrain.m and svm2train.m, respectively:

Linear SVM It has two types:

• For data that is linearly separable: the optimal separating hyperplane. We can solve either the primal
problem and get (w, w0), and hence the discriminant g(x) = wTx + w0, or the dual problem and get the
Lagrange multiplier for each data point, αn, and from there obtain the support vectors (SVs), which have
αn > 0, and construct (w, w0).

• For data that is not linearly separable: the soft margin hyperplane. Now the QP uses a slack variable
ξn ≥ 0 to account for possible constraint violations (points correctly classified but within the margin, or
points misclassified), and a hyperparameter C > 0 that controls the tradeoff between minimizing the total
violations

∑N
n=1 ξn and maximizing the margin 1

‖w‖ (i.e., minimizing 1
2‖w‖

2
). Again, we can solve either

the primal or the dual problem.
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Nonlinear (kernel) SVM You must choose what kernel K(x,y) to use (polynomial, Gaussian, etc.). In addition
to C, the kernel may have its own hyperparameters (e.g. the degree q for the polynomial kernel or the width σ
for the Gaussian kernel). With nonlinear SVMs we can only solve the dual QP, obtain the Lagrange multipliers
α1, . . . , αN ≥ 0, and from there construct the nonlinear discriminant:

g(x) =

N∑
n=1

αnynK(xn,x) =

N∑
n∈SVs

αnynK(xn,x).

In either case (linear or nonlinear SVM), the discriminant function g(x) ∈ R classifies an instance into the +1 or −1
class according to the sign of g(x).

The hyperparameters C and (for kernel SVMs) q or σ are set by cross-validation over a suitable range of values;
for example, try C ∈ {10−2, 10−1, 100, 101} and q ∈ {1, 2, 3, 5, 10}. Plot the resulting SVM classifier for different
hyperparameter values and observe how it looks like.

Exploration: toy problem with a linear SVM See file lab10 linsvm.m. Start with the simplest case: the
optimal separating hyperplane. Find the SVM optimal parameters given the training set of instances {xn}Nn=1 ⊂ R2

and their class labels {yn}Nn=1 ⊂ {−1,+1}, by running linsvmtrain.m with appropriate arguments. Inspect the
output arguments it produces (SVM parameters (w, w0), support vectors, Lagrange multipliers α1, . . . , αN ≥ 0, etc.).
We visualize the results with the following plots:

• The dataset in 2D, i.e., each training point xn colored according to its class label yn ∈ {−1,+1}.

• The SVM discriminant function g(x) = wTx+w0, using contour. The discrimination boundary corresponds to
the contour g(x) = 0. (We can also plot the line wTx + w0 = 0 directly, but the other contours are informative
with nonlinear SVMs.)

• The margin, indicated by the SVs on each side of the separating hyperplane.

Consider the following questions:

• Verify that solving the primal QP and the dual QP give the same result (same (w, w0), Lagrange multipliers,
SVs, margin).

• Verify that the margin (i.e., the distance from the hyperplane to its closest instance) is 1
‖w‖ .

• When training the optimal separating hyperplane, what happens if the data is not linearly separable? Hint : look
at the error code returned by quadprog.

Once you understand the case of the optimal separating hyperplane well, proceed with the soft margin hyperplane:

• What is the effect on the discrimination boundary and the SVs of varying the value of C ∈ (0,∞)?

• If the data is linearly separable, does it give the same result as the optimal separating hyperplane case? Why?

Exploration: toy problem with a nonlinear SVM See file lab10 kersvm.m. Proceed as with the linear SVM,
but now running svm2train.m with appropriate arguments. What is the effect on the discrimination boundary and
the SVs of varying the value of C? How about the value of the kernel hyperparameter (q, σ)? Determine the best
hyperparameter values (C, q) or (C, σ) by using cross-validation.
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