Exercise 1: kernel machines (18 points). Consider the XOR binary classification problem, with a training set $\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}_{n=1}^{N} \subset \mathbb{R}^{2} \times\{-1,+1\}$ given by $\left.\left\{\binom{-1}{+1},+1\right),\left(\binom{+1}{-1},+1\right),\left(\binom{-1}{-1},-1\right),\left(\binom{+1}{+1},-1\right)\right\}$, which is not linearly separable. Construct a SVM to learn a nonlinear discriminant function as follows.

1. (2 points) Define a feature function $\mathbf{z}=\boldsymbol{\phi}(\mathbf{x})=\binom{x_{1} x_{2}}{x_{2}} \in \mathbb{R}^{2}$. Evaluate it at each training point to obtain $\mathbf{z}_{n}=\boldsymbol{\phi}\left(\mathbf{x}_{n}\right)$ and plot them in the new space \mathbf{z}. Verify the points are now linearly separable.
2. (8 points) Find a linear discriminant $G(\mathbf{z})=\mathbf{w}^{T} \mathbf{z}+w_{0}$ such that $\operatorname{sgn}\left(G\left(\phi\left(\mathbf{x}_{n}\right)\right)\right)=y_{n} \forall n$. Make sure this discriminant has the maximum margin, give the value of the margin, find the support vectors, and plot the separating hyperplane and the SVs. Hint: there is no need to solve any QP, just use geometric intuition. Explain your answer.
3. (6 points) Write the nonlinear discriminant $g(\mathbf{x})=\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})+w_{0}$ in the original \mathbf{x}-space. Draw in the plane: the boundary $g(\mathbf{x})=0$, and the curves corresponding to each of the training points (i.e., the sets $\left\{\mathbf{x} \in \mathbb{R}^{2}: g(\mathbf{x})=g\left(\mathbf{x}_{n}\right)\right\}$ for each $n=1, \ldots, 4)$.
4. (2 points) Relate this result to the solution of the primal and dual QP for a kernel SVM. Specifically, write the kernel function $K(\mathbf{x}, \mathbf{y})$ that results from the choice of ϕ above, the general form of the kernel SVM discriminant function $g(\mathbf{x})$, and guess what the values of the Lagrange multipliers α_{n} should be if we solved the dual QP. Hint: again, use geometric intuition and symmetry.

Exercise 2: kernel machines (18 points). Consider binary classification for $\mathbf{x} \in \mathbb{R}^{2}$ using the nonlinear discriminant function $g(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-1$ and assigning a label $y=\operatorname{sgn}(g(\mathbf{x})) \in\{-1,+1\}$ to an instance \mathbf{x}.

1. (4 points) g splits the plane into two class regions. Draw them (or explain them in plain English). Are they linearly separable?
Consider a new feature function $\phi: \mathbf{x} \in \mathbb{R}^{2} \rightarrow \mathbb{R}^{D}$, which creates D features made up (in some way) of the original features x_{1}, x_{2}.
2. (10 points) Define a function ϕ such that, using the new features $\mathbf{z}=\phi(\mathbf{x}) \in \mathbb{R}^{D}$, we can define a linear discriminant function $G(\mathbf{z})=\mathbf{w}^{T} \mathbf{z}$ that is equivalent to g, i.e., $G(\boldsymbol{\phi}(\mathbf{x}))=g(\mathbf{x})$. Relate this to kernel functions and support vector machines.
3. (4 points) Define what the kernel function $K(\cdot, \cdot)$ would be that corresponds to your feature function ϕ.

Exercise 3: graphical models (6 points). Consider the following two graphical models defined on binary random variables $X, Y, Z \in\{0,1\}$, given by their joint distributions:

$$
p(X, Y, Z)=p(X) p(Z \mid X, Y) p(Y \mid X) \quad \text { and } \quad p(X, Y, Z)=p(X) p(Z) p(Y \mid Z)
$$

For each of them:

1. (4 points) Prove that $\sum_{X, Y, Z} p(X, Y, Z)=1$.
2. (2 points) Draw the graphical model.

Exercise 4: graphical models (21 points).

Consider 3 binary random variables with joint distribution given by the table.

1. (14 points) Evaluate the following probabilities (notation: X means $X=1, \bar{X}$ means $X=0): p(X), p(Z), p(X, Z), p(X \mid Y), p(Z \mid Y), p(Y \mid X)$, and $p(X, Z \mid Y)$.

X	Y	Z	$p(X, Y, Z)$
0	0	0	0.192
0	0	1	0.048
0	1	0	0.144
0	1	1	0.216
1	0	0	0.192
1	0	1	0.048
1	1	0	0.064
1	1	1	0.096

Show your work in all cases.

Exercise 5: graphical models (21 points).

Consider a graphical model defined on binary random variables (where variables X_{i} correspond to diseases and variables Y_{j} to symptoms), given by the following diagram and conditional probability tables at each node.
Note: in the tables and the questions, the notation " $p\left(Y_{3} \mid \bar{X}_{1}, X_{2}\right)$ " means " $p\left(Y_{3}=1 \mid X_{1}=0, X_{2}=1\right)$ ", etc.

conditional probability tables at each node

conditional probability tables at each node				
$X_{1}($ "flu")	X_{2} ("hayfever")	Y_{1} ("fever")	Y_{2} ("headache")	Y_{3} ("fatigue")
$p\left(X_{1}\right)=0.4$	$p\left(X_{2}\right)=0.1$	$p\left(Y_{1} \mid X_{1}\right)=0.8$	$p\left(Y_{2} \mid X_{1}, X_{2}\right)=0.9$	$p\left(Y_{3} \mid X_{1}, X_{2}\right)=0.7$
		$p\left(Y_{1} \mid \bar{X}_{1}\right)=0.1$	$p\left(Y_{2} \mid X_{1}, \bar{X}_{2}\right)=0.8$	$p\left(Y_{3} \mid X_{1}, \bar{X}_{2}\right)=0.7$
		$p\left(Y_{2} \mid \bar{X}_{1}, X_{2}\right)=0.7$	$p\left(Y_{3} \mid \bar{X}_{1}, X_{2}\right)=0.3$	
		$p\left(Y_{2} \mid \bar{X}_{1}, \bar{X}_{2}\right)=0.1$	$p\left(Y_{3} \mid \bar{X}_{1}, \bar{X}_{2}\right)=0.7$	

1. (3 points) Give the expression of the joint distribution it defines over all the variables.
2. (18 points) Calculate the value of the following probabilities:
(a) $p\left(\bar{Y}_{2} \mid X_{1}, \bar{X}_{2}\right)$.
(b) $p\left(Y_{1}, Y_{3} \mid \bar{X}_{1}, \bar{X}_{2}\right)$.
(c) $p\left(Y_{1} \mid X_{2}\right)$.
(d) $p\left(Y_{1}\right)$.
(e) $p\left(X_{1} \mid Y_{1}, \bar{Y}_{2}\right)$.
(f) $p\left(X_{2} \mid \bar{Y}_{1}, Y_{2}, \bar{Y}_{3}\right)$.

Show your work in all cases.

Exercise 6: discrete Markov models (11 points).

Consider the discrete Markov model given by the diagram.

1. (3 points) Give the set of states of this discrete Markov model, its transition matrix \mathbf{A} and its vector of initial state probabilities $\boldsymbol{\pi}$.
2. (8 points) Compute the probability of the following sequences: 1123,313321 and 3213.
Show your work in all cases.

Exercise 7: discrete Markov models (7 points). Consider a discrete Markov model with two states a, b.

1. (5 points) We have a training set consisting of the following sequences: aaaa, bbabb, ababa, bababa. Give the maximum likelihood estimate of the parameters $(\mathbf{A}, \boldsymbol{\pi})$.
2. (2 points) Draw the corresponding discrete Markov model as in the previous exercise.

Show your work in all cases.

