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CSE176 Introduction to Machine Learning Homework set #4

Spring semester 2023 Miguel Á. Carreira-Perpiñán

This content is protected and may not be shared, uploaded, or distributed.

For use only of UC Merced CSE176 Spring 2023 students.

Exercise 1: kernel machines (18 points). Consider the XOR binary classification problem, with a training set

{(xn, yn)}
N
n=1 ⊂ R

2 × {−1,+1} given by
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, which is not linearly sepa-

rable. Construct a SVM to learn a nonlinear discriminant function as follows.

1. (2 points) Define a feature function z = φ(x) =
(

x1x2

x2

)

∈ R
2. Evaluate it at each training point to obtain zn = φ(xn)

and plot them in the new space z. Verify the points are now linearly separable.

2. (8 points) Find a linear discriminant G(z) = wT z + w0 such that sgn (G(φ(xn))) = yn ∀n. Make sure this
discriminant has the maximum margin, give the value of the margin, find the support vectors, and plot the separating
hyperplane and the SVs. Hint : there is no need to solve any QP, just use geometric intuition. Explain your answer.

3. (6 points) Write the nonlinear discriminant g(x) = wTφ(x) + w0 in the original x-space. Draw in the plane: the
boundary g(x) = 0, and the curves corresponding to each of the training points (i.e., the sets {x ∈ R

2: g(x) = g(xn)}
for each n = 1, . . . , 4).

4. (2 points) Relate this result to the solution of the primal and dual QP for a kernel SVM. Specifically, write the
kernel function K(x,y) that results from the choice of φ above, the general form of the kernel SVM discriminant
function g(x), and guess what the values of the Lagrange multipliers αn should be if we solved the dual QP. Hint :
again, use geometric intuition and symmetry.

Exercise 2: kernel machines (18 points). Consider binary classification for x ∈ R
2 using the nonlinear discriminant

function g(x) = x2
1 + x2

2 − 1 and assigning a label y = sgn (g(x)) ∈ {−1,+1} to an instance x.

1. (4 points) g splits the plane into two class regions. Draw them (or explain them in plain English). Are they linearly
separable?

Consider a new feature function φ: x ∈ R
2 → R

D, which creates D features made up (in some way) of the original
features x1, x2.

2. (10 points) Define a function φ such that, using the new features z = φ(x) ∈ R
D, we can define a linear discriminant

function G(z) = wT z that is equivalent to g, i.e., G(φ(x)) = g(x). Relate this to kernel functions and support
vector machines.

3. (4 points) Define what the kernel function K(·, ·) would be that corresponds to your feature function φ.

Exercise 3: graphical models (6 points). Consider the following two graphical models defined on binary random
variables X,Y, Z ∈ {0, 1}, given by their joint distributions:

p(X,Y, Z) = p(X) p(Z|X,Y ) p(Y |X) and p(X,Y, Z) = p(X) p(Z) p(Y |Z)

For each of them:

1. (4 points) Prove that
∑

X,Y,Z p(X,Y, Z) = 1.

2. (2 points) Draw the graphical model.

Exercise 4: graphical models (21 points).

Consider 3 binary random variables with joint distribution given by the table.

1. (14 points) Evaluate the following probabilities (notation: X means X = 1, X means
X = 0): p(X), p(Z), p(X,Z), p(X |Y ), p(Z|Y ), p(Y |X), and p(X,Z|Y ).

2. (4 points) Show by direct evaluation that this distribution has the property that X

and Z are marginally dependent, i.e., P (X,Z) 6= p(X) p(Z) (for all values of X and
Z); but that they become independent when conditioned on Y , i.e., p(X,Z|Y ) =
p(X |Y ) p(Z|Y ) for all values of X , Z and Y .

3. (3 points) Show by direct evaluation that p(X,Z, Y ) = p(X) p(Y |X) p(Z|Y ) (for all
values of X and Z). Draw the corresponding directed graph for this graphical model.

Show your work in all cases.

X Y Z p(X,Y, Z)

0 0 0 0.192
0 0 1 0.048
0 1 0 0.144
0 1 1 0.216
1 0 0 0.192
1 0 1 0.048
1 1 0 0.064
1 1 1 0.096
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Exercise 5: graphical models (21 points).

Consider a graphical model defined on binary random variables (where vari-
ables Xi correspond to diseases and variables Yj to symptoms), given by the
following diagram and conditional probability tables at each node.
Note: in the tables and the questions, the notation “p(Y3|X1, X2)” means
“p(Y3 = 1|X1 = 0, X2 = 1)”, etc.

X1 X2

Y1 Y2 Y3

conditional probability tables at each node
X1 (“flu”) X2 (“hayfever”) Y1 (“fever”) Y2 (“headache”) Y3 (“fatigue”)

p(X1) = 0.4 p(X2) = 0.1 p(Y1|X1) = 0.8

p(Y1|X1) = 0.1

p(Y2|X1, X2) = 0.9

p(Y2|X1, X2) = 0.8
p(Y2|X1, X2) = 0.7
p(Y2|X1, X2) = 0.1

p(Y3|X1, X2) = 0.7

p(Y3|X1, X2) = 0.7
p(Y3|X1, X2) = 0.3
p(Y3|X1, X2) = 0.7

1. (3 points) Give the expression of the joint distribution it defines over all the variables.

2. (18 points) Calculate the value of the following probabilities:

(a) p(Y 2|X1, X2).

(b) p(Y1, Y3|X1, X2).

(c) p(Y1|X2).

(d) p(Y1).

(e) p(X1|Y1, Y 2).

(f) p(X2|Y 1, Y2, Y 3).

Show your work in all cases.

Exercise 6: discrete Markov models (11 points).

Consider the discrete Markov model given by the diagram.

1. (3 points) Give the set of states of this discrete Markov model, its
transition matrix A and its vector of initial state probabilities π.

2. (8 points) Compute the probability of the following sequences:
1123, 313321 and 3213.

1 2

3

0.6

0.2

0.2

0.4

0.3

0.30

0.1

0.9

π1 = 0.5 π2 = 0

π3 = 0.5

Show your work in all cases.

Exercise 7: discrete Markov models (7 points). Consider a discrete Markov model with two states a, b.

1. (5 points) We have a training set consisting of the following sequences: aaaa, bbabb, ababa, bababa. Give the
maximum likelihood estimate of the parameters (A, π).

2. (2 points) Draw the corresponding discrete Markov model as in the previous exercise.

Show your work in all cases.


