This content is protected and may not be shared, uploaded, or distributed. For use only of UC Merced CSE176 Spring 2023 students.

Exercise 1: linear classifier (10 points). Consider a binary linear classifier $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ with $\mathbf{w} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$ and $w_0 = 12$, where $\mathbf{x} \in \mathbb{R}^2$. Let class 1 be its positive side $(g(\mathbf{x}) > 0)$ and class 2 its negative side $(g(\mathbf{x}) < 0)$.

- 1. (4 points) Sketch the decision boundary in \mathbb{R}^2 . Compute the points at which it intersects the coordinate axes. Indicate which is the positive side of the boundary (class 1).
- 2. (4 points) Compute the signed distance of the following points to the decision boundary: the origin; $\binom{-1}{3}$; $\binom{-4}{6}$. Classify those points.
- 3. (2 points) Give a vector $\mathbf{u} \in \mathbb{R}^2$ that is parallel to the decision boundary and has norm 1.

Exercise 2: linear classifier (20 points). We have a classification problem with K=3 classes in \mathbb{R}^2 with the following discriminant functions:

$$g_1(\mathbf{x}) = 2x_1 + 3x_2 + 3$$

 $g_2(\mathbf{x}) = x_1 + 3x_2 + 3$
 $g_3(\mathbf{x}) = 2x_1 + 6x_2 + 2$.

- 1. (2 points) Give a rule to decide which class a point $\mathbf{x} \in \mathbb{R}^2$ should be assigned to.
- 2. (4 points) Classify the following points: $\binom{-1}{0}$, $\binom{1}{1}$, $\binom{1}{-1}$, $\binom{0}{-3}$.
- 3. (6 points) Give the equation that a point $\mathbf{x} \in \mathbb{R}^2$ must satisfy for it to be on the boundary between classes 1 and 2. Repeat for the boundary of class 1 and 3, and for class 2 and 3.
- 4. (2 points) Give the equation that a point $\mathbf{x} \in \mathbb{R}^2$ must satisfy for it to be on the boundary between all 3 classes.
- 5. (6 points) Based on the above, sketch the boundaries that delimit the 3 classes, indicating numerically where they cross the coordinate axes and which region corresponds to which class.

Exercise 3: logistic regression (14 points). Consider a binary classification problem in dimension D with a training set $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$, where $\mathbf{x}_n \in \mathbb{R}^D$ and $y_n \in \{0, 1\}$ for $n = 1, \dots, N$.

- 1. (4 points) Write the cross-entropy objective function $E(\mathbf{w}, w_0)$ for logistic regression.
- 2. (8 points) Compute and simplify the gradient of E with respect to the parameters $\mathbf{w} \in \mathbb{R}^D$ and $w_0 \in \mathbb{R}$. Show your work.
- 3. (2 point) Write the update formulas for the parameters using gradient descent with a step size $\eta > 0$.

Exercise 4: multilayer perceptrons (8 points). Construct manually a perceptron that calculates the NOR of its two inputs. That is, given a training set

$$\left\{ \left(\mathbf{x}_n, y_n\right) \right\}_{n=1}^N = \left\{ \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, 1 \right), \; \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, 0 \right), \; \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, 0 \right), \; \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, 0 \right) \right\}$$

of 2D points in two classes $\{0,1\}$, give numerical values of the perceptron's parameters that solve this classification problem.

Exercise 5: properties of the logistic and tanh functions (10 points). Consider the logistic function $\sigma(x) = \frac{1}{1+e^{-x}} \in (0,1)$ for $x \in \mathbb{R}$. Prove the following properties:

- 1. (2 points) Inverse of logistic: $\sigma^{-1}(y) = \text{logit}(y) = \log\left(\frac{y}{1-y}\right) \in (-\infty, \infty)$ for $y \in (0, 1)$.
- 2. (2 points) Derivative of logistic: $\frac{d\sigma(x)}{dx} = \sigma'(x) = \sigma(x)(1 \sigma(x))$.
- 3. (1 points) $\sigma(x) + \sigma(-x) = 1$.

Consider now the hyperbolic tangent $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \in (-1, 1)$ for $x \in \mathbb{R}$. Work out the expression for:

- 1. (2 points) The inverse of tanh.
- 2. (2 points) The derivative of tanh, using the value of tanh itself.
- 3. (1 points) tanh(x) + tanh(-x).

Exercise 6: multilayer perceptrons (9 points). Consider an MLP with a single hidden layer in which the hidden unit activation functions are the hyperbolic tangent function $\tanh x$. Show that there exists an equivalent MLP which computes exactly the same function as the original MLP, but where the hidden unit activation functions are the logistic function $\sigma(x) = \frac{1}{1+e^{-x}}$. Hint: find a relation between $\sigma(x)$ and $\tanh x$.

Exercise 7: RBF networks (20 points). Consider a Gaussian radial basis function (RBF) network $\mathbf{f} \colon \mathbb{R}^D \to \mathbb{R}^{D'}$ that maps input vectors $\mathbf{x} \in \mathbb{R}^D$ to output vectors $\mathbf{y} \in \mathbb{R}^{D'}$:

$$\mathbf{f}(\mathbf{x}) = \sum_{h=1}^{H} \mathbf{w}_{h} e^{-\frac{1}{2} \left\| \frac{\mathbf{x} - \mu_{h}}{\sigma} \right\|^{2}} \quad \text{or, elementwise:} \quad f_{e}(\mathbf{x}) = \sum_{h=1}^{H} w_{he} e^{-\frac{1}{2\sigma^{2}} \sum_{d=1}^{D} (x_{d} - \mu_{hd})^{2}} \quad e = 1, \dots, D'$$

where the RBF network parameters are the weight vectors $\{\mathbf{w}_h\}_{h=1}^H \subset \mathbb{R}^{D'}$, the centroids $\{\boldsymbol{\mu}_h\}_{h=1}^H \subset \mathbb{R}^D$ and the bandwidth $\sigma > 0$. We want to train \mathbf{f} in a regression setting by minimizing the least-squares error with a fixed regularization parameter $\lambda \geq 0$, given a training set $\{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$:

$$E\left(\{\mathbf{w}_{h}, \boldsymbol{\mu}_{h}\}_{h=1}^{H}, \sigma\right) = \sum_{n=1}^{N} \|\mathbf{y}_{n} - \mathbf{f}(\mathbf{x}_{n})\|^{2} + \lambda \sum_{h=1}^{H} \|\mathbf{w}_{h}\|^{2} = \sum_{n=1}^{N} \sum_{e=1}^{D'} (y_{ne} - f_{e}(\mathbf{x}_{n}))^{2} + \lambda \sum_{h=1}^{H,D'} w_{he}^{2}.$$
 (1)

A simple but approximate way to train the RBF network is by fixing the value of its bandwidth $\sigma > 0$ (this value is eventually cross-validated) and its centroids $\{\mu_h\}_{h=1}^H$ (e.g. to a random subset of training points, or to the result of running k-means on the training set), and then optimizing eq. (1) over the weights (which results in a linear system).

Instead, we wish to train the RBF network parameters by gradient descent, as with multilayer perceptrons.

- 1. (15 points) Using the chain rule, compute the gradients of E in eq. (1) wrt the parameters:
 - (a) The weights $\{\mathbf w_h\}_{h=1}^H$: $\frac{\partial E}{\partial w_{he}} = \dots$ for $h=1,\dots,H$ and $e=1,\dots,D'$.
 - (b) The centroids $\{\boldsymbol{\mu}_h\}_{h=1}^H$: $\frac{\partial E}{\partial \mu_{hd}} = \dots$ for $h = 1, \dots, H$ and $d = 1, \dots, D$.
 - (c) The bandwidth σ : $\frac{\partial E}{\partial \sigma} = \dots$
- 2. (5 points) What would be a good initialization for these parameters (to start gradient descent)?

Exercise 8: ensemble learning (9 points). Consider the setting of regression from input vectors $\mathbf{x} \in \mathbb{R}^D$ to a single real output $y \in \mathbb{R}$. Imagine we have trained L learners $f_1, \ldots, f_L \colon \mathbb{R}^D \to \mathbb{R}$ in some way (e.g. each on a bootstrapped sample from a training set). We combine them using their average: $f(\mathbf{x}) = \frac{1}{L} \sum_{l=1}^{L} f_l(\mathbf{x})$. What kind of model is the resulting f in each of the following cases? Be as specific as possible. Hint: we give the answer to the first case below.

- 1. (0 points) If f_1, \ldots, f_L are polynomials of degree q.

 Answer: f is another polynomial of degree q, whose coefficients are equal to the average of the corresponding coefficients in f_1, \ldots, f_L .
- 2. (3 points) If f_1, \ldots, f_L are Gaussian RBF networks each with H centroids.
- 3. (3 points) If f_1, \ldots, f_L are linear regressors.
- 4. (3 points) If f_1, \ldots, f_L are MLPs each with a single hidden layer of H sigmoidal units and an output linear unit.