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CSE176 Introduction to Machine Learning Homework set #2
Spring semester 2023 Miguel Á. Carreira-Perpiñán
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Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents each class k =
1, . . . ,K by a prototype vector µk ∈ RD and classifies a pattern x ∈ RD as the class of its closest prototype: k∗ =
arg mink=1,...,K ‖x− µk‖. Prove that a Gaussian classifier with shared isotropic covariances (i.e., of the form Σk = σ2I

for k = 1, . . . ,K, where σ > 0) and equal class priors (i.e., p(C1) = · · · = p(CK) = 1
K ) is equivalent to a Euclidean

distance classifier. Prove the class discriminant functions g1(x), . . . , gK(x) are linear and give the expression that defines
them.

Exercise 2: variation of k-means clustering (20 points). Consider the k-means error function:

E({µk}Kk=1,Z) =

N∑
n=1

K∑
k=1

znk‖xn − µk‖
2

s.t. Z ∈ {0, 1}NK , Z 1 = 1

over the centroids µ1, . . . ,µK and cluster assignments ZN×K , given training points x1, . . . ,xN ∈ RD.

• Variation: in k-means, the centroids can take any value in RD: µk ∈ RD ∀k = 1, . . . ,K. Now we want the
centroids to take values from among the training points only: µk ∈ {x1, . . . ,xN} ∀k = 1, . . . ,K.

1. (15 points) Design a clustering algorithm that minimizes the k-means error function but respecting the above
constraint. Your algorithm should converge to a local optimum of the error function. Give the steps of the
algorithm explicitly.

2. (5 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

Exercise 3: mixture distributions (10 points). Let p(x) =
∑K
k=1 πk p(x|k) for x ∈ RD be a mixture of K

densities, where π1, . . . , πK ∈ [0, 1] and
∑K
k=1 πk = 1 are the component proportions (prior probabilities) and p(x|k),

for k = 1, . . . ,K, the component densities (e.g. Gaussian, but not necessarily). Let µk = Ep(x|k) {x} and Σk =

Ep(x|k)
{

(x− µk)(x− µk)T
}

be the mean and covariance of component density k, for k = 1, . . . ,K.

1. (5 points) Prove that the mean and covariance of the mixture are:

µ = Ep(x) {x} =

K∑
k=1

πkµk Σ = Ep(x)
{

(x− µ)(x− µ)T
}

=

K∑
k=1

πk
(
Σk + µkµ

T
k

)
− µµT .

2. (5 points) Imagine the component covariances Σ1, . . . ,ΣK are all diagonal. Is the mixture covariance diagonal?
Explain.

Exercise 4: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate

p(x) =

N∑
n=1

p(x|n)p(n) =
1

N(2πσ2)D/2

N∑
n=1

e−
1
2‖ x−xn

σ ‖2 x ∈ RD.

Derive the mean-shift algorithm, which iterates the following expression:

x←
N∑
n=1

p(n|x)xn where p(n|x) =
p(x|n)p(n)

p(x)
=

exp
(
− 1

2‖(x− xn)/σ‖2
)∑N

n′=1 exp
(
− 1

2‖(x− xn′)/σ‖2
)

until convergence to a maximum of p (or, in general, a stationary point of p, satisfying ∇p(x) = 0). Hint : take the
gradient of p wrt x, equate it to zero and rearrange the resulting expression.
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Exercise 5: nonparametric regression (20 points). Consider the Gaussian kernel smoother

g(x) =

N∑
n=1

K
(
‖(x− xn)/h‖

)∑N
n′=1K

(
‖(x− xn′)/h‖

)yn where K

(∥∥∥∥x− xn
σ

∥∥∥∥) ∝ exp
(
−1

2
‖(x− xn)/σ‖2

)
estimated on a training set {(xn,yn)}Nn=1 ⊂ RDx × RDy .

1. (7 points) What is g(x) if the training set has only one point (N = 1)? Explain.
Sketch the solution in 1D (i.e., when both xn,yn ∈ R).
Compare with using a least-squares linear regression.

2. (13 points) Prove that, with N = 2 points, we can write g(x) = α(x) y1 + (1− α(x)) y2 where α(x) can be written
using the logistic function. Give the detailed expression for α(x).
Sketch the solution in 1D.
Compare with using a least-squares linear regression.

Exercise 6: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two Gaussians with
equal proportions, different means, and equal, diagonal covariances (where µ, σ1, σ2 > 0):

x ∈ R2: p(x) = π1 p(x|1) + π2 p(x|2) p(x|1) ∼ N (µ1,Σ1), p(x|2) ∼ N (µ2,Σ2),

π1 = π2 =
1

2
, µ1 = 0, µ2 =

(
µ
0

)
, Σ1 = Σ2 =

(
σ2
1 0

0 σ2
2

)
.

1. (5 points) Compute the mean µ and covariance Σ of the mixture distribution p(x).

Hint: let p(x) =
∑K
k=1 πk p(x|k) for x ∈ RD be a mixture of K densities, where π1, . . . , πK ∈ [0, 1] and

∑K
k=1 πk = 1 are the component

proportions (prior probabilities) and p(x|k), for k = 1, . . . , K, the component densities (e.g. Gaussian, but not necessarily). Let µk = Ep(x|k) {x}
and Σk = Ep(x|k)

{
(x− µk)(x− µk)

T
}

be the mean and covariance of component density k, for k = 1, . . . , K. Then, the mean and covariance

of the mixture are (you should be able to prove this statement):

µ = Ep(x) {x} =

K∑
k=1

πkµk Σ = Ep(x)

{
(x− µ)(x− µ)

T
}

=

K∑
k=1

πk

(
Σk + µkµ

T
k

)
− µµ

T
.

2. (5 points) Compute the eigenvalues λ1 ≥ λ2 ≥ 0 and corresponding eigenvectors u1,u2 ∈ R2 of Σ. Can we have
λ2 > 0?

3. (2 points) Find the PCA projection to dimension 1.

4. (5 points) Compute the within-class and between-class scatter matrices SW , SB of p.

5. (6 points) Compute the eigenvalues ν1 ≥ ν2 ≥ 0 and corresponding eigenvectors v1,v2 ∈ R2 of S−1W SB . Can we
have ν2 > 0?

6. (2 points) Compute the LDA projection.

7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.


