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Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents each class k =
1,...,K by a prototype vector u; € RP and classifies a pattern x € RP as the class of its closest prototype: k* =
argming_, g [[x — p||. Prove that a Gaussian classifier with shared isotropic covariances (i.e., of the form X; = oI

for k = 1,..., K, where 0 > 0) and equal class priors (i.e., p(C1) = --- = p(Ck) = %) is equivalent to a Euclidean
distance classifier. Prove the class discriminant functions ¢;(x), ..., gx (x) are linear and give the expression that defines
them.

Exercise 2: variation of k-means clustering (20 points). Consider the k-means error function:
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over the centroids gy, ..., ity and cluster assignments Zy, given training points x1,...,xy € RP.
e Variation: in k-means, the centroids can take any value in RP: pu, € RP Vk = 1,..., K. Now we want the
centroids to take values from among the training points only: p, € {x1,...,xy} Vk=1,... K.

1. (15 points) Design a clustering algorithm that minimizes the k-means error function but respecting the above
constraint. Your algorithm should converge to a local optimum of the error function. Give the steps of the
algorithm explicitly.

2. (5 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

Exercise 3: mixture distributions (10 points). Let p(x) = 25:1 7, p(x|k) for x € RP be a mixture of K

densities, where 7q,...,mx € [0,1] and Zszl 7, = 1 are the component proportions (prior probabilities) and p(x|k),
for k = 1,..., K, the component densities (e.g. Gaussian, but not necessarily). Let p, = Epp) {x} and X =
Epx|k) {(x — ) (x — uk)T} be the mean and covariance of component density k, for k=1,..., K.

1. (5 points) Prove that the mean and covariance of the mixture are:
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2. (5 points) Imagine the component covariances 31,..., X are all diagonal. Is the mixture covariance diagonal?

Explain.

Exercise 4: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate
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Derive the mean-shift algorithm, which iterates the following expression:
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until convergence to a maximum of p (or, in general, a stationary point of p, satisfying Vp(x) = 0). Hint: take the
gradient of p wrt x, equate it to zero and rearrange the resulting expression.




Exercise 5: nonparametric regression (20 points). Consider the Gaussian kernel smoother
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estimated on a training set {(x,,yn)}2_; C RP= x Ry,

1. (7 points) What is g(x) if the training set has only one point (N = 1)? Explain.
Sketch the solution in 1D (i.e., when both x,,y, € R).
Compare with using a least-squares linear regression.

2. (13 points) Prove that, with NV = 2 points, we can write g(x) = a(x)y1 + (1 — a(x)) y2 where a(x) can be written
using the logistic function. Give the detailed expression for a(x).
Sketch the solution in 1D.
Compare with using a least-squares linear regression.

Exercise 6: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two Gaussians with
equal proportions, different means, and equal, diagonal covariances (where y, 01,09 > 0):
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1. (5 points) Compute the mean p and covariance 3 of the mixture distribution p(x).

Hint: let p(x) = S5 | mp p(x|k) for x € RP be a mixture of K densities, where m1,...,7x € [0,1] and > F_ | 7 = 1 are the component
proportions (prior probabilities) and p(x|k), for k = 1,..., K, the component densities (e.g. Gaussian, but not necessarily). Let p;, = Ej,x|r) {x}
and Xy = Ej(x|x) {(x — pp)(x — p.k)T} be the mean and covariance of component density k, for k = 1,..., K. Then, the mean and covariance

of the mixture are (you should be able to prove this statement):
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2. (5 points) Compute the eigenvalues Ay > Ay > 0 and corresponding eigenvectors uj, us € R? of 3. Can we have
Aoy > 07

3. (2 points) Find the PCA projection to dimension 1.
4. (5 points) Compute the within-class and between-class scatter matrices Sy, Sg of p.

5. (6 points) Compute the eigenvalues vq; > vo > 0 and corresponding eigenvectors vy, va € R2 of S;[}S B. Can we
have vy > 07

6. (2 points) Compute the LDA projection.

7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.



