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The objective of this lab is to give you a practical tour of data analysis and machine learning (ML) from the point of
view of a user. Specifically, given a dataset of multidimensional feature vectors, you will discover some of the structure
in the data by means of basic visualization techniques and machine learning algorithms, and explore different parameter
settings for the latter. At this stage, you will not understand how a given algorithm works, but you should understand
what problem it solves and how to use it in practice—by giving appropriate input data to the algorithm, setting its
hyperparameters, running it, and interpreting and using its output. You will do this by downloading several datasets
and code from the web. All the code will be in Matlab; get familiar with Matlab programming if you are not already.

+ The course web page has sample datasets, code and advice and tips for Matlab programming.

I Datasets

You will use a representative selection of “toy” and “real-world” datasets. Toy datasets consist of low-dimensional
vectors (1D to 3D) that can be easily visualized and are typically synthetically generated (e.g. a set of Gaussian clusters
or a noisy line). They are useful to understand the behavior of an algorithm in a tightly controlled experiment. Real-
world datasets have been obtained from some actual problem (e.g. images, speech, text documents, genomic data) and
usually have both a large dimensionality D and a large sample size N .

In unsupervised learning, a dataset consists of a set of N vectors in D dimensions {xn}Nn=1, which we store in
Matlab as a matrix of N × D or D × N . In supervised learning, we have N pairs of vectors {(xn,yn)}Nn=1 where
dim (x) may be different from dim (y), likewise stored as two matrices.

Toy datasets We usually generate them with some known function or probability distribution. Examples:

• Noisy function y = f(x) + ε from 1D to 1D. We can vary the function f and the level and distribution of the
noise ε. This is useful for (nonlinear) regression.

• Gaussian clusters in 2D. We can vary the number K of clusters, their location (mean µk), their shape (covariance
matrix Σk) and their proportion of points (πk). Use GMsample.m from the GM tools (or use randn appropriately).
This is useful for clustering, classification and other things.

• Spirals in 2D. This is useful for clustering, classification and other things.

• Two moons dataset in 2D. This is useful for clustering, classification and semisupervised learning.

• Swiss roll dataset in 3D. This is useful for dimensionality reduction (manifold learning).

Be creative. Generate your own toy datasets.

Real-world datasets

• MNIST: grayscale images of 28× 28 pixels of handwritten digits, such as . Each
image corresponds to one instance xn and is represented as a vector with 28× 28 = 784 dimensions.

• MNISTmini. We created this by subsampling and cropping each 28 × 28 MNIST image (skipping every other
row and column and removing a 2-pixel margin around the image). Each MNISTmini image is of 10× 10. This
makes any algorithm run much faster while achieving comparable results to MNIST (since the images are mostly
the same). It also makes the covariance matrix of the data full rank, which is convenient for some algorithms.

• MNIST rotated digit-7 and digit skeleton dataset. We created this by selecting 50 digits ‘7’ at random from the
MNIST dataset, adding some noise and rotating each digit by 6-degree increments from 0 to 360 degrees, for a
total of N = 3 000 images of 28×28: . Also, for each digit-7 image, we manually
created a point-set in 2D (with 14 points, hence a vector of dimension 28) representing the skeleton of the digit:

. This dataset can be used to learn to map digit-7 images to skeletons.

• COIL: grayscale images of 128×128 pixels of 20 objects rotated every 5◦, such as
or .

• Wisconsin X-ray microbeam data (XRMB).

• Tongue shapes.

+ Many datasets of manageable size, widely used as benchmarks in ML, are in the UCI repository.
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II Visualizing high-dimensional data

We can plot the entire dataset {xn}Nn=1 as a point cloud only when the data has dimension D ≤ 3. To visualize data
with higher dimension, these are some basic techniques:

• Scatterplots of pairs of variables (i, j): plot the component i vs the component j of each data vector {xn}Nn=1.
Scatterplots of triplets of variables (i, j, k) can also be useful if you rotate the viewpoint adequately.

• Histogram of a single variable i, or 2D histogram of a pair of variables i and j.

• Plot an individual vector xn (for a given n) depending on its meaning:

– If xn is an image, reshape it and plot it as an image (e.g. for MNIST D = 784→ 28× 28).

– If xn is a curve consisting of D/2 points in 2D, reshape it and plot it as a curve in 2D (e.g. tongue shapes
dataset or MNIST rotated digit-7 skeletons).

And then we can loop over plotting instances n = 1, 2, . . . , or combine them into a single figure.

You can apply some of these techniques to plotting the parameters estimated by a ML algorithm, such as the component
means in a Gaussian mixture.

It is also informative to examine basic statistics of the data, such as its mean; covariance matrix; maximum,
minimum and range over each dimension; etc.

+ The datasets directory in the course web page has sample Matlab code to visualize various datasets in 1D, 2D, 3D
and higher dimension (e.g. MNIST). Use it for your own datasets or algorithms and modify it accordingly.
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III Machine learning algorithms

Below is a set of ML algorithms, corresponding to different ML problems (clustering, classification, etc.). Even though
you probably will not understand how each algorithm works, you should understand what is expected from it, and
explore its behavior. You can apply them to toy and real-world datasets. For each algorithm, explore different aspects
of its performance:

• With toy datasets, as mentioned earlier, vary the dataset distribution (number, shape and overlap of the clusters
or classes, density) or generating function (linear, nonlinear) and the variance of the noise ε added to it; the
sample size N ; the dimensionality D; the intrinsic dimensionality; etc.

• Vary different parameters of the algorithm:

– Each algorithm usually requires the user to specify some “hyperparameters” that help find a good solution.
For example: for clustering, the desired number of clusters K or a scale parameter σ; for regression or
classification, the number of parameters in the function (number of weights, basis functions, etc.); for
distance- or similarity-based algorithms, the number of nearest neighbors k or a scale parameter σ; for
kernel density estimation, a scale parameter σ; etc.

– Many algorithms have a “regularization” parameter λ that controls the tradeoff between smoothness and
goodness of fit, and that often helps to learn a model that generalizes well to unseen data.

– In addition, there may be parameters that control the optimization: maximum number of iterations, error
tolerance to stop training, initialization, etc.

How well does the algorithm work in all these situations? If it makes mistakes, can you understand why?

ML algorithms

• Clustering:

– K-means.

– Gaussian mixtures and EM algorithm.

– Laplacian K-modes.

– Image segmentation and mean-shift clustering (applet).

• Density estimation:

– Kernel density estimation.

– Gaussian mixtures.

• Classification:

– Linear classification using support vector machines (SVMs) (applet).

– Nonlinear classification using kernel SVMs and low-dimensional SVMs (applet).

• Regression:

– Linear regression.

– Nonlinear regression using radial basis function (RBF) networks.

• Dimensionality reduction:

– Linear dimensionality reduction: PCA.

– Nonlinear dimensionality reduction: Laplacian eigenmaps; elastic embedding.

• Missing data reconstruction (pattern completion):

– Gaussian mixtures.

+ See other applets or interactive demos in the course web page.
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