Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents each class $k=$ $1, \ldots, K$ by a prototype vector $\boldsymbol{\mu}_{k} \in \mathbb{R}^{D}$ and classifies a pattern $\mathbf{x} \in \mathbb{R}^{D}$ as the class of its closest prototype: $k^{*}=$ $\arg \min _{k=1, \ldots, K}\left\|\mathbf{x}-\boldsymbol{\mu}_{k}\right\|$. Prove that a Gaussian classifier with shared isotropic covariances (i.e., of the form $\boldsymbol{\Sigma}_{k}=\sigma^{2} \mathbf{I}$ for $k=1, \ldots, K$, where $\sigma>0$) and equal class priors (i.e., $p\left(C_{1}\right)=\cdots=p\left(C_{K}\right)=\frac{1}{K}$) is equivalent to a Euclidean distance classifier. Prove the class discriminant functions $g_{1}(\mathbf{x}), \ldots, g_{K}(\mathbf{x})$ are linear and give the expression that defines them.

Exercise 2: bias and variance of an estimator (20 points). Assume we have a sample $\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}$ of N iid (independent identically distributed) scalar random variables, each of which is drawn from a Gaussian distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ with $\mu \in \mathbb{R}$ and $\sigma>0$. We want to estimate the mean μ of this Gaussian by computing a statistic of the sample \mathcal{X}. Consider the following four different statistics of the sample:

1. $\phi_{1}(\mathcal{X})=7$.
2. $\phi_{2}(\mathcal{X})=x_{1}$.
3. $\phi_{3}(\mathcal{X})=\frac{1}{N} \sum_{n=1}^{N} x_{n}$.
4. $\phi_{4}(\mathcal{X})=x_{1} x_{2}$.

For each statistic ϕ, compute:

- (2 points) Its bias $b_{\mu}(\phi)=\mathrm{E}_{\mathcal{X}}\{\phi(\mathcal{X})\}-\mu$.
- (2 points) Its variance $\operatorname{var}\{\phi\}=\mathrm{E}_{\mathcal{X}}\left\{\left(\phi(\mathcal{X})-\mathrm{E}_{\mathcal{X}}\{\phi(\mathcal{X})\}\right)^{2}\right\}$.
- (1 point) Its mean square error $e(\phi, \mu)=\mathrm{E}_{\mathcal{X}}\left\{(\phi(\mathcal{X})-\mu)^{2}\right\}$.

Based on that, answer the following for each estimator (statistic): is it unbiased? is it consistent?
Hint: expectations wrt the distribution of the N-point sample \mathcal{X} are like this one:

$$
\mathrm{E}_{\mathcal{X}}\{\phi(\mathcal{X})\}=\int \phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} \ldots d \mathbf{x}_{N} \stackrel{\mathrm{iid}}{=} \int \phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) p\left(\mathbf{x}_{1}\right) \ldots p\left(\mathbf{x}_{N}\right) d \mathbf{x}_{1} \ldots d \mathbf{x}_{N}
$$

Exercise 3: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two Gaussians with equal proportions, different means, and equal, diagonal covariances (where $\mu, \sigma_{1}, \sigma_{2}>0$):

$$
\begin{gathered}
\mathbf{x} \in \mathbb{R}^{2}: p(\mathbf{x})=\pi_{1} p(\mathbf{x} \mid 1)+\pi_{2} p(\mathbf{x} \mid 2) \quad p(\mathbf{x} \mid 1) \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right), \quad p(\mathbf{x} \mid 2) \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
\pi_{1}=\pi_{2}=\frac{1}{2}, \quad \boldsymbol{\mu}_{1}=\mathbf{0}, \quad \boldsymbol{\mu}_{2}=\binom{\mu}{0}, \quad \boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}=\left(\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right)
\end{gathered}
$$

1. (5 points) Compute the mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ of the mixture distribution $p(\mathbf{x})$.

Hint: let $p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} p(\mathbf{x} \mid k)$ for $\mathbf{x} \in \mathbb{R}^{D}$ be a mixture of K densities, where $\pi_{1}, \ldots, \pi_{K} \in[0,1]$ and $\sum_{k=1}^{K} \pi_{k}=1$ are the component proportions (prior probabilities) and $p(\mathbf{x} \mid k)$, for $k=1, \ldots, K$, the component densities (e.g. Gaussian, but not necessarily). Let $\boldsymbol{\mu}_{k}=\mathrm{E}_{p(\mathbf{x} \mid k)}\{\mathbf{x}\}$ and $\boldsymbol{\Sigma}_{k}=\mathrm{E}_{p(\mathbf{x} \mid k)}\left\{\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{T}\right\}$ be the mean and covariance of component density k, for $k=1, \ldots, K$. Then, the mean and covariance of the mixture are (you should be able to prove this statement):

$$
\boldsymbol{\mu}=\mathrm{E}_{p(\mathbf{x})}\{\mathbf{x}\}=\sum_{k=1}^{K} \pi_{k} \boldsymbol{\mu}_{k} \quad \boldsymbol{\Sigma}=\mathrm{E}_{p(\mathbf{x})}\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right\}=\sum_{k=1}^{K} \pi_{k}\left(\boldsymbol{\Sigma}_{k}+\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{T}\right)-\boldsymbol{\mu} \boldsymbol{\mu}^{T} .
$$

2. (5 points) Compute the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq 0$ and corresponding eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{R}^{2}$ of $\boldsymbol{\Sigma}$. Can we have $\lambda_{2}>0$?
3. (2 points) Find the PCA projection to dimension 1.
4. (5 points) Compute the within-class and between-class scatter matrices $\mathbf{S}_{W}, \mathbf{S}_{B}$ of p.
5. (6 points) Compute the eigenvalues $\nu_{1} \geq \nu_{2} \geq 0$ and corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ of $\mathbf{S}_{W}^{-1} \mathbf{S}_{B}$. Can we have $\nu_{2}>0$?
6. (2 points) Compute the LDA projection.
7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.

Exercise 4: variations of k-means clustering (30 points). Consider the k-means error function:

$$
E\left(\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}, \mathbf{Z}\right)=\sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\left\|\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right\|^{2} \quad \text { s.t. } \quad \mathbf{Z} \in\{0,1\}^{N K}, \mathbf{Z} \mathbf{1}=\mathbf{1}
$$

over the centroids $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ and cluster assignments $\mathbf{Z}_{N \times K}$, given training points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{D}$.

- Variation 1: in k-means, the centroids can take any value in $\mathbb{R}^{D}: \boldsymbol{\mu}_{k} \in \mathbb{R}^{D} \forall k=1, \ldots, K$. Now we want the centroids to take values from among the training points only: $\boldsymbol{\mu}_{k} \in\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \forall k=1, \ldots, K$.

1. (8 points) Design a clustering algorithm that minimizes the k-means error function but respecting the above constraint. Your algorithm should converge to a local optimum of the error function. Give the steps of the algorithm explicitly.
2. (2 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

- Variation 2: in k-means, we seek K clusters, each characterized by a centroid $\boldsymbol{\mu}_{k}$. Imagine we seek instead K lines (or hyperplanes, in general), each characterized by a weight vector $\mathbf{w}_{k} \in \mathbb{R}^{D}$ and bias $w_{k 0} \in \mathbb{R}$, given a supervised dataset $\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}_{n=1}^{N}$ (see figure). Data points assigned to line k should have minimum least-squares error $\sum_{n \in \operatorname{line} k}\left(y_{n}-\mathbf{w}_{k}^{T} \mathbf{x}_{n}-w_{k 0}\right)^{2}$.

1. (8 points) Give an error function that allows us to learn the lines' parameters $\left\{\mathbf{w}_{k}, w_{k 0}\right\}_{k=1}^{K}$.
2. (12 points) Give an iterative algorithm that minimizes that error function.

Exercise 5: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate

$$
p(\mathbf{x})=\sum_{n=1}^{N} p(\mathbf{x} \mid n) p(n)=\frac{1}{N\left(2 \pi \sigma^{2}\right)^{D / 2}} \sum_{n=1}^{N} e^{-\frac{1}{2}\left\|\frac{\mathbf{x}-\mathbf{x}_{n}}{\sigma}\right\|^{2}} \quad \mathbf{x} \in \mathbb{R}^{D}
$$

Derive the mean-shift algorithm, which iterates the following expression:

$$
\mathbf{x} \leftarrow \sum_{n=1}^{N} p(n \mid \mathbf{x}) \mathbf{x}_{n} \quad \text { where } \quad p(n \mid \mathbf{x})=\frac{p(\mathbf{x} \mid n) p(n)}{p(\mathbf{x})}=\frac{\exp \left(-\frac{1}{2}\left\|\left(\mathbf{x}-\mathbf{x}_{n}\right) / \sigma\right\|^{2}\right)}{\sum_{n^{\prime}=1}^{N} \exp \left(-\frac{1}{2}\left\|\left(\mathbf{x}-\mathbf{x}_{n^{\prime}}\right) / \sigma\right\|^{2}\right)}
$$

until convergence to a maximum of p (or, in general, a stationary point of p, satisfying $\nabla p(\mathbf{x})=\mathbf{0}$). Hint: take the gradient of p wrt \mathbf{x}, equate it to zero and rearrange the resulting expression.

Exercise 6: nonparametric regression (20 points). Consider the Gaussian kernel smoother

$$
\mathbf{g}(\mathbf{x})=\sum_{n=1}^{N} \frac{K\left(\left\|\left(\mathbf{x}-\mathbf{x}_{n}\right) / h\right\|\right)}{\sum_{n^{\prime}=1}^{N} K\left(\left\|\left(\mathbf{x}-\mathbf{x}_{n^{\prime}}\right) / h\right\|\right)} \mathbf{y}_{n} \quad \text { where } \quad K\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{n}}{\sigma}\right\|\right) \propto \exp \left(-\frac{1}{2}\left\|\left(\mathbf{x}-\mathbf{x}_{n}\right) / \sigma\right\|^{2}\right)
$$

estimated on a training set $\left\{\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\}_{n=1}^{N} \subset \mathbb{R}^{D_{x}} \times \mathbb{R}^{D_{y}}$.

1. (7 points) What is $\mathbf{g}(\mathbf{x})$ if the training set has only one point $(N=1)$? Explain.

Sketch the solution in 1D (i.e., when both $\mathbf{x}_{n}, \mathbf{y}_{n} \in \mathbb{R}$).
Compare with using a least-squares linear regression.
2. (13 points) Prove that, with $N=2$ points, we can write $\mathbf{g}(\mathbf{x})=\alpha(\mathbf{x}) \mathbf{y}_{1}+(1-\alpha(\mathbf{x})) \mathbf{y}_{2}$ where $\alpha(\mathbf{x})$ can be written using the logistic function. Give the detailed expression for $\alpha(\mathbf{x})$.
Sketch the solution in 1D.
Compare with using a least-squares linear regression.

