CSE176 Introduction to Machine Learning Homework set #2
Fall semester 2021 Miguel A. Carreira-Perpinan

Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents each class k =
1,...,K by a prototype vector u; € RP and classifies a pattern x € RP as the class of its closest prototype: k* =
argming_; g |[[x — pi|. Prove that a Gaussian classifier with shared isotropic covariances (i.e., of the form ¥; = 0?1

for k = 1,..., K, where 0 > 0) and equal class priors (i.e., p(C1) = --- = p(Ck) = %) is equivalent to a Euclidean
distance classifier. Prove the class discriminant functions g1 (x), ..., gk (x) are linear and give the expression that defines
them.

Exercise 2: bias and variance of an estimator (20 points). Assume we have a sample X = {z1,...,25} C R of

N iid (independent identically distributed) scalar random variables, each of which is drawn from a Gaussian distribution
N (p1,0?) with p € R and o > 0. We want to estimate the mean yu of this Gaussian by computing a statistic of the sample
X. Consider the following four different statistics of the sample:

1 ¢ (X) =T.
2. ¢2(X) = x1.
3. ¢3(X) = £ S0, Tn
4. ¢4(X) = z120.
For each statistic ¢, compute:
e (2 points) Its bias b, (¢) = Ex {¢(X)} — p.
e (2 points) Its variance var {¢} = Ex {(¢(X) — Ex {¢(X)})?}.
e (1 point) Its mean square error (¢, ) = Ex {(#(X) — pn)?}.

Based on that, answer the following for each estimator (statistic): is it unbiased? is it consistent?
Hint: expectations wrt the distribution of the N-point sample X are like this one:

EX{QS(X)}:/¢(x1,...,xN)p(xl,...,xN)dxl...deig/¢(x1,...,xN)p(xl)...p(xN)dxl...de.

Exercise 3: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two Gaussians with
equal proportions, different means, and equal, diagonal covariances (where u, 01,02 > 0):

x € R%: p(x) = mp(x|1) + m2p(x[2)  p(x[1) ~ N (g1, Z1),  p(x[2) ~ N (s, B2),
1 o? 0
57 H = 07 Mo = (g) ) 231 = 22 = (01 0,%) .

1. (5 points) Compute the mean p and covariance X of the mixture distribution p(x).

T = Ty =

Hint: let p(x) = 3K | 7 p(x|k) for x € RP be a mixture of K densities, where m1,...,7x € [0,1] and 35 | 7 = 1 are the component
proportions (prior probabilities) and p(x|k), for k = 1,..., K, the component densities (e.g. Gaussian, but not necessarily). Let p), = Ep(x|r) {x}
and Xy = Ep(x|k) {(x — ) (x — y,k)T} be the mean and covariance of component density k, for k = 1,..., K. Then, the mean and covariance

of the mixture are (you should be able to prove this statement):
K K
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2. (5 points) Compute the eigenvalues A; > A2 > 0 and corresponding eigenvectors u;,uz € R? of ¥. Can we have
Ao > 07
3. (2 points) Find the PCA projection to dimension 1.
4. (5 points) Compute the within-class and between-class scatter matrices Sy, Sg of p.

5. (6 points) Compute the eigenvalues 41 > vo > 0 and corresponding eigenvectors vy, ve € R? of S;[}S B. Can we
have vy > 07

6. (2 points) Compute the LDA projection.

7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.



Exercise 4: variations of k-means clustering (30 points). Consider the k-means error function:
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over the centroids p,, ..., iy and cluster assignments Zyx x, given training points Xy, ...,xy € RP.
e Variation 1: in k-means, the centroids can take any value in RP: p, € RP Vk = 1,..., K. Now we want the
centroids to take values from among the training points only: p, € {x1,...,xy} VE=1,... K.

1. (8 points) Design a clustering algorithm that minimizes the k-means error function but respecting the above
constraint. Your algorithm should converge to a local optimum of the error function. Give the steps of the
algorithm explicitly.

2. (2 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

e Variation 2: in k-means, we seek K clusters, each characterized by a centroid
pr- Imagine we seek instead K lines (or hyperplanes, in general), each char-
acterized by a weight vector wy € R and bias wyo € R, given a supervised
dataset {(xn,yn)}_; (see figure). Data points assigned to line k should have
minimum least-squares error Y., i (Yn — WXy — wio )2

1. (8 points) Give an error function that allows us to learn the lines’ param-
eters {wy, wyo H< .

2. (12 points) Give an iterative algorithm that minimizes that error function.

Exercise 5: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate

N
o x— xn D
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Derive the mean-shift algorithm, which iterates the following expression:
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X Zp(n|x)xn where p(n|x) =

until convergence to a maximum of p (or, in general, a stationary point of p, satisfying Vp(x) = 0). Hint: take the
gradient of p wrt x, equate it to zero and rearrange the resulting expression.

Exercise 6: nonparametric regression (20 points). Counsider the Gaussian kernel smoother

X —X
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estimated on a training set {(x,,yn)}2_; C RP= x RPs,

. D o exp (g 10x — ) /o)
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1. (7 points) What is g(x) if the training set has only one point (N = 1)? Explain.
Sketch the solution in 1D (i.e., when both x,,,y, € R).
Compare with using a least-squares linear regression.

2. (13 points) Prove that, with N = 2 points, we can write g(x) = a(x)y1 + (1 — a(x)) y2 where a(x) can be written
using the logistic function. Give the detailed expression for a(x).
Sketch the solution in 1D.
Compare with using a least-squares linear regression.



