Exercise 1: Bayes' rule (6 points). Suppose that 5% of competitive athletes use performance-enhancing drugs and that a particular drug test has a 2% false positive rate and a 1.5% false negative rate.

1. (3 points) Athlete A tests positive for drug use. What is the probability that Athlete A is using drugs?
2. (3 points) Athlete B tests negative for drug use. What is the probability that Athlete B is not using drugs?

Exercise 2: Bayesian decision theory: losses and risks (11 points). Consider a classification problem with K classes, using a loss $\lambda_{i k} \geq 0$ if we choose class i when the input actually belongs to class k, for $i, k \in\{1, \ldots, K\}$.

1. (2 points) Write the expression for the expected risk $R_{i}(\mathbf{x})$ for choosing class i as the class for a pattern \mathbf{x}, and the rule for choosing the class for \mathbf{x}.

Consider a two-class problem with losses given by the matrix $\lambda_{i k}=\left(\begin{array}{cc}0 & 1 \\ \lambda_{21} & 0\end{array}\right)$.
2. (3 points) Give the optimal decision rule in the form " $p\left(C_{1} \mid \mathbf{x}\right)>\ldots$ " as a function of λ_{21}.
3. (3 points) Imagine we consider both misclassification errors as equally costly. When is class 1 chosen (for what values of $\left.p\left(C_{1} \mid \mathbf{x}\right)\right)$?
4. (3 points) Imagine we want to be very conservative when choosing class 2 and we seek a rule of the form " $p\left(C_{2} \mid \mathbf{x}\right)>$ 0.99 " (i.e., choose class 2 when its posterior probability exceeds 99%). What should λ_{21} be?

Exercise 3: association rules (6 points). Given the following data of transactions at a supermarket, calculate the support and confidence values of the following association rules: meat \rightarrow avocado, avocado \rightarrow meat, yogurt \rightarrow avocado, avocado \rightarrow yogurt, meat \rightarrow yogurt, yogurt \rightarrow meat. What is the best rule to use in practice?

transaction \#	items in basket
1	meat, avocado
2	yogurt, avocado
3	meat
4	yogurt, meat
5	avocado, meat, yogurt
6	meat, avocado

Exercise 4: true- and false-positive rates (10 points). Consider the following table, where \mathbf{x}_{n} is a pattern, y_{n} its ground-truth label ($1=$ positive class, $2=$ negative class $)$ and $p\left(C_{1} \mid \mathbf{x}_{n}\right)$ the posterior probability produced by some probabilistic classification algorithm:

n	1	2	3	4	5
y_{n}	1	2	2	1	2
$p\left(C_{1} \mid \mathbf{x}_{n}\right)$	0.6	0.7	0.5	0.9	0.2

We use a classification rule of the form " $p\left(C_{1} \mid \mathbf{x}\right)>\theta$ " where $\theta \in[0,1]$ is a threshold.

1. (8 points) Give, for all possible values of $\theta \in[0,1]$, the predicted labels and the corresponding confusion matrix and classification error.
2. (2 points) Plot the corresponding pairs (fp, tp) as an ROC curve.

Exercise 5: ROC curves (8 points). Imagine we have a classifier A that has false-positive and true-positive rates $\mathrm{fp}_{\mathrm{A}}, \mathrm{tp}_{\mathrm{A}} \in[0,1]$ such that $\mathrm{fp}_{\mathrm{A}}>\mathrm{tp}_{\mathrm{A}}$ (that is, this classifier is below the diagonal on the ROC space). Now consider a classifier B that negates the decision of A , that is, whenever A predicts the positive class then B predicts the negative class and vice versa. Compute the false-positive and true-positive rates $\mathrm{fp}_{\mathrm{B}}, \mathrm{tp}_{\mathrm{B}}$ for classifier B . Where is this point in the ROC space?

Exercise 6: least-squares regression (14 points). Consider the following model, with parameters $\boldsymbol{\Theta}=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\} \subset$ \mathbb{R} and an input $x \in \mathbb{R}$:

$$
h(x ; \boldsymbol{\Theta})=\theta_{1}+\theta_{2} \sin 2 x+\theta_{3} \sin 4 x \in \mathbb{R}
$$

1. (2 points) Write the general expression of the least-squares error function of a model $h(x ; \boldsymbol{\Theta})$ with parameters $\boldsymbol{\Theta}$ given a sample $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$.
2. (2 points) Apply it to the above model, simplifying it as much as possible.
3. (6 points) Find the least-squares estimate for the parameters.
4. (4 points) Assume the values $\left\{x_{n}\right\}_{n=1}^{N}$ are uniformly distributed in the interval $[0,2 \pi]$. Can you find a simpler, approximate way to find the least-squares estimate ? Hint: approximate $\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)$ by an integral.

Exercise 7: maximum likelihood estimate (15 points). A discrete random variable $x \in\{0,1,2 \ldots\}$ follows a Poisson distribution if it has the following probability mass function:

$$
p(x ; \theta)=\frac{e^{-\theta} \theta^{x}}{x!}
$$

where the parameter is $\theta>0$.

1. (2 points) Verify that $\sum_{x=0}^{\infty} p(x)=1$.
2. (2 points) Write the general expression of the log-likelihood of a probability mass function $p(x ; \boldsymbol{\Theta})$ with parameters $\boldsymbol{\Theta}$ for an iid sample x_{1}, \ldots, x_{N}.
3. (5 points) Apply it to the above distribution, simplifying it as much as possible.
4. (6 points) Find the maximum likelihood estimate for the parameter θ.

Exercise 8: multivariate Bernoulli distribution (20 points). Consider a multivariate Bernoulli distribution where $\boldsymbol{\theta} \in[0,1]^{D}$ are the parameters and $\mathbf{x} \in\{0,1\}^{D}$ the binary random vector:

$$
p(\mathbf{x} ; \boldsymbol{\theta})=\prod_{d=1}^{D} \theta_{d}^{x_{d}}\left(1-\theta_{d}\right)^{1-x_{d}}
$$

1. (5 points) Compute the maximum likelihood estimate for $\boldsymbol{\theta}$ given a sample $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.

Let us do document classification using a D-word dictionary (element d in \mathbf{x}_{n} is 1 if word d is in document n and 0 otherwise) using a multivariate Bernoulli model for each class. Assume we have K document classes for which we have already obtained the values of the optimal parameters $\boldsymbol{\theta}_{k}=\left(\theta_{k 1}, \ldots, \theta_{k D}\right)^{T}$ and prior distribution $p\left(C_{k}\right)=\pi_{k}$, for $k=1, \ldots, K$, by maximum likelihood.
2. (2 points) Write the discriminant function $g_{k}(\mathbf{x})$ for a probabilistic classifier in general (not necessarily Bernoulli), and the rule to make a decision.
3. (5 points) Apply it to the multivariate Bernoulli case with K classes. Show that $g_{k}(\mathbf{x})$ is linear on \mathbf{x}, i.e., it can be written as $g_{k}(\mathbf{x})=\mathbf{w}_{k}^{T} \mathbf{x}+w_{k 0}$ and give the expression for \mathbf{w}_{k} and $w_{k 0}$.
4. (3 points) Consider $K=2$ classes. Show the decision rule can be written as "if $\mathbf{w}^{T} \mathbf{x}+w_{0}>0$ then choose class 1 ", and give the expression for \mathbf{w} and w_{0}.
5. (5 points) Compute the numerical values of \mathbf{w} and w_{0} for a two-word dictionary where $\pi_{1}=0.7, \boldsymbol{\theta}_{1}=\binom{0.2}{0.8}$ and $\boldsymbol{\theta}_{2}=\binom{0.3}{0.6}$. Plot in 2D all the possible values of $\mathbf{x} \in\{0,1\}^{D}$ and the boundary corresponding to this classifier.

Exercise 9: Gaussian classifiers (10 points). Consider a binary classification problem for $\mathbf{x} \in \mathbb{R}^{D}$ where we use Gaussian class-conditional probabilities $p\left(\mathbf{x} \mid C_{1}\right) \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma_{1}^{2} \mathbf{I}\right)$ and $p\left(\mathbf{x} \mid C_{2}\right) \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma_{2}^{2} \mathbf{I}\right)$. That is, they have the same mean and the covariance matrices are isotropic but different. Compute the expression for the class boundary. What shape is it?

