CSE176 Introduction to Machine Learning Homework set #1
Fall semester 2021 Miguel A. Carreira-Perpinan

Exercise 1: Bayes’ rule (6 points). Suppose that 5% of competitive athletes use performance-enhancing drugs and
that a particular drug test has a 2% false positive rate and a 1.5% false negative rate.

1. (3 points) Athlete A tests positive for drug use. What is the probability that Athlete A is using drugs?

2. (3 points) Athlete B tests negative for drug use. What is the probability that Athlete B is not using drugs?

Exercise 2: Bayesian decision theory: losses and risks (11 points). Consider a classification problem with K
classes, using a loss A;r > 0 if we choose class ¢ when the input actually belongs to class k, for i,k € {1,..., K}.

1. (2 points) Write the expression for the expected risk R;(x) for choosing class i as the class for a pattern x, and the
rule for choosing the class for x.

Consider a two-class problem with losses given by the matrix \;, = ( Ag L (1))

”

2. (3 points) Give the optimal decision rule in the form “p(Ci|x) > ...” as a function of \a;.

3. (3 points) Imagine we consider both misclassification errors as equally costly. When is class 1 chosen (for what
values of p(C4x))?

4. (3 points) Imagine we want to be very conservative when choosing class 2 and we seek a rule of the form “p(Cz|x) >
0.99” (i.e., choose class 2 when its posterior probability exceeds 99%). What should Aoy be?

Exercise 3: association rules (6 points). Given the following data of transactions at a supermarket, calculate the
support and confidence values of the following association rules: meat — avocado, avocado — meat, yogurt — avocado,
avocado — yogurt, meat — yogurt, yogurt — meat. What is the best rule to use in practice?

transaction # items in basket

1 meat, avocado
yogurt, avocado

meat

yogurt, meat
avocado, meat, yogurt
meat, avocado
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Exercise 4: true- and false-positive rates (10 points). Consider the following table, where x,, is a pattern, y,
its ground-truth label (1 = positive class, 2 = negative class) and p(Ci|x,) the posterior probability produced by some
probabilistic classification algorithm:

n 1 2 3 4 )

Yn 1 2 2 1 2
p(Cilx,) 0.6 0.7 05 09 0.2

We use a classification rule of the form “p(Cy|x) > 0” where 6 € [0, 1] is a threshold.

1. (8 points) Give, for all possible values of 6 € [0, 1], the predicted labels and the corresponding confusion matrix and
classification error.

2. (2 points) Plot the corresponding pairs (fp, tp) as an ROC curve.

Exercise 5: ROC curves (8 points). Imagine we have a classifier A that has false-positive and true-positive rates
fpa,tpa € [0,1] such that fp, > tp, (that is, this classifier is below the diagonal on the ROC space). Now consider a
classifier B that negates the decision of A, that is, whenever A predicts the positive class then B predicts the negative
class and vice versa. Compute the false-positive and true-positive rates fpg, tpg for classifier B. Where is this point in
the ROC space?



Exercise 6: least-squares regression (14 points). Consider the following model, with parameters @ = {6;,05,05} C
R and an input z € R:
h(z;®) = 61 + 02 sin 2z + O3sindx € R.

1. (2 points) Write the general expression of the least-squares error function of a model h(x; ®) with parameters ©
given a sample { (2, yn) L.

2. (2 points) Apply it to the above model, simplifying it as much as possible.
3. (6 points) Find the least-squares estimate for the parameters.
4. (4 points) Assume the values {z,,})_,; are uniformly distributed in the interval [0,27]. Can you find a simpler,

approximate way to find the least-squares estimate ? Hint: approximate % 22;1 f(x,) by an integral.

Exercise 7: maximum likelihood estimate (15 points). A discrete random variable z € {0,1,2...} follows a
Poisson distribution if it has the following probability mass function:

e 06

p(x;0) = o

where the parameter is 8 > 0.
1. (2 points) Verify that > - p(z) = 1.

2. (2 points) Write the general expression of the log-likelihood of a probability mass function p(x; ®) with parameters
© for an iid sample z1,...,znN.

3. (5 points) Apply it to the above distribution, simplifying it as much as possible.

4. (6 points) Find the maximum likelihood estimate for the parameter 6.

Exercise 8: multivariate Bernoulli distribution (20 points). Consider a multivariate Bernoulli distribution where
0 € [0,1]” are the parameters and x € {0,1}” the binary random vector:

D
p(x;0) = [ 05 (1 — 64)' .
d=1
1. (5 points) Compute the maximum likelihood estimate for @ given a sample X = {x1,...,xnx}.

Let us do document classification using a D-word dictionary (element d in x, is 1 if word d is in document n and
0 otherwise) using a multivariate Bernoulli model for each class. Assume we have K document classes for which we
have already obtained the values of the optimal parameters 85, = (011, ...,0xp)” and prior distribution p(Cy) = 7, for
k=1,..., K, by maximum likelihood.

2. (2 points) Write the discriminant function g(x) for a probabilistic classifier in general (not necessarily Bernoulli),
and the rule to make a decision.

3. (5 points) Apply it to the multivariate Bernoulli case with K classes. Show that gp(x) is linear on x, i.e., it can be
written as gi(x) = W;;Fx + wyo and give the expression for wy and wyg.

4. (3 points) Consider K = 2 classes. Show the decision rule can be written as “if w’'x +wg > 0 then choose class 17,
and give the expression for w and wy.

5. (5 points) Compute the numerical values of w and wy for a two-word dictionary where m = 0.7, 6; = (J:2) and

0> = (J2). Plot in 2D all the possible values of x € {0, 1} and the boundary corresponding to this classifier.

Exercise 9: Gaussian classifiers (10 points). Consider a binary classification problem for x € R” where we use
Gaussian class-conditional probabilities p(x|C1) ~ N (s, 021) and p(x|C2) ~ N (p, 031). That is, they have the same mean
and the covariance matrices are isotropic but different. Compute the expression for the class boundary. What shape is
it?



