
CSE176 Introduction to Machine Learning Lab: multilayer perceptrons
Fall semester 2021 Miguel Á. Carreira-Perpiñán

The objective of this lab is for you explore the behavior of gradient descent (GD) and stochastic gradient descent
(SGD) for a multilayer perceptron (MLP) with a single hidden, sigmoidal layer (for nonlinear regression), and apply
them to some datasets. The TA will first demonstrate the results of the algorithms on several datasets. Then, you will
replicate those results and further explore the datasets with the algorithms. This lab is very similar to the previous
one (GD/SGD for linear regression or classification). The only difference is that the model (an MLP) is nonlinear,
and the gradient expressions are more complicated.

We provide you with the following:

• The script lab08 linregr.m sets up the problem (toy dataset) and plots several figures.

• The functions mlpgd.m and mlpsgd.m train an MLP (from D dimensions to D′ dimensions) by gradient descent
or by stochastic gradient descent, respectively. See also the functions mlp.m and sigmoid.m.

Important: when testing the algorithms, focus on 1D regression problems only, i.e., with inputs x ∈ R and outputs
y ∈ R, and use small datasets (N = 10 to 100 points), because training MLPs is slow.

I Datasets

Construct your own toy dataset as a noisy sample from a known function, e.g. yn = f(xn) + εn where εn ∼ N (0, σ2)
and f(x) = ax+ b or f(x) = sinx.

II (Stochastic) gradient descent for nonlinear regression with MLPs

Review Consider nonlinear least-squares regression given a sample {(xn,yn)}Nn=1 with xn ∈ RD and yn ∈ RD′
:

E(W,V; {xn,yn}Nn=1) =
1

2

N∑
n=1

‖yn − f(xn; W,V)‖2 =
1

2

N∑
n=1

D′∑
i=1

(yin − fi(xn; W,V))2

where f : RD → RD′
is an MLP with one hidden layer having H units, where the hidden units are sigmoidal and the

output units are linear:

fi(x) =

H∑
h=1

vihzh + vi0, i = 1, . . . , D′, zh = σ

(
D∑

d=1

whdxd + wh0

)
, σ(t) =

1

1 + e−t
.

The gradients (computed using the chain rule) of E wrt the weights are:

∂E

∂vih
=

N∑
n=1

(
− (yin − fi(xn)) zhn

) ∂E

∂whd
=

N∑
n=1

(D′∑
i=1

−(yin − fi(xn)) vih

)
zhn (1− zhn)xdn

.
Using these expressions we can implement gradient descent updates Θ ← Θ + ∆Θ with ∆Θ = −η∇E(Θ), where
Θ = {W,V} are the weights of the MLP. Likewise, implementing stochastic gradient descent is done by summing
only over a minibatch of points, instead of over all N points. GD/SGD proceed as in the previous lab on GD/SGD
for linear regression, but now using the MLP gradient.

Exploration: toy problem Run each algorithm (GD and SGD) for, say, 100 iterations Θ(0),Θ(1), . . . ,Θ(100) from

an initial Θ = Θ(0) (equal to small random numbers, e.g. uniform in [−0.01, 0.01]). To visualize the results, we plot
the following for each algorithm (GD and SGD):

• The dataset (yn vs xn) and the MLP function f(x).

• The error E(Θ) over iterations, evaluated on the training set, and also on a validation set.

1

lab08/lab08_linregr.m
code/mlpgd.m
code/mlpsgd.m
code/mlp.m
code/sigmoid.m

Note: unlike with linear regression, where the error decreases quickly in a few iterations, with an MLP you will need
to run far more iterations (thousands to hundreds of thousands), even with a well-tuned η, to achieve convergence
with GD.

Consider the following questions:

• Proceed as in the previous lab (GD/SGD for linear regression) in comparing GD with SGD, observing the effect
on the error E of the learning rate η, minibatch size |B|, etc.

• Plot the training error and the validation error over iterations.

– The training error should decrease monotonically with GD if η is small enough, and will usually show flat,
wide regions (where the error decreases very slowly), and steep, short regions (where the error decreases
much more quickly). Why?

– How about the validation error?

• Train MLPs with H ∈ {1, 2, 5, 10, 30, 50} hidden units on the same dataset, and plot the resulting training and
validation error. How do they look like?

• For an MLP with H = 10 hidden units, try weight decay, i.e., adding to the error function a term λw2 for
every weight w in the MLP (vih or whd), and hence adding 2λw to the corresponding gradient. Try λ ∈
{0, 10−5, 10−2, 100}. How does the resulting MLP look like?

• Try different initial weights (randomly generated in [−0.01, 0.01]). Does GD converge to the same result every
time? Try using as initial weights random values in [−10, 10], what happens?

See the end of file lab08 linregr.m for suggestions of things to explore.

2

lab08/lab08_linregr.m

	Datasets
	(Stochastic) gradient descent for nonlinear regression with MLPs

