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Fall semester 2021 Miguel Á. Carreira-Perpiñán

The objective of this lab is for you to explore the behavior of PCA and LDA in Matlab and apply them to some
datasets. The TA will first demonstrate the results that PCA and LDA give on the MNIST dataset. Then, you will
replicate those results, and further explore other datasets.

We provide you with the following:

• The scripts lab05 pca.m and lab05 lda.m set up the problem (MNIST) and plot various figures. The compu-
tation of PCA and LDA is inlined in the script.

I Datasets

You will use the MNIST dataset of handwritten digits . PCA will need the instances
x ∈ RD (where D = 784), while LDA will need both the instances and their labels yn ∈ {0, . . . , 9}. You will need to
plot instances as grayscale images of 28 × 28, as seen in previous labs; and “eigendigits” as color images of 28 × 28.
You will also need to plot reduced-dimension instances zn ∈ RL (where L is 1D, 2D or 3D) as scatterplots; color them
differently for each class (even if the class information was not used for training), so we can tell them apart.

Additionally, you will apply PCA and LDA to:

• The rotated-7 MNIST dataset . Each digit ‘7’ should be considered as a class
containing all its rotated versions. Ignore the “skeleton” data in the file, just use the images and the class labels.

• Other datasets, for example from the UCI repository, or a dataset of face images (several are available in the
Internet).

Important: it is instructive to test PCA first with toy examples for which you know the true solution ahead of
time (e.g. generate points along a line in 3D and add noise to them, then reduce to 1D or 2D with PCA). Once you
understand this, try more difficult datasets.

II Using PCA

See the file lab05 pca.m. Assume a matrix X of D ×N (instances = columns).

• To estimate the PCA parameters, we compute the mean µ and covariance Σ of the data, and then compute the
eigendecomposition of the covariance matrix Σ = UΛUT and set W = U1:L.

• With this, we can now:

– Project a point x ∈ RD onto the L principal component subspace (where 1 ≤ L ≤ D). This is given by the
PCA projection mapping z = F(x) = WT (x− µ).

– Reconstruct a vector z ∈ RL into the original, data space. This is given by the reconstruction mapping
x′ = f(z) = Wz + µ.

• We can verify that the covariance matrix in the projected space (that is, cov {z1, . . . , zN}) equals WTΣW, that
it is diagonal, and that the sum of its diagonal elements equals λ1 + · · ·+ λL.

• We plot the following figures:

1. The eigenvalues λ1, . . . , λD and the proportion of explained variance λ1+···+λL

λ1+···+λD
∈ [0, 1] as a function of the

number of dimensions used L.

2. The mean µ, as a grayscale image.

3. The MNIST dataset projected onto 2D. We use different colors/markers for different digit classes, so we
can recognize them.

4. The MNIST dataset projected onto 3D, colored as in the 2D plot.

5. The eigenvectors u1, . . . ,uL ∈ RD, as color images (“eigendigits”).

6. A vector x and its reconstruction x′ = W(WT (x− µ)) + µ, both as grayscale images.
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7. Vectors of the form µ ± αul for α > 0 (where 1 ≤ l ≤ D), as grayscale images. This shows what the
lth principal component subspace corresponds to in data space. It is equivalent to reconstructing vectors
z ∈ RL that move along the lth PC axis.

Then, explore PCA in different settings:

• Compute PCA on only the digits 1s, then visualize it and reconstruct digits (1s, 2s, etc.). The projection on the
first two PCs shows a clear structure, what does it correspond to? Why does the mean µ look the way it does?

• Compute PCA on the entire MNIST dataset (all digits), then visualize it and reconstruct digits.

• See the end of file lab05 pca.m for further suggestions.

III Using LDA

See the file lab05 lda.m. Assume a matrix X of D ×N (instances = columns) and a vector y of 1×N (class labels
in 1, . . . ,K).

• To estimate the LDA parameters, we compute the within-class and between-class scatter matrices SW and SB .
It is convenient to add a small number to the diagonal of SW (e.g. 10−10 tr (SW ) /D) to make SW be full rank.
Then we compute the eigendecomposition of S−1W SB = UΛUT and set W = U1:L.

• With this, we can now project a point x ∈ RD onto the LDA subspace of dimension L (where 1 ≤ L ≤ K − 1).
This is given by the LDA projection mapping z = F(x) = WTx.

• We plot the following figures:

1. The eigenvalues λ1, . . . , λD and the proportion of explained variance λ1+···+λL

λ1+···+λD
∈ [0, 1] as a function of the

number of dimensions used L.

2. The mean of each class µk, as a grayscale image.

3. The MNIST dataset projected onto 2D. We use different colors/markers for different digit classes, so we
can recognize them.

4. The MNIST dataset projected onto 3D, colored as in the 2D plot.

5. The eigenvectors u1, . . . ,uL ∈ RD, as color images (“Fisherdigits”).

Questions to consider:

• Explore the algorithm in different settings (see the PCA section), and with different numbers of classes (for
MNIST: different digits).

• How does the result of LDA differ from that of PCA? In particular, observe the 2D projections and the eigendigits
and Fisherdigits.

• How many eigenvalues are nonzero in LDA (and how many in PCA)? Why?
Remember that LDA applies if SW is invertible and L ≤ K − 1.
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