CSE176 Introduction to Machine Learning ~ Homework set #4
Fall semester 2019 Miguel A. Carreira-Perpinan

Total possible marks: 100. Homeworks must be solved individually. Explain all your answers
concisely. This set covers chapters 13-15 and 18 of the textbook Introduction to Machine Learning,
3rd. ed., by E. Alpaydin.

Exercise 1: kernel machines (18 points). Consider the XOR binary classification problem, with a

training set {(x,, y) 1y © R? x {—1,+1} given by { (7)), +1), ((*}),+1), ("), =1), (1), ~1) }.
which is not linearly separable. Construct a SVM to learn a nonlinear discriminant function as follows.
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1. (2 points) Define a feature function z = ¢(x) = (mm) € R?. Evaluate it at each training point to
obtain z, = ¢(x,) and plot them in the new space z. Verify the points are now linearly separable.

2. (8 points) Find a linear discriminant G(z) = w’z + wy such that sgn (G(¢(x,))) = y, Vn. Make
sure this discriminant has the maximum margin, give the value of the margin, find the support
vectors, and plot the separating hyperplane and the SVs. Hint: there is no need to solve any QP,
just use geometric intuition. Explain your answer.

3. (6 points) Write the nonlinear discriminant g(x) = w’¢(x) + wy in the original x-space. Draw
in the plane: the boundary g(x) = 0, and the curves corresponding to each of the training points
(i.e., the sets {x € R* g(x) = g(x,)} for each n =1,...,4).

4. (2 points) Relate this result to the solution of the primal and dual QP for a kernel SVM. Specifi-
cally, write the kernel function K (x,y) that results from the choice of ¢ above, the general form of
the kernel SVM discriminant function g(x), and guess what the values of the Lagrange multipliers
o, should be if we solved the dual QP. Hint: again, use geometric intuition and symmetry.

Exercise 2: kernel machines (18 points). Consider binary classification for x € R? using the
nonlinear discriminant function g(x) = 27 + 23 — 1 and assigning a label y = sgn (g(x)) € {—1,+1} to
an instance Xx.

1. (4 points) g splits the plane into two class regions. Draw them (or explain them in plain English).
Are they linearly separable?

Consider a new feature function ¢: x € R? — R which creates D features made up (in some way) of
the original features x1, xs.

2. (10 points) Define a function ¢ such that, using the new features z = ¢(x) € R?, we can define
a linear discriminant function G(z) = w’z that is equivalent to g, i.e., G(¢(x)) = g(x). Relate
this to kernel functions and support vector machines.

3. (4 points) Define what the kernel function K(-,-) would be that corresponds to your feature
function ¢.

Exercise 3: graphical models (6 points). Consider the following two graphical models defined on
binary random variables, given by their joint distributions:

p(X,Y, Z) =p(Z|X,Y)p(Y|X)p(X) and  p(X,Y,Z)=p(Z)p(Y|Z)p(X)

For each of them:



1. (4 points) Prove that 3y, p(X,Y, Z) = 1.

2. (2 points) Draw the graphical model.

Exercise 4: graphical models (21 points).

Consider 3 binary random variables with joint distribution given by the table.

1. (14 points) Evaluate the following distributions: p(X), p(Y), p(X,Y),

p(X|2), p(Y|2), p(Z]X), and p(X,Y|Z). X Y Z pX.v.2)
2. (4 points) Show by direct evaluation that this distribution has the prop- 0 0 0 0.192
erty that X and Y are marginally dependent, i.e., P(X,Y) # p(X)p(y) 0 0 1 0.144
(for all values of X and Y'); but that they become independent when 0 1 0 0.048
conditioned on Z, ie., p(X,Y|Z) = p(X|Z)p(Y|Z) for all values of X, 0 1 1 0.216
Y and Z. 1 0 0 0.192
1 0 1 0.064
3. (3 points) Show by direct evaluation that p(X,Y.Z2) = 1 1 0 0.048
p(X)p(Z|X)p(Y|Z). Draw the corresponding directed graph for 1 1 1 0.096
this graphical model.
Show your work in all cases.
Exercise 5: graphical models (21 points).
Consider a graphical model defined on binary random variables @ @
(where variables X; correspond to diseases and variables Y; to
symptoms), given by the following diagram and conditional prob- \

ability tables at each node. B
Note: in the tables and the questions, the notation “p(Y3| X1, Xs)” @ @ @
means “p(Ys; = 1|X; =0, X, =1)7, etc.

conditional probability tables at each node
X; (“lu”) Xy (“hayfever”) Y1 (“fever”) Y, (“headache”) Y3 (“fatigue”)

p(X1) =04 p(Xz) =0.1 p(Yl‘El) =038 p(Ya| Xy, Xo) = 0.9 p(Y3] X1, Xp) = 0.7
p(Vi[X1) =01  p(Ya|X1, X)) =08 p(¥3|X1, Xp) = 0.7
p(YalX1, Xa) = 0.7 p(V3[ X1, Xy) = 0 3

p( ‘Xl,Xg) =0.1 p( ‘Xl,Xg)

1. (3 points) Give the expression of the joint distribution it defines over all the variables.

2. (18 points) Calculate the value of the following probabilities:

(a) p(Ya]X1, X>)
(b) p(Yl,Yé‘ylaXz)
(c) p(Y1]X2).

(d) p(Y1).

(e) p(X1|Y1,Y5)

(f) p(Xa|Y1,Y2,Ys)

Show your work in all cases.



Exercise 6: discrete Markov models (9 points).

Consider the discrete Markov model given by the diagram.

1. (3 points) Give the set of states of this discrete Markov
model, its transition matrix A and its vector of initial
state probabilities 7r.

2. (6 points) Compute the probability of the following se-
quences: 12123, 221, 3.

Show your work in all cases.

Exercise 7: discrete Markov models (7 points). Consider a discrete Markov model with two
states a, b.

1. (5 points) We have a training set consisting of the following sequences: bbbaa, baaaa, bbbbb,
bbbba. Give the maximum likelihood estimate of the parameters (A, 7).

2. (2 points) Draw the corresponding discrete Markov model as in the previous exercise.

Show your work in all cases.



