
CSE176 Introduction to Machine Learning Homework set #3
Fall semester 2019 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. Explain all your answers
concisely. This set covers chapters 10–12 and 17 of the textbook Introduction to Machine Learning,
3rd. ed., by E. Alpaydin.

Exercise 1: linear classifier (10 points). Consider a binary linear classifier g(x) = wTx +w0 with
w =

(−3
4

)
and w0 = −12, where x ∈ R2. Let class 1 be its positive side (g(x) > 0) and class 2 its

negative side (g(x) < 0).

1. (4 points) Sketch the decision boundary in R2. Compute the points at which it intersects the
coordinate axes. Indicate which is the positive side of the boundary (class 1).

2. (4 points) Compute the signed distance of the following points to the decision boundary: the
origin;

(−1
3

)
;
(
4
6

)
. Classify those points.

3. (2 points) Give a vector u ∈ R2 that is parallel to the decision boundary and has norm 1.

Exercise 2: linear classifier (20 points). We have a classification problem with K = 3 classes in
R2 with the following discriminant functions:

g1(x) = 2x1 + 3x2 + 3

g2(x) = x1 + 4x2 + 3

g3(x) = 2x1 + 6x2 + 2.

1. (2 points) Give a rule to decide which class a point x ∈ R2 should be assigned to.

2. (4 points) Classify the following points:
(−1

0

)
,
(
1
1

)
,
(−1
−1

)
,
(
1
0

)
.

3. (6 points) Give the equation that a point x ∈ R2 must satisfy for it to be on the boundary between
classes 1 and 2. Repeat for the boundary of class 1 and 3, and for class 2 and 3.

4. (2 points) Give the equation that a point x ∈ R2 must satisfy for it to be on the boundary between
all 3 classes.

5. (6 points) Based on the above, sketch the boundaries that delimit the 3 classes, indicating numer-
ically where they cross the coordinate axes and which region corresponds to which class.

Exercise 3: logistic regression (14 points). Consider a binary classification problem in dimension
D with a training set {(xn, yn)}Nn=1, where xn ∈ RD and yn ∈ {0, 1} for n = 1, . . . , N .

1. (4 points) Write the cross-entropy objective function E(w, w0) for logistic regression.

2. (8 points) Compute and simplify the gradient of E with respect to the parameters w ∈ RD and
w0 ∈ R. Show your work.

3. (2 point) Write the update formulas for the parameters using gradient descent with a step size
η > 0.



Exercise 4: multilayer perceptrons (8 points). Construct manually a perceptron that calculates
the NAND of its two inputs. That is, given a training set

{(xn, yn)}Nn=1 =
{((

0
0

)
, 1
)
,
((

0
1

)
, 1
)
,
((

1
0

)
, 1
)
,
((

1
1

)
, 0
)}

of 2D points in two classes {0, 1}, give numerical values of the perceptron’s parameters that solve this
classification problem.

Exercise 5: properties of the logistic and tanh functions (10 points). Consider the logistic
function σ(x) = 1

1+e−x
∈ (0, 1) for x ∈ R. Prove the following properties:

1. (2 points) Inverse of logistic: σ−1(y) = logit(y) = log
(

y
1−y

)
∈ (−∞,∞) for y ∈ (0, 1).

2. (2 points) Derivative of logistic: dσ(x)
dx

= σ′(x) = σ(x)(1− σ(x)).

3. (1 points) σ(x) + σ(−x) = 1.

Consider now the hyperbolic tangent tanhx = ex−e−x
ex+e−x

∈ (−1, 1) for x ∈ R. Work out the expression for:

1. (2 points) The inverse of tanh.

2. (2 points) The derivative of tanh, using the value of tanh itself.

3. (1 points) tanh(x) + tanh(−x).

Exercise 6: multilayer perceptrons (9 points). Consider an MLP with a single hidden layer in
which the hidden unit activation functions are the logistic function σ(x) = 1

1+e−x
. Show that there

exists an equivalent MLP which computes exactly the same function as the original MLP, but where
the hidden unit activation functions are tanhx. Hint: find a relation between σ(x) and tanhx.

Exercise 7: RBF networks (20 points). Consider a Gaussian radial basis function (RBF) network
f : RD → RD′ that maps input vectors x ∈ RD to output vectors y ∈ RD′ :

f(x) =
H∑
h=1

whe
− 1

2‖x−µh
σ ‖

2

or, elementwise: fe(x) =
H∑
h=1

whee
− 1

2σ2

∑D
d=1 (xd−µhd)2 e = 1, . . . , D′

where the RBF network parameters are the weight vectors {wh}Hh=1 ⊂ RD′ , the centroids {µh}Hh=1 ⊂ RD

and the bandwidth σ > 0. We want to train f in a regression setting by minimizing the least-squares
error with a fixed regularization parameter λ ≥ 0, given a training set {(xn,yn)}Nn=1:

E
(
{wh,µh}Hh=1, σ

)
=

N∑
n=1

‖yn − f(xn)‖2 + λ
H∑
h=1

‖wh‖2 =
N∑
n=1

D′∑
e=1

(yne − fe(xn))2 + λ

H,D′∑
h,e=1

w2
he. (1)

A simple but approximate way to train the RBF network is by fixing the value of its bandwidth σ > 0
(this value is eventually cross-validated) and its centroids {µh}Hh=1 (e.g. to a random subset of training
points, or to the result of running k-means on the training set), and then optimizing eq. (1) over the
weights (which results in a linear system).

Instead, we wish to train the RBF network parameters by gradient descent, as with multilayer
perceptrons.

1. (15 points) Using the chain rule, compute the gradients of E in eq. (1) wrt the parameters:



(a) The weights {wh}Hh=1:
∂E
∂whe

= . . . for h = 1, . . . , H and e = 1, . . . , D′.

(b) The centroids {µh}Hh=1:
∂E
∂µhd

= . . . for h = 1, . . . , H and d = 1, . . . , D.

(c) The bandwidth σ: ∂E
∂σ

= . . .

2. (5 points) What would be a good initialization for these parameters (to start gradient descent)?

Exercise 8: ensemble learning (9 points). Consider the setting of regression from input vectors
x ∈ RD to a single real output y ∈ R. Imagine we have trained L learners f1, . . . , fL: RD → R in some
way (e.g. each on a bootstrapped sample from a training set). We combine them using their average:
f(x) = 1

L

∑L
l=1 fl(x). What kind of model is the resulting f in each of the following cases? Be as specific

as possible. Hint : we give the answer to the first case below.

1. (0 points) If f1, . . . , fL are polynomials of degree q.
Answer : f is another polynomial of degree q, whose coefficients are equal to the average of the
corresponding coefficients in f1, . . . , fL.

2. (3 points) If f1, . . . , fL are Gaussian RBF networks each with H centroids.

3. (3 points) If f1, . . . , fL are linear regressors.

4. (3 points) If f1, . . . , fL are MLPs each with a single hidden layer of H sigmoidal units and an
output linear unit.


