
CSE176 Introduction to Machine Learning Homework set #2
Fall semester 2019 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Explain all your answers concisely. This set covers chapters 4–9 of the
textbook Introduction to Machine Learning, 3rd. ed., by E. Alpaydin.

Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents
each class k = 1, . . . , K by a prototype vector µk ∈ R

D and classifies a pattern x ∈ R
D as the class of its

closest prototype: k∗ = argmink=1,...,K ‖x− µk‖. Prove that a Gaussian classifier with shared isotropic
covariances (i.e., of the form Σk = σ2I for k = 1, . . . , K, where σ > 0) and equal class priors (i.e.,
p(C1) = · · · = p(CK) =

1
K
) is equivalent to a Euclidean distance classifier. Prove the class discriminant

functions g1(x), . . . , gK(x) are linear and give the expression that defines them.

Exercise 2: bias and variance of an estimator (20 points). Assume we have a sample X =
{x1, . . . , xN} ⊂ R of N iid (independent identically distributed) scalar random variables, each of which
is drawn from a Gaussian distribution N (µ, σ2) with µ ∈ R and σ > 0. We want to estimate the mean
µ of this Gaussian by computing a statistic of the sample X . Consider the following four different
statistics of the sample:

1. φ1(X ) = 7.

2. φ2(X ) = x1.

3. φ3(X ) =
1
N

∑N
n=1 xn.

4. φ4(X ) = x1x2.

For each statistic φ, compute:

• (2 points) Its bias bµ(φ) = EX {φ(X )} − µ.

• (2 points) Its variance var {φ} = EX {(φ(X )− EX {φ(X )})2}.

• (1 point) Its mean square error e(φ, µ) = EX {(φ(X )− µ)2}.

Based on that, answer the following for each estimator (statistic): is it unbiased? is it consistent?
Hint : expectations wrt the distribution of the N -point sample X are like this one:

EX {φ(X )} =

∫

φ(x1, . . . ,xN) p(x1, . . . ,xN ) dx1 . . . dxN
iid
=

∫

φ(x1, . . . ,xN) p(x1) . . . p(xN) dx1 . . . dxN .



Exercise 3: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two
Gaussians with equal proportions, different means, and equal, diagonal covariances (where µ, σ1, σ2 > 0):

x ∈ R
2: p(x) = π1 p(x|1) + π2 p(x|2) p(x|1) ∼ N (µ1,Σ1), p(x|2) ∼ N (µ2,Σ2),

π1 = π2 =
1

2
, µ1 = 0, µ2 =

(

µ
0

)

, Σ1 = Σ2 =

(

σ2
1 0
0 σ2

2

)

.

1. (5 points) Compute the mean µ and covariance Σ of the mixture distribution p(x).

Hint : let p(x) =
∑K

k=1 πk p(x|k) for x ∈ R
D be a mixture of K densities, where π1, . . . , πK ∈ [0, 1] and

∑K
k=1 πk = 1 are the

component proportions (prior probabilities) and p(x|k), for k = 1, . . . ,K, the component densities (e.g. Gaussian, but not necessarily).
Let µk = Ep(x|k) {x} and Σk = Ep(x|k)

{

(x− µk)(x− µk)
T
}

be the mean and covariance of component density k, for k = 1, . . . ,K.
Then, the mean and covariance of the mixture are (you should be able to prove this statement):

µ = Ep(x) {x} =
K
∑

k=1

πkµk Σ = Ep(x)

{

(x− µ)(x − µ)T
}

=
K
∑

k=1

πk

(

Σk + µkµ
T
k

)

− µµ
T .

2. (5 points) Compute the eigenvalues λ1 ≥ λ2 ≥ 0 and corresponding eigenvectors u1,u2 ∈ R
2 of

Σ. Can we have λ2 > 0?

3. (2 points) Find the PCA projection to dimension 1.

4. (5 points) Compute the within-class and between-class scatter matrices SW , SB of p.

5. (6 points) Compute the eigenvalues ν1 ≥ ν2 ≥ 0 and corresponding eigenvectors v1,v2 ∈ R
2 of

S−1
W SB. Can we have ν2 > 0?

6. (2 points) Compute the LDA projection.

7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.

Exercise 4: variations of k-means clustering (30 points). Consider the k-means error function:

E({µk}
K
k=1,Z) =

N
∑

n=1

K
∑

k=1

znk‖xn − µk‖
2 s.t. Z ∈ {0, 1}NK, Z1 = 1

over the centroids µ1, . . . ,µK and cluster assignments ZN×K , given training points x1, . . . ,xN ∈ R
D.

• Variation 1: in k-means, the centroids can take any value in R
D: µk ∈ R

D ∀k = 1, . . . , K. Now
we want the centroids to take values from among the training points only: µk ∈ {x1, . . . ,xN}
∀k = 1, . . . , K.

1. (8 points) Design a clustering algorithm that minimizes the k-means error function but
respecting the above constraint. Your algorithm should converge to a local optimum of the
error function. Give the steps of the algorithm explicitly.

2. (2 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

• Variation 2: in k-means, we seek K clusters, each characterized
by a centroid µk. Imagine we seek instead K lines (or hyperplanes,
in general), each characterized by a weight vector wk ∈ R

D and
bias wk0 ∈ R, given a supervised dataset {(xn, yn)}Nn=1 (see figure).
Data points assigned to line k should have minimum least-squares
error

∑

n∈line k (yn −wT
k xn − wk0)

2.
x

y

1. (8 points) Give an error function that allows us to learn the lines’ parameters {wk, wk0}Kk=1.

2. (12 points) Give an iterative algorithm that minimizes that error function.



Exercise 5: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate

p(x) =
N
∑

n=1

p(x|n)p(n) =
1

N(2πσ2)D/2

N
∑

n=1

e−
1
2‖

x−xn
σ ‖

2

x ∈ R
D.

Derive the mean-shift algorithm, which iterates the following expression:

x←
N
∑

n=1

p(n|x)xn where p(n|x) =
p(x|n)p(n)

p(x)
=

exp
(

−1
2
‖(x− xn)/σ‖

2)

∑N
n′=1 exp

(

−1
2
‖(x− xn′)/σ‖2

)

until convergence to a maximum of p (or, in general, a stationary point of p, satisfying ∇p(x) = 0).
Hint : take the gradient of p wrt x, equate it to zero and rearrange the resulting expression.

Bonus exercise: nonparametric regression (20 points). Consider the Gaussian kernel smoother

g(x) =
N
∑

n=1

K
(

‖(x− xn)/h‖
)

∑N
n′=1K

(

‖(x− xn′)/h‖
)yn where K

(
∥

∥

∥

∥

x− xn

σ

∥

∥

∥

∥

)

∝ exp
(

−
1

2
‖(x− xn)/σ‖

2)

estimated on a training set {(xn,yn)}Nn=1 ⊂ R
Dx × R

Dy .

1. (7 points) What is g(x) if the training set has only one point (N = 1)? Explain.
Sketch the solution in 1D (i.e., when both xn,yn ∈ R).
Compare with using a least-squares linear regression.

2. (13 points) Prove that, with N = 2 points, we can write g(x) = α(x)y1 + (1 − α(x))y2 where
α(x) can be written using the logistic function. Give the detailed expression for α(x).
Sketch the solution in 1D.
Compare with using a least-squares linear regression.


