CSE176 Introduction to Machine Learning ~ Homework set #2
Fall semester 2019 Miguel A. Carreira-Perpinan

Total possible marks: 100. Explain all your answers concisely. This set covers chapters 4-9 of the
textbook Introduction to Machine Learning, 3rd. ed., by E. Alpaydin.

Exercise 1: Euclidean distance classifier (10 points). A Euclidean distance classifier represents
each class k = 1,..., K by a prototype vector u, € R? and classifies a pattern x € R? as the class of its
closest prototype: k* = argmin,_; _j ||x — p;||. Prove that a Gaussian classifier with shared isotropic

.....

covariances (i.e., of the form ¥, = oI for k = 1,..., K, where o > 0) and equal class priors (i.e.,
p(Cy) =--- =p(Ck) = &) is equivalent to a Euclidean distance classifier. Prove the class discriminant
functions ¢;(x), ..., gx(x) are linear and give the expression that defines them.

Exercise 2: bias and variance of an estimator (20 points). Assume we have a sample X' =
{z1,...,ox} C R of N iid (independent identically distributed) scalar random variables, each of which
is drawn from a Gaussian distribution A (i, 0?) with g € R and o > 0. We want to estimate the mean
w1 of this Gaussian by computing a statistic of the sample X. Consider the following four different
statistics of the sample:

1 ¢ (X)=T.
2. ¢2(X) = x7.
3. ¢3(X) = %me\f:lxn-

4. $4(X) = 1129,

For each statistic ¢, compute:
o (2 points) Its bias b,(¢) = Ex {6(X)} — p.
o (2 points) Its variance var {¢} = Ex {(¢(X) — Ex {6(X)})?}.
o (1 point) Its mean square error e(¢, 1) = Ex {(¢(X) — p)2}.

Based on that, answer the following for each estimator (statistic): is it unbiased? is it consistent?
Hint: expectations wrt the distribution of the N-point sample X are like this one:

E/\({¢(X)}:/(b(Xl,...,XN)p(Xl,...,XN)dxl...dXNﬁ:(1/¢(X1,...,XN)p(X1)...p(XN)dxl...dXN.



Exercise 3: PCA and LDA (30 points). Consider 2D data points coming from a mixture of two
Gaussians with equal proportions, different means, and equal, diagonal covariances (where p, o1, 09 > 0):

x € B% p(x) = mp(x|) + mp(x12)  p(x1) ~ Ny, Br), p(x]2) ~ N (py, Ba),

1 a2 0

1. (5 points) Compute the mean p and covariance ¥ of the mixture distribution p(x).

Hint: let p(x) = 25:1 7, p(x|k) for x € RP be a mixture of K densities, where 71,...,7x € [0,1] and 25:1 m = 1 are the
component proportions (prior probabilities) and p(x|k), for k =1,..., K, the component densities (e.g. Gaussian, but not necessarily).
Let gy = Epxjpy {x} and p = Ep(iy {(x — pg) (x — 13,)T} be the mean and covariance of component density k, for k=1,..., K.
Then, the mean and covariance of the mixture are (you should be able to prove this statement):

K K
p=Epu{x} =D mmy  B=Eyx {(x —p)(x — u)T} => (Ek + uwf-) —pp’
k=1 k=1

2. (5 points) Compute the eigenvalues A\; > Ay > 0 and corresponding eigenvectors u;, uy € R? of
3. Can we have Ay > 07

(2 points) Find the PCA projection to dimension 1.
4. (5 points) Compute the within-class and between-class scatter matrices Sy, Sp of p.
(

6 points) Compute the eigenvalues v; > v, > 0 and corresponding eigenvectors vy, vy € R? of
S;VISB. Can we have 15 > 07

. (2 points) Compute the LDA projection.

6
7. (5 points) When does PCA find the same projection as LDA? Give a condition and explain it.

Exercise 4: variations of k-means clustering (30 points). Consider the k-means error function:

N K
E({p i Z) =Y ) zunllxn — myl® st Ze{0,1}VF, Z1=1

n=1 k=1
over the centroids gy, ..., py and cluster assighments Zy ., given training points x;, ..., xy € RP.
e Variation 1: in k-means, the centroids can take any value in RP: pu, € RP Vk =1,..., K. Now
we want the centroids to take values from among the training points only: p, € {xi,...,xyx}

Vk=1,..., K.

1. (8 points) Design a clustering algorithm that minimizes the k-means error function but
respecting the above constraint. Your algorithm should converge to a local optimum of the
error function. Give the steps of the algorithm explicitly.

2. (2 points) Can you imagine when this algorithm would be useful, or preferable to k-means?

e Variation 2: in k-means, we seek K clusters, each characterized
by a centroid p,. Imagine we seek instead K lines (or hyperplanes,
in general), each characterized by a weight vector w, € RP and
bias wyo € R, given a supervised dataset {(x,,yn)}_; (see figure).

Data points assigned to line k£ should have minimum least-squares

€rTor Znelino k (yn - ngn - wko)z'

x
(8 points) Give an error function that allows us to learn the lines” parameters {wy,, wyo}_;.

1.
2. (12 points) Give an iterative algorithm that minimizes that error function.



Exercise 5: mean-shift algorithm (10 points). Consider a Gaussian kernel density estimate

N N
1 _ 1| x=xn 2 D
p(x) ZEP(Xln)p(n) ~ W;e sl xeRrP.
Derive the mean-shift algorithm, which iterates the following expression:
3 pxlnp(m) _ exp (30— x)/0lf)
X Zp(n|x)xn where  p(n|x) = = —% 2 - :
=t p(x) > exp (—3ll(x —xu) /o |%)

until convergence to a maximum of p (or, in general, a stationary point of p, satisfying Vp(x) = 0).
Hint: take the gradient of p wrt x, equate it to zero and rearrange the resulting expression.

Bonus exercise: nonparametric regression (20 points). Consider the Gaussian kernel smoother

X —X

K(II(x - xu)/h]) = )ocexp (5l = x2)/a )

809 = 2 S ([ )]

n=1

Y. Where K(

estimated on a training set {(x,,y,)}Y_; C RP» x RP».

1. (7 points) What is g(x) if the training set has only one point (N = 1)? Explain.
Sketch the solution in 1D (i.e., when both x,,y, € R).
Compare with using a least-squares linear regression.

2. (13 points) Prove that, with N = 2 points, we can write g(x) = a(x)y1 + (1 — a(x))y2 where
a(x) can be written using the logistic function. Give the detailed expression for a(x).
Sketch the solution in 1D.
Compare with using a least-squares linear regression.



