
CSE176 Introduction to Machine Learning Homework set #3
Fall semester 2016 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. Explain all your answers
concisely. This set covers chapters 10–18 of the textbook Introduction to Machine Learning, 3rd. ed.,
by E. Alpaydin.

Exercise 1: linear classifier (10 points). Consider a binary linear classifier g(x) = wTx+w0 with
w =

(

−3
4

)

and w0 = −12, where x ∈ R
2. Let class 1 be its positive side (g(x) > 0) and class 2 its

negative side (g(x) < 0).

1. (4 points) Sketch the decision boundary in R
2. Compute the points at which it intersects the

coordinate axes. Indicate which is the positive side of the boundary (class 1).

2. (4 points) Compute the signed distance of the following points to the decision boundary: the
origin;

(

−1
3

)

;
(

4
6

)

. Classify those points.

3. (2 points) Give a vector u ∈ R
2 that is parallel to the decision boundary and has norm 1.

Exercise 2: multilayer perceptrons (8 points). Construct manually a perceptron that calculates
the NAND of its two inputs. That is, given a training set

{(xn, yn)}
N
n=1 =

{((

0
0

)

, 1
)

,
((

0
1

)

, 1
)

,
((

1
0

)

, 1
)

,
((

1
1

)

, 0
)}

of 2D points in two classes {0, 1}, give numerical values of the perceptron’s parameters that solve this
classification problem.

Exercise 3: properties of the logistic and tanh functions (10 points). Consider the logistic
function σ(x) = 1

1+e−x ∈ (0, 1) for x ∈ R. Prove the following properties:

1. (2 points) Inverse of logistic: σ−1(y) = logit(y) = log
(

y

1−y

)

∈ (−∞,∞) for y ∈ (0, 1).

2. (2 points) Derivative of logistic: dσ(x)
dx

= σ′(x) = σ(x)(1 − σ(x)).

3. (1 points) σ(x) + σ(−x) = 1.

Consider now the hyperbolic tangent tanh x = ex−e−x

ex+e−x ∈ (−1, 1) for x ∈ R. Work out the expression for:

1. (2 points) The inverse of tanh.

2. (2 points) The derivative of tanh, using the value of tanh itself.

3. (1 points) tanh(x) + tanh(−x).



Exercise 4: RBF networks (20 points). Consider a Gaussian radial basis function (RBF) network
f : R

D → R
D′

that maps input vectors x ∈ R
D to output vectors y ∈ R

D′

:

f(x) =
H
∑

h=1

whe
−

1

2
‖x−µh

σ
‖
2

or, elementwise: fe(x) =
H
∑

h=1

whee
−

1

2σ2

∑
D

d=1
(xd−µhd)

2

e = 1, . . . , D′

where the RBF network parameters are the weight vectors {wh}
H
h=1 ⊂ R

D′

, the centroids {µh}
H
h=1 ⊂ R

D

and the bandwidth σ > 0. We want to train f in a regression setting by minimizing the least-squares
error with a fixed regularization parameter λ ≥ 0, given a training set {(xn,yn)}

N
n=1:

E
(

{wh,µh}
H
h=1, σ

)

=
N
∑

n=1

‖yn − f(xn)‖
2 + λ

H
∑

h=1

‖wh‖
2 =

N
∑

n=1

D′

∑

e=1

(yne − fe(xn))
2 + λ

H,D′

∑

h,e=1

w2
he. (1)

A simple but approximate way to train the RBF network is by fixing the value of its bandwidth σ > 0
(this value is eventually cross-validated) and its centroids {µh}

H
h=1 (e.g. to a random subset of training

points, or to the result of running k-means on the training set), and then optimizing eq. (1) over the
weights (which results in a linear system).

Instead, we wish to train the RBF network parameters by gradient descent, as with multilayer
perceptrons.

1. (15 points) Using the chain rule, compute the gradients of E in eq. (1) wrt the parameters:

(a) The weights {wh}
H
h=1:

∂E
∂whe

= . . . for h = 1, . . . , H and e = 1, . . . , D′.

(b) The centroids {µh}
H
h=1:

∂E
∂µhd

= . . . for h = 1, . . . , H and d = 1, . . . , D.

(c) The bandwidth σ: ∂E
∂σ

= . . .

2. (5 points) What would be a good initialization for these parameters (to start gradient descent)?

Exercise 5: discrete Markov models (9 points).

Consider the discrete Markov model given by the diagram.

1. (3 points) Give the set of states of this discrete Markov
model, its transition matrix A and its vector of initial
state probabilities π.

2. (6 points) Compute the probability of the following se-
quences: 12123, 221, 3.
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π3 = 0.2

Exercise 6: discrete Markov models (7 points). Consider a discrete Markov model with two
states a, b.

1. (5 points) We have a training set consisting of the following sequences: bbbaa, baaaa, bbbbb,
bbbba. Give the maximum likelihood estimate of the parameters (A, π).

2. (2 points) Draw the corresponding discrete Markov model as in the previous exercise.



Exercise 7: graphical models (6 points). Consider the following two graphical models defined on
binary random variables, given by their joint distributions:

p(X, Y, Z) = p(Z|X, Y ) p(Y |X) p(X) and p(X, Y, Z) = p(Z) p(Y |Z) p(X)

For each of them:

1. (4 points) Prove that
∑

X,Y,Z p(X, Y, Z) = 1.

2. (2 points) Draw the graphical model.

Exercise 8: graphical models (21 points).

Consider a graphical model defined on binary random variables
(where variables Xi correspond to diseases and variables Yj to
symptoms), given by the following diagram and conditional prob-
ability tables at each node.
Note: in the tables and the questions, the notation “p(Y3|X1, X2)”
means “p(Y3 = 1|X1 = 0, X2 = 1)”, etc.

X1 X2

Y1 Y2 Y3

conditional probability tables at each node
X1 (“flu”) X2 (“hayfever”) Y1 (“fever”) Y2 (“headache”) Y3 (“fatigue”)

p(X1) = 0.4 p(X2) = 0.1 p(Y1|X1) = 0.8
p(Y1|X1) = 0.1

p(Y2|X1, X2) = 0.9
p(Y2|X1, X2) = 0.8
p(Y2|X1, X2) = 0.7
p(Y2|X1, X2) = 0.1

p(Y3|X1, X2) = 0.7
p(Y3|X1, X2) = 0.7
p(Y3|X1, X2) = 0.3
p(Y3|X1, X2) = 0.1

1. (3 points) Give the expression of the joint distribution it defines over all the variables.

2. (18 points) Calculate the value of the following probabilities:

(a) p(Y 2|X1, X2).

(b) p(Y1, Y3|X1, X2).

(c) p(Y1|X2).

(d) p(Y1).

(e) p(X1|Y1, Y 2).

(f) p(X2|Y 1, Y2, Y 3).

Exercise 9: ensemble learning (9 points). Consider the setting of regression from input vectors
x ∈ R

D to a single real output y ∈ R. Imagine we have trained L learners f1, . . . , fL: R
D → R in some

way (e.g. each on a bootstrapped sample from a training set). We combine them using their average:
f(x) = 1

L

∑L

l=1 fl(x). What kind of model is the resulting f in each of the following cases? Be as specific
as possible. Hint : we give the answer to the first case below.

1. (0 points) If f1, . . . , fL are polynomials of degree q.
Answer : f is another polynomial of degree q, whose coefficients are equal to the average of the
corresponding coefficients in f1, . . . , fL.

2. (3 points) If f1, . . . , fL are Gaussian RBF networks each with H centroids.

3. (3 points) If f1, . . . , fL are linear regressors.

4. (3 points) If f1, . . . , fL are MLPs each with a single hidden layer of H sigmoidal units and an
output linear unit.


