CSE176 Introduction to Machine Learning Lab: RBF networks and polynomials
Fall semester 2016 Miguel A. Carreira-Perpinan

The objective of this lab is for you to program in Matlab radial basis function (RBF) networks and polynomials, both
for nonlinear regression, apply them to some datasets and observe their behavior. The TA will first demonstrate the
results of the algorithms on several datasets, and then you will program them, replicate those results, and further
explore the datasets with the algorithms. You can use the textbook, lecture notes and your own notes.

Important: for RBF networks, develop your code so it works with inputs x € R” and outputs y € RP " for any
dimensions D, D’ > 1. This is particularly easy with RBF networks. For polynomials, focus on 1D regression
problems only, i.e., with inputs x € R and outputs y € R.

I Datasets

Firstly, construct your own toy datasets to visualize the result easily and be able to get the algorithm right. Take the
input instances {x,}?_; in R or R? and the labels {y,}2Y_; in R. Generate a noisy sample from a known function,
e.g. Yn = f(w,) + €, where €, ~ N(0,0?) and f(z) = ax + b or f(z) = sin(z).

Then, try the MNIST dataset of handwritten digits, with instances x € R (where D = 784). Create a ground-truth
mapping y = f(x) = Ax + b as follows (as in the previous lab about gradient descent and linear models):

e A random mapping with output dimension D’ e.g. take Ap:xp and bp,x; with elements in A(0, 1). @

Y

e A mapping that rotates, scales, shifts and possibly clips the input image x and adds noise to it, e.g. — V.
This makes it easy to visualize the result, since the desired output f(x) for an image x should look like x but
transformed accordingly.

II RBF networks for nonlinear regression

We minimize the least-squares error
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where A > 0 is a regularization user parameter which controls the smoothness of f, and f is an RBF network:
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where the radial basis functions {¢(-)}fL | are (proportional to) Gaussians with centroids {g, }HL , € RP and common
width o, and {wy,}f| C RP" are weights. We take ¢;(x) = 1 if we want to use a bias.
We will train RBF networks in an approximate but simple and fast way as follows:

1. Set the centroids {;,}_, in an unsupervised way using only the input points {x,}2_;, by simply selecting H

points at random. If you want, you can further refine this by using those points as initial centroids for k-means.

2. Set the width ¢ by hand to some reasonable value (we will cross-validate it, see below).

3. Given the centroids and width, the values ¢y (x,) are fixed, and the weights {wh}}?=1 are determined by opti-
mizing F, which reduces to a simple linear regression. We solve the linear system!:

(@87 + )W = dY” & W = (807 + A1) &Y” (3)
where @« n = (0r(Xn))hns Waxp = (Wi,...,wg)T and Ypun = (y1,...,¥n).

There are 3 hyperparameters for the user to set: the number of basis functions H, the width o, and the regularization
parameter A\. We set them by cross-validation using a grid search. For example, we can use H € {3,5,10,50},
o€ {272,2022 24} and A € {0,107°,1073,10~ !} (the actual values will depend on your problem, particularly for
o). We train an RBF network (on the training set) for each combination of values of (H, o, \) and pick the one with
lowest error on a validation set.

ICompare it with the case of linear regression (in a previous lab):
N
1
Objective function: E(W) = 5 Z lyn — Wxy, |2 Normal equations: (XXT)W =XY7T & W = (XXT)~1xYT.
n=1
The only difference is that now the inputs are ® g7« n instead of X p« v, and that we have the extra term on A.
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Implementation and exploration: toy problem Firstly, verify that optimizing the least-squares error (1) over
the weights {w, }/L, alone, given the fixed basis function values ¢y, (x,) forn =1,...,N and h = 1,..., H, can indeed
be done by solving the linear system (3). Then, implement the linear system solution in Matlab with 1insolve or the
“\” operator (you can also use inv but this is numerically more costly and less stable). You will need to write code
to compute the basis function values at each data point, ¢y (x,) forn=1,...,N and h =1,..., H and put them in a
matrix ®. Set the centroids {u, }¥_, and width o as described above.

Having done this, you can determine the weights given a training set, and the hence train an RBF network (no
need for iterative optimization or initial weight values). To visualize the results, create the following plots:

e Plot the dataset (y, vs z,,) and the RBF network f(x).

e Train RBF networks for a set of hyperparameter values (H, o, A) and plot their training and validation error.
Questions to consider:

e How does the RBF network look like if we vary one of the hyperparameters keeping the rest fixed, that is:

— if you increase H?
— if you increase o7
— if you increase A?

And, how does this affect the training and the validation error? For example, what value of H (or A, or o) gives
the lowest training error? How about the lowest validation error?

e What is the value of the RBF network f(x) for a point = that is far from any training point z1,...,zn?

e For a given point x, how many hidden units (i.e., BFs) have nonnegligible value ¢, (z)?

e What gives lower error: using a random subset of points as centroids for the RBFs, or running k-means?
Implementation and exploration: MNIST Select a small enough subset of MNIST as training inputs (using the
whole dataset will be slow). Apply the ground-truth linear transformation to the data to generate the output labels
y = f(x) = Ax+ b. Then proceed as with the toy dataset to compute the optimal solution exactly by picking a value
for (H,o,)\), picking H training images as basis function centroids, and solving the linear system to get the weights.

Then, consider the same questions as with the toy dataset. Note that the appropriate values for o, etc. may now be
significantly different. To visualize the results, create the following plots:

e Plot the training and validation error for several RBF networks (using different hyperparameter values).
e For each RBF network:

— Plot each centroid p;,, h =1,..., H, as a grayscale image.

— If using as linear mapping the rotation/shift/scale/clip transformation, which produces as output a (possibly
smaller) image y,, plot the following for a few sample images: the input image x,, and the output y,.
Compare with the result produced by the true linear mapping.

III Polynomial regression

We minimize the same error as in eq. (1) but using the canonical basis for polynomials as basis functions (in 1D):
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Since the basis functions have no parameters (width, centroids), ¢(x) = (1,z,2%,...,2%)7 is fixed given z, so finding

the optimal weights can be solved exactly as in eq. (3) by solving a linear regression. The hyperparameters H and A
are set by cross-validation as before.

Implementation and exploration: toy problem As in the RBF network case.



IV  What you have to submit

We provide you with 3 scripts 1ab08_rbf .m, 1ab08_rbf MNIST.m and 1ab08_poly.m, which set up the problem (toy
dataset or MNIST) and plot the figures mentioned earlier. You have to code the training for the RBF networks and
polynomials, and explore their behavior.

Follow these instructions strictly. Email the TA the following packed into a single file (1ab08.tar.gz or
1ab08.zip) and with email subject [CSE176] 1ab08:

e Matlab code for the functions rbftrain.m and polytrain.m. They train a nonlinear regressor (from D dimen-
sions to D’ dimensions) using a RBF network or a polynomial, respectively (for the polynomial use D = D’ = 1).
Use the templates provided. Read them carefully to understand what the functions should do, and the functions
sqdist.m, rbf.m and polyf.m (which we provide). The functions should work when called from the scripts
1ab08*.m listed above.

Note: you are not allowed to use any functions from the Matlab Toolboxes (in particular, the Statistics and
Machine Learning Toolbox, or the Neural Network Toolbox). You can only use basic Matlab functions.

e A brief report (2 pages) in PDF format describing your experience with the algorithms. The more extensive and
insighful your exploration, the higher the grade. Be concise. Don’t include code or figures, we can recreate them
by running your functions. Indicate the part that each member of the group did.


http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab08/lab08_rbf.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab08/lab08_rbf_MNIST.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab08/lab08_poly.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab08/lab08_rbf.m
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