
CSE176 Introduction to Machine Learning Lab: multilayer perceptrons
Fall semester 2016 Miguel Á. Carreira-Perpiñán

The objective of this lab is for you to program in Matlab gradient descent (GD) and stochastic gradient descent
(SGD) for a multilayer perceptron with a single hidden, sigmoidal layer (for nonlinear regression), apply them to some
datasets and observe their behavior. The TA will first demonstrate the results of the algorithms on several datasets,
and then you will program them, replicate those results, and further explore the datasets with the algorithms. You
can use the textbook, lecture notes and your own notes.
Important: when testing your code, focus on 1D regression problems only, i.e., with inputs x ∈ R and outputs y ∈ R,
and use small datasets (N = 10 to 100 points), because training MLPs is slow. Your actual code should still work
for multidimensional inputs and outputs; it is as easy as for dimension 1 if you use vectorized code in Matlab, and it
should look very similar to the actual equations.

This lab is very similar to the previous one (GD/SGD for linear regression or classification). The only difference is
that the model (an MLP) is nonlinear, and the gradient expressions are more complicated.

I Datasets

Construct your own toy dataset as a noisy sample from a known function, e.g. yn = f(xn) + εn where εn ∼ N (0, σ2)
and f(x) = ax+ b or f(x) = sin(x).

II (Stochastic) gradient descent for nonlinear regression with MLPs

Consider nonlinear least-squares regression given a sample {(xn,yn)}Nn=1 with xn ∈ RD and yn ∈ RD′
:

E(W,V; {xn,yn}Nn=1) =
1

2

N∑
n=1

‖yn − f(xn; W,V)‖2 =
1

2

N∑
n=1

D′∑
i=1

(yin − fi(xn; W,V))2

where f :RD → RD′
is an MLP with one hidden layer having H units, where the hidden units are sigmoidal and the

output units are linear:

fi(x) =

H∑
h=1

vihzh + vi0, i = 1, . . . , D′, zh = σ

(
D∑

d=1

whdxd + wh0

)
, σ(t) =

1

1 + e−t
.

The gradients (computed using the chain rule) of E wrt the weights are:

∂E

∂vih
=

N∑
n=1

(
− (yin − fi(xn)) zhn

) ∂E

∂whd
=

N∑
n=1

(D′∑
i=1

−(yin − fi(xn)) vih

)
zhn (1− zhn)xdn

.
Use them to implement gradient descent updates Θ ← Θ + ∆Θ with ∆Θ = −η∇E(Θ), where Θ = {W,V} are
the weights of the MLP. Likewise, implement stochastic gradient descent by summing only over a minibatch of points,
instead of over all N points. Proceed as in the previous lab on GD/SGD for linear regression, but now using the MLP
gradient.

Implementation and exploration: toy problem Firstly, verify that the gradients above are correct, by deriving
them with pen and paper. Then, implement GD and SGD by programming the updates with a “for” loop. Make sure
your implementation of the gradients is correct, or your algorithm will behave unpredictably. If your implementation
is correct, GD will monotonically decrease the error for a small enough step size η. Also, try to vectorize some of the
expressions or your code will be very slow.

Run them for, say, 100 iterations Θ(0),Θ(1), . . . ,Θ(100) from an initial Θ = Θ(0) (equal to small random numbers,
e.g. uniform in [−0.01, 0.01]). To visualize the results, create the following plots for each algorithm (GD and SGD):

• Plot the dataset (yn vs xn) and the MLP function f(x).

• Plot the error E(Θ) over iterations, evaluated on the training set, and also on a validation set.

Note: unlike with linear regression, where the error decreases quickly in a few iterations, with an MLP you will need
to run far more iterations (thousands to hundreds of thousands), even with a well-tuned η, to achieve convergence
with GD.

Consider the following questions:

1

• Proceed as in the previous lab (GD/SGD for linear regression) in comparing GD with SGD, observing the effect
on the error E of the learning rate η, minibatch size |B|, etc.

• Plot the training error and the validation error over iterations.

– The training error should decrease monotonically with GD if η is small enough, and will usually show flat,
wide regions (where the error decreases very slowly), and steep, short regions (where the error decreases
much more quickly). Why?

– How about the validation error?

• Train MLPs with H ∈ {1, 2, 5, 10, 30, 50} hidden units on the same dataset, and plot the resulting training and
validation error. How do they look like?

• For an MLP with H = 10 hidden units, try weight decay, i.e., adding to the error function a term λw2

for every weight w in the MLP (vih or whd), and hence adding λw to the corresponding gradient. Try
λ ∈ {0, 10−5, 10−2, 100}. How does the resulting MLP look like?

• Try different initial weights (randomly generated in [−0.01, 0.01]). Does GD converge to the same result every
time? Try using as initial weights random values in [−10, 10], what happens?

See the end of file lab07 linregr.m for suggestions of things to explore.
If you feel adventurous, implement momentum (to accelerate the training), or implement an MLP for binary

classification (where the output layer has a single, sigmoidal unit, and the objective function is the cross-entropy).

III What you have to submit

We provide you with a script lab07 linregr.m which sets up the problem (toy dataset) and plots the figures mentioned
earlier. You have to code the (stochastic) gradient descent algorithm and explore its behavior.

Follow these instructions strictly. Email the TA the following packed into a single file (lab07.tar.gz or
lab07.zip) and with email subject [CSE176] lab07:

• Matlab code for the functions mlpgd.m and mlpsgd.m. They train an MLP (from D dimensions to D′ dimensions)
by gradient descent or by stochastic gradient descent, respectively. Use the templates provided. Read them
carefully to understand what the functions should do, and the functions mlp.m and sigmoid.m (which we provide).
The functions should work when called from the script lab07 linregr.m listed above.
Note: you are not allowed to use any functions from the Matlab Toolboxes (in particular, the Statistics and
Machine Learning Toolbox, or the Neural Network Toolbox). You can only use basic Matlab functions.

• A brief report (2 pages) in PDF format describing your experience with the algorithms. The more extensive and
insighful your exploration, the higher the grade. Be concise. Don’t include code or figures, we can recreate them
by running your functions. Indicate the part that each member of the group did.

2

http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab07/lab07_linregr.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab07/lab07_linregr.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab07/lab07_linregr.m

	Datasets
	(Stochastic) gradient descent for nonlinear regression with MLPs
	What you have to submit

