
CSE176 Introduction to Machine Learning Lab: clustering algorithms
Fall semester 2016 Miguel Á. Carreira-Perpiñán

The objective of this lab is for you to program several representative clustering algorithms in Matlab, apply them to
some datasets and observe their behavior. The TA will first demonstrate the results of the algorithms on a toy dataset
and the MNIST dataset, and then you will program them, replicate those results, and further explore the datasets
with the algorithms. You can use the textbook, lecture notes and your own notes.

I Datasets

Construct your own toy datasets in 2D, such as Gaussian clusters with more or less overlap, or clusters with curved
shapes as in the 2moons dataset. You will also use the MNIST dataset of handwritten digits .
Since clustering algorithms are unsupervised, they do not use the class labels yn ∈ {0, . . . , 9}, only the instances x ∈ RD
(where D = 784). You can use the labels to see if they agree with the resulting clusters found by an algorithm.

II Implementing and using clustering algorithms

Implementation and plots Implement the following algorithms: k-means, EM for Gaussian mixtures with full
covariances, mean-shift and connected-components. The figure shows pseudocode for the algorithms. For algorithms
that take an infinite number of iterations to converge, stop them after maxit iterations (e.g. 100) or once the error
function changes by less than a small value tol (e.g. 10−3). With toy datasets in 2D, plot the following figures:

• For every algorithm: the dataset in 2D, with points colored according to the cluster they belong to.

• For k-means: the value of the error function after each iteration; it should decrease monotonically and stop in a
finite number of iterations.

• For EM with Gaussian mixtures: the value of the log-likelihood function after each iteration; it should increase
monotonically. To get a hard clustering, assign point xn to cluster k if p(k|xn) > p(j|xn) ∀j 6= k. To get a soft
clustering (which is more informative), plot p(k|x) itself for each cluster as a function of x ∈ R2 (as a color plot,
or as a contour plot for each cluster).

• For mean-shift: the contours of the kernel density estimate and its modes; and, for any given point xn, the value
of the density p(x) after each mean-shift iteration (initialized from xn), which should increase monotonically.

• For connected-components: the dataset in 2D, with points connected by edges in the ε-ball graph.

With the MNIST dataset, try EM with Gaussian mixtures (also k-means) with different K values and plot:

1. The mean µk of each cluster k = 1, . . . ,K, as a grayscale image, with its mixing proportion πk = p(k).

2. The posterior probabilities p(k|xn) for k = 1, . . . ,K for a given digit image xn, plotted as a bar chart.

Exploration Explore each algorithm in different settings. First, using the same dataset:

• Try different values of the user parameter (number of clusters K for k-means and Gaussian mixtures with EM,
bandwidth σ > 0 for mean-shift, scale ε > 0 for connected-components).

• For algorithms that depend on the initialization (k-means and EM), try different random initializations.

Then, explore your algorithms and plots with different datasets, number of clusters, clusters with more or less overlap,
with different shapes, etc. See the end of file lab04.m for suggestions of things to explore.

Advice

• Keep your code simple and vectorized. It should look as close as possible to the pseudocode in the figure.

• Some of these algorithms may be slow (in particular, EM and mean-shift). Use small datasets to get results fast,
and try to vectorize your Matlab code.

• For EM with Gaussian mixtures, add a small number to the diagonal of each covariance matrix Σk (e.g.
10−10 tr (Σk) /D) to make Σk be full rank. Do this right after updating Σk in the M step as in eq. (7.13).

• Useful Matlab functions (among others): mean cov find randn linspace scatter contour gplot bar.1

http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab04/lab04.m


III What you have to submit

Follow these instructions strictly. Email the TA the following packed into a single file (lab04.tar.gz or
lab04.zip) and with email subject [CSE176] lab04:

• Matlab code for the functions k means.m, gm EM.m, mean shift.m and cc eball.m, using the templates provided.
Read carefully the templates to understand what each function should do; the functions should work when called
from lab04.m. For EM, look into GMpdf.m (from the Gaussian mixture tools) to understand the structure we
use to store a Gaussian mixture.
Note: for each function, you should write your own code based on the pseudocode of the figure. You are not
allowed to use any functions from the Matlab Toolboxes (in particular, the Statistics and Machine Learning
Toolbox, or the Neural Network Toolbox). You can only use basic Matlab functions.

• A brief report (2 pages) in PDF format describing your experience with 3 datasets: 2moons, MNIST and one
other dataset of your choice.
The more extensive and insighful your exploration, the higher the grade. Be concise. Don’t include code or
figures, we can recreate them by running your functions. Indicate the part that each member of the group did.

k-means algorithm

{µk}Kk=1 ← K random points from {xn}Nn=1

repeat
for n ∈ {1, . . . , N}
k∗ = arg mink=1,...,K ‖xn − µk‖ closest mean

to xn

znk∗ = 1 and znk = 0 ∀k 6= k∗

for k ∈ {1, . . . ,K}
µk ←

∑N
n=1 znkxn/

∑N
n=1 znk

mean of points
in cluster k

until stop
return {µk}Kk=1, Z

Gaussian mixture estimated with EM algorithm

Initialize {πk,µk,Σk}Kk=1 from k-means
repeat

for n ∈ {1, . . . , N}
znk ← p(k|xn) = eq. (7.14) E step

for k ∈ {1, . . . ,K}
πk ← eq. (7.11), µk,Σk ← eq. (7.13) M step

until stop
return {πk,µk,Σk}Kk=1

Gaussian mean-shift algorithm

for n ∈ {1, . . . , N}
x← xn
repeat

∀n: p(n|x)← exp
(
− 1

2‖(x−xn)/σ‖2
)

∑N
n′=1

exp
(
− 1

2‖(x−xn′ )/σ‖2
)

x←
∑N
n=1 p(n|x)xn

until stop
zn ← x mode found from xn

end
return connected-components({zn}Nn=1,ε) aggregate

modes found

Connected-components algorithm (ε-ball graph)

Define an ε-ball graph:

• vertices x1, . . . ,xN

• edges (xn,xm)⇔ d(xn,xm) < ε,
∀n,m = 1, . . . , N .

Apply DFS to this graph.
return its connected components

Figure 1: Pseudocode for k-means, EM for Gaussian mixtures, mean-shift for the Gaussian kernel and connected-
components for an ε-ball graph (using a distance function d(·, ·)). In all cases, the input is a dataset x1, . . . ,xN ∈ RD
and a user parameter: number of clusters K for k-means and Gaussian mixtures with EM, bandwidth σ > 0 for
mean-shift, and scale ε > 0 for connected-components. Equation numbers refer to the textbook.
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http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/lab04/lab04.m
http://faculty.ucmerced.edu/mcarreira-perpinan/teaching/CSE176/Labs/code/GMtools.tar.gz
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