
CSE176 Introduction to Machine Learning Lab: PCA and LDA

Fall semester 2015 Miguel Á. Carreira-Perpiñán

The objective of this lab is for you to program PCA and LDA in Matlab and apply them to some datasets. The TA
will first demonstrate the results that PCA and LDA give on the MNIST dataset, and then you will program them,
replicate those results, and further explore the datasets with PCA and LDA. You can use the textbook, lecture notes
and your own notes.

I Datasets

You will use the MNIST dataset of handwritten digits . PCA will need the instances
x ∈ R

D (where D = 784), while LDA will need both the instances and their labels yn ∈ {0, . . . , 9}. You will need to
plot instances as grayscale images of 28× 28, as seen in previous labs; and “eigendigits” as color images. You will also
need to plot reduced-dimension instances zn ∈ R

L (where L is 1D, 2D or 3D) as scatterplots; color them differently
for each class, so we can tell them apart.

Additionally, you will apply PCA and LDA to the rotated-7 MNIST dataset .
Here, each digit ‘7’ should be considered as a class containing all its rotated versions.

II Implementing and using PCA

Important: when developing and testing your code, use toy examples for which you know the true solution ahead of
time (e.g. generate points along a line in 3D and add noise to them, then reduce to 1D or 2D with PCA). Once your
code works well there, try it on more difficult datasets.

• Assume a matrix X of D ×N (instances = columns).

• Start by computing the mean µ and covariance Σ of the data. Program this using loops, then check the result
with the Matlab functions mean and cov.

• Program PCA by computing the eigendecomposition of the covariance matrix Σ = UΛUT and setting W = U1:L.

• Program how to project a point x ∈ R
D onto the L principal component subspace (where 1 ≤ L ≤ D), and

how to reconstruct a vector z ∈ R
L into the original, data space. This is given by the PCA projection mapping

z = F(x) = WT (x− µ) and the reconstruction mapping x′ = f(z) = Wz+ µ, respectively.

• Verify that the covariance matrix in the projected space (that is, cov {z1, . . . , zN}) equals WTΣW, that it is
diagonal, and that the sum of its diagonal elements equals λ1 + · · ·+ λL.

• Plot the following figures:

1. The eigenvalues λ1, . . . , λD and the proportion of explained variance λ1+···+λL

λ1+···+λD

∈ [0, 1] as a function of the
number of dimensions used L (as in the textbook fig. 6.4).

2. The mean µ, as a grayscale image.

3. The MNIST dataset projected onto 2D (as in the textbook fig. 6.5). Use different colors/markers for different
digit classes, so we can recognize them.

4. The MNIST dataset projected onto 3D, colored as in the 2D plot.

5. The eigenvectors u1, . . . ,uL ∈ R
D, as color images (“eigendigits”).

6. A vector x and its reconstruction x′ = W(WT (x− µ)) + µ, both as grayscale images.

7. Vectors of the form µ ± αul for α > 0 (where 1 ≤ l ≤ D), as grayscale images. This shows what the
lth principal component subspace corresponds to in data space. It is equivalent to reconstructing vectors
z ∈ R

L that move along the lth PC axis.

• Explore the algorithm in different settings:

– Compute PCA on the entire MNIST dataset (all digits), then visualize it and reconstruct digits.

1



– Compute PCA on only the digits 1s, then visualize it and reconstruct digits (1s, 2s, etc.). The projection
on the first two PCs shows a clear structure, what does it correspond to? Why does the mean µ look the
way it does?

The following Matlab functions will be useful (among others): mean cov eig sort find linspace.

III Implementing and using LDA

• Assume a matrix X of D ×N (instances = columns) and a vector y of 1×N (class labels).

• Program how to compute the within-class and between-class scatter matrices SW and SB .

• Program LDA by computing the eigendecomposition of S−1

W
SB = UΛUT and setting W = U1:L.

• Program how to project a point x ∈ R
D onto the LDA subspace of dimension L (where 1 ≤ L ≤ K − 1). This

is given by the LDA projection mapping z = F(x) = WTx.

• Plot the following figures:

1. The eigenvalues λ1, . . . , λD and the proportion of explained variance λ1+···+λL

λ1+···+λD

∈ [0, 1] as a function of the
number of dimensions used L (as in the textbook fig. 6.4).

2. The mean of each class µk, as a grayscale image.

3. The MNIST dataset projected onto 2D (as in the textbook fig. 6.12). Use different colors/markers for
different digit classes, so we can recognize them.

4. The MNIST dataset projected onto 3D, colored as in the 2D plot.

5. The eigenvectors u1, . . . ,uL ∈ R
D, as color images (“Fisherdigits”).

• Explore the algorithm in different settings:

– Use datasets with different numbers of classes (different digits).

Questions to consider:

• How does the result of LDA differ from that of PCA? In particular, observe the 2D projections and the eigendigits
and Fisherdigits.

• How many eigenvalues are nonzero in LDA (and how many in PCA)? Why?
Remember that LDA applies if SW is invertible and L ≤ K − 1.

Practical advice:

• Machine learning algorithms can have a high time or space complexity, so to get a result in a few seconds you may need to run them
on small datasets. You can do this by selecting a random sample of a given dataset.

• Machine learning algorithms often are randomized. Likewise, toy datasets are usually generated randomly. To make sure you can
generate the exact dataset multiple times and run an algorithm and get the same result every time, fix the seed of the pseudorandom
number generator. In Matlab: rng(1778); where 1778 is the seed. You can also save a toy dataset for later use.

• Matlab tips:

– To suppress extra line feeds: format compact.

– To get more decimals: format long.

– To compare two matrices or vectors (by finding the largest difference): max(abs(A(:)-B(:))).

– To avoid distorted plots: daspect([1 1 1]).

– To plot grayscale images with values in [0, 1]: colormap(gray(256)); imagesc(I,[0 1]);

To plot images with negative and positive values: colormap(parula(256)); imagesc(I);

2


