
d
o
n
ot
d
is
tr
ib
u
te

CSE100 Algorithm Design and Analysis Homework set #1
Fall semester 2020 Miguel Á. Carreira-Perpiñán

Do not distribute. For use only of UC Merced CSE100 Fall 2020 students.

Total possible marks: 100. This set covers chapters 1–4 of the textbook Introduction to Algorithms,
3rd. ed., by Cormen et al.

Exercise 1: asymptotic behavior (20 points).

1. (10 points) Assume you have two computers, CA and CB, capable of performing 106 and 108 oper-
ations per second, respectively. Both computers run a set of algorithms whose precise complexities
f(n) are given below. Determine the size n∗ of the biggest input that can be processed in 1 second
for each computer, as in the example.

f(n) n∗ for CA n∗ for CB

3
√
n 1018 1024

10n+ 10
lg lg n

n log3 n+ n
n2

n ∗ 2n
2n

nn

n!
4n

The precise complexity tells you how many operations are performed to solve an instance of size
n. Assume each operation takes the same time and that the input sizes are natural numbers
1, 2, 3, . . .

2. (10 points) (Exercise 3.1-1 in the textbook.) Let f and g be asymptotically nonnegative functions
of n = 1, 2, 3 . . . (that is, f(n) ≥ 0 and g(n) ≥ 0 if n is sufficiently large). Using the basic
definition of Θ-notation, prove that max(f, g) = Θ(f + g). Hint : find values for the constants
c1, c2, n0 in the definition of Θ(·) and show it holds.

Exercise 2: (34 points). The following functions compute the factorial n! of a natural number n
using iteration and recursion, respectively:

Iterative-Factorial(n)

1 f = 1
2 for i = 2 to n
3 f = i ∗ f
4 return f

Recursive-Factorial(n)

1 if n == 1
2 return 1
3 return n ∗Recursive-Factorial(n− 1)

1. (10 points) Write a recursive function to compute the factorial using divide and conquer as in
Merge-Sort. That is, assuming n ≥ m, write a function Factorial(n,m) that computes
n(n− 1)(n− 2) · · · (m+ 1)m. The top-level call will be Factorial(n, 1).

2. (6 points) Prove the algorithm is correct, i.e., that Factorial(n, 1) = n!. Hint : use induction to
prove that Factorial(n,m) is correct.

3. (6 points) Write the runtime T (n) of Factorial(n, 1) as a recurrence.



d
o
n
ot
d
is
tr
ib
u
te

4. (6 points) Solve the recurrence and obtain T (n) in asymptotic notation.

5. (6 points) Is the runtime T (n) better than for Iterative-Factorial(n) orRecursive-Factorial(n)?
Explain.

Exercise 3: sorting algorithms and runtime (10 points). (Exercise 2.3-6 in the textbook.)
Observe that the while loop of lines 5–7 of the Insertion-Sort procedure in Section 2.1 of the book
uses a linear search to scan (backward) through the sorted subarray A[1 . . j − 1]. Can we use a binary
search (see Exercise 2.3-5) instead to improve the overall worst-case running time of insertion sort to
Θ(n lgn)?

Exercise 4: recurrent equations (36 points). (This is based on textbook problems 4.1 and 4.3.)
Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume that
T (n) is constant for n ≤ 2.

1. (6 points) T (n) = T (
√
n) + 1

2. (6 points) T (n) = 2T (n/4) + 1

3. (6 points) T (n) = 7T (n/2) + Θ(n2)

4. (6 points) T (n) = 2T (2n) + n2

5. (6 points) T (n) = T (n− 1) + n, base case: T (0) = 0

6. (6 points) T (n) = 3T (n/4) + n logn

Justify your answers. If you use the master theorem, specify which case and show that its hypotheses
are satisfied. If you use induction then you should prove induction hypothesis.

Bonus exercise: recurrent equations (10 points). Consider the recurrence

T (n) = aT (n/b) + f(n).

Case 3 of the master theorem requires that f(n) = Ω(nlogb a+ǫ) for some constant ǫ > 0 and that f(n)
satisfies the regularity condition af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large n.
Prove that the regularity condition is always satisfied if f(n) = nk. (This means we don’t need to check
it when f is a polynomial.)

Bonus exercise: recurrent equations (30 points). Consider the following particular type of
recurrence:

T (n) =

{

1, n = 1

aT (n/b) + nc, n > 1

where a ≥ 1 and b > 1 are integers, and k = logb n is integer (that is, we can only pick sizes n of the
form n = bk where k ≥ 0 is an integer). Use mathematical induction to prove that

T (n) =

{

nc(1 + logb n), if c = logb a
a

bc
n
log

b
a
−nc

a

bc
−1

, if c 6= logb a.

Hint : as a simpler example, see exercise 2.3-3.



d
o
n
ot
d
is
tr
ib
u
te

Consequently, prove the master theorem for this recurrence, that is, prove that

T (n) =











Θ(nlogb a), if c < logb a

Θ(nc lg n), if c = logb a

Θ(nc), if c > logb a.


