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Experimental run times of hash tables with open-addressing

The purpose of this project is to implement hash tables with open-addressing, to explore empirically their perfor-
mance under different situations (load factor, hash function, etc.), and to compare it with theoretical estimates. The
more careful your implementation and experiments, and the more insightful your comments about the measured
and theoretical run time, the higher your grade. Reread chapter 11 “Hash tables” in the textbook (in particular,
the sections listed in the course web page). The coding part of the project is a minor extension of labs 5 (hash
with chaining) and 6 (open-addressing), so it will be a small part of the grade. What is important (assuming the
code is correct) is to understand its performance empirically and in the context of the theoretical estimates.

Work to do

Throughout, the key values are assumed to be int values starting at 0, with special values −1 for nil (empty slot)
and −2 for del (deleted slot). We call m the size (number of slots) of the hash table, n the number of elements
in the table and α = n/m the load factor. All runtimes are assumed to be for a single key search (successful or
unsuccessful). Since the runtime for a search depends on the key being searched and the state of the table, in the
experiments below you should report the average of all the key searches in each case (e.g. search for all the keys
in S and report their average runtime).

Code

First, write code for the following programs in C or C++.

1. A function GenerateKeys to generate key values. This takes as input an integer m (the table size) and an
even integer n ≤ m (the number of keys to generate), and creates the following three arrays:

• S (keys in table): containing n/2 keys randomly in 1, . . . , k for k = m× 105.

• D (keys to delete): containing n/2 keys randomly in 1, . . . , k, but different from those in S (S ∩D = ∅).

• U (keys not in table): containing 105 keys randomly in k + 1 . . . , 2k.

Make sure that each of these 3 arrays contains distinct key values (no repetitions). The keys in these arrays
will be used in multiple experiments to insert, search and delete from a hash table.

2. Functions OA-Insert, OA-Search and OA-Delete that implement insert, search and delete in a hash
table with open addressing (section 11.4 in the textbook).

Then, write a function RunExpt that takes as input S, D and U and runs the following experiment, reporting the
average search times:

1. Create a hash table T and insert in it the n/2 keys from S, then the n/2 keys from D. Now α = n/m.

2. Run the following and measure for each the runtime:

• Successful search: search the keys in S (runtime ts).

• Unsuccessful search: search the keys in U (runtime tu).

3. Delete the keys in D from the table. Note α is now different, namely α = n/2m.

4. Again, measure the unsuccessful and successful search runtime (t′
s
and t′

u
).

The result of this experiment (which corresponds to the specific key sets S, D, U it was run on) is the four average
runtimes (ts, tu, t

′

s
, t′

u
).

Finally, write a function ClusterRunLengths to compute the distribution (histogram) of cluster run lengths in
the table (see p. 272 in the textbook about the problem of clustering in open addressing). This takes as input an
open-addressing hash table T (of size m) and returns an array R[1 . .m], where R[i] is the number of clusters of
length i in the table. A cluster of length i means i consecutive slots are occupied. For example, for a table T with
m = 11 slots XX..XX.XXX. (where X means occupied and . not occupied), R = 〈0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0〉, since
there are 2 clusters of length 2 and 1 of length 3. If you prefer, since R contains mostly zeros, you can output
instead a list of pairs (length,frequency) for the clusters found; in the example: (2, 2), (3, 1).



Experiments

The experiments consist of reporting the runtimes (ts, tu, t
′

s
, t′

u
) and the cluster run length histogram for given key

sets S, D and U (generated according to different load factors α) and using different hash functions. Specifically:

• Fix the table size at m = 220.

• Repeat the experiment for α ∈ {0.05, 0.1, 0.5, 0.8, 0.9, 0.95}, i.e., generate n = αm keys (half in S, half in D).

• For each experiment, try the following hash functions:

– Primary hash function h1(k): try

∗ the divisive method: h1(k) = k mod m

∗ the multiplication method with A = (
√
5− 1)/2: h1(k) = ⌊m(kA− ⌊kA⌋)⌋.

– Secondary hash function h2(k): try

∗ linear probing: h2(k) = 1

∗ double hashing: try h2(k) = 2k + 1 and h2(k) = 2k.

Analysis

Given the runtimes and cluster lengths that you have measured in the different experiments, analyze the results.
Here are some ideas to explore:

• Plot, as a function of α, your runtimes (successful and unsuccessful search, before and after deletion) and the
theoretical estimates of p. 274–276. Do the empirical and theoretical curves match well? If they do not, why
is that? Consider whether the following factors make a difference in the runtimes: whether doing deletions
or not; the hash function we use.

• Plot the histogram of cluster run lengths (again, in the different experiments). Comment on the results.

Further ideas: would the runtimes be very different if the keys are not chosen at random? How are the measured
runtimes affected by other processes running in the computer? What happens with multicore or multiple-CPU
systems? Etc. Be inquisitive.

Optional extensions

• When reporting runtimes (e.g. corresponding to searching for all the keys in S), report not just their average
runtime but also the maximum, minimum and standard deviation.

• Repeat several times the same identical experiment (e.g. successful search with α = 0.1) but with different
keys (generated using a different seed). This will allow you to obtain error bars (since no two runs will take
the exact same time) and include them in the plot.

• Implement a hash table with chaining using as hash function h1 above and repeat the experiments. For what
value of α does chaining give better search time than open-addressing?

• Repeat the experiments but generating keys in a nonrandom way (e.g. picked as 0, 1, . . . ). Comment on the
results.

• Change other things: the value of m, the sizes of U and D, the order in which we insert the keys in the table
(S then D, or D then S, or picking from both at random), etc.

What you have to submit

Submit the following (as a single file cse100.tar.gz, by email to the TA):

1. A brief explanation of what each group member did.

2. A report cse100.pdf of your results, including the plots and a concise but insightful discussion of your
analysis.

3. Your C or C++ code for the algorithms.

4. Give the basic specs for the computer that you used (processor, clock frequency, memory size, number
of processors, operating system). Note: all run times must be measured with the same computer and
(approximately) the same workload. I suggest you run your experiments in a single-core single-CPU system,
or that you make sure that the experiments’ code runs in a single CPU (see taskset in Linux).



Practical details

For all practical questions, see the TA.

• To generate random keys, use rand() in C. Use srand(seed); to set the seed to initialize the pseudorandom
number generator. Note: fix the seed to your student id# for all your experiments.

• Use the C gettimeofday() function to measure elapsed time, by bracketing your code with gettimeofday()

calls. For example:

#include <time.h>

struct timeval start,end; // time structure for starting and ending time

gettimeofday(&start,NULL);

THE SEGMENT OF YOUR CODE THAT YOU WANT TO MEASURE TIME FOR

gettimeofday(&end,NULL);

fprintf(stdout,"%f\n",(end.tv_sec - start.tv_sec) + (end.tv_usec - start.tv_usec)/1000000.0);

The quantum time in gettimeofday() is around 10 µs in Linux. This will be sufficient for computing average
times over a large number of searches. If you need to compute the time of a single search (for example, to
compute the maximum or minimum search time), the time resolution of gettimeofday() will not be sufficient.
In this case, you could try the functions clock_getres() and clock_gettime().


