
CSE100 Algorithm Design and Analysis Homework set #3
Spring semester 2014 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
15–16 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Note: for all numerical exercises, give only the final result. However, give a brief explanation of
how you do the computation. For example, for exercise 2.2 about the matrix-chain multiplication,
the caption of fig. 15.5 in the textbook illustrates how entry m[2, 5] is computed.

Exercise 1: segmented least squares problem (35 points). In the usual least squares
problem, we are given n points in the plane, (x1, y1), (x2, y2), . . . , (xn, yn) ∈ R

2, and we want to
find a line y = ax+ b that minimizes the sum of squared errors

E(a, b) =
n∑

i=1

(yi − (axi + b))2

(see left panel in the figure). The optimal line is given by a = xy−x y

x2
−x2

and b = y − ax, where we

define the following moments:

x =
1

n

n∑

i=1

xi, y =
1

n

n∑

i=1

yi, x2 =
1

n

n∑

i=1

x2

i , xy =
1

n

n∑

i=1

xiyi.

For the case n = 1, of the many lines with zero error we take a = 0 and b = y1 for definiteness.

1. (2 points) For the least-squares problem on n points, give the run time as a function of n
(using order notation) of evaluating E(a, b) (for given values of a, b).

In the segmented least squares problem, the points are assumed to lie roughly on a sequence
of several line segments (rather than a single segment). We are given n points in the plane,
(x1, y1), (x2, y2), . . . , (xn, yn), with x1 < x2 < · · · < xn, and we want to find a sequence of
lines that minimizes a tradeoff function E + cL, where 1 ≤ L < n is the number of segments,
E =

∑L

l=1
El is the sum of the sums of squared errors within each segment, and c > 0 is a given

constant. Each segment consists of a consecutive sequence of points, and each point belongs to
one and only one segment. This allows us to achieve a good fit of the segments to the points (E),
but also to have as few segments as possible (L). For example, for the right panel in the figure
(for a certain c value), the optimal solution consists of L = 3 segments consisting of points 1–7,
8–15 and 16–25, respectively, and it has a cost E + cL equal to

E1+E2+E3+3c =
7∑

i=1

(yi − (a1xi + b1))
2+

15∑

i=8

(yi − (a2xi + b2))
2+

25∑

i=16

(yi − (a3xi + b3))
2+3c.

2
1

3
4

7 8 9 14 15

16

25

...
...

...



2. (3 points) For the segmented least-squares problem, give a lower bound on the run time of
the brute-force approach that examines all possible solutions (i.e., all possible segmenta-
tions).

Solve the segmented least squares problem using dynamic programming:

3. (10 points) Write the value of an optimal solution as a recursive expression using the value
of optimally solved subproblems. Hint : the optimal substructure is very similar to the
rod-cutting problem.

4. (10 points) Write pseudocode that implements this solution top-down using memoization,
and prints the solution. Give its run time.

5. (10 points) Write pseudocode that implements this solution bottom-up by filling in a table
in order, and prints the solution. Give its run time.

Note: one of the lab assignments will ask you to implement the segmented least squares dynamic

programming algorithm.

Exercise 2: matrix-chain multiplication (25 points).

1. (7 points) (Exercise 15.2-2 in the textbook.) Give a recursive algorithm Matrix-Chain-

Multiply(A, s, i, j) that actually performs the optimal matrix-chain multiplication, given
the sequence of matrices 〈A1, A2, . . . , An〉, the s table computed by procedure Matrix-

Chain-Order, and the indices i and j. (The initial call would be Matrix-Chain-

Multiply(A, s, 1, n).) Assume you can use a function Matrix-Multiply(A,B) that
returns a matrix C = AB.

2. (10 points) Find an optimal parenthesization of a matrix-chain product whose sequence of
dimensions is 〈15, 30, 20, 5, 4〉. Fill in the m and s tables as in fig. 15.5 in the textbook.

3. (8 points) Give the result obtained using a greedy algorithm that picks the smallest local
cost pi−1pkpj over i ≤ k < j. Comment on whether this greedy algorithm always solves
correctly the matrix-chain multiplication problem or not.

Exercise 3: longest common subsequence (15 points).

1. (12 points) (Exercise 15.4-3 in the book.) Give a memoized version of LCS-Length (see
p. 394) that runs in O(mn) time.

2. (3 points) Which version is faster, top-down using memoization or bottom-up by filling in
the table? Hint : consider which subproblems are computed.

Exercise 4: Huffman codes (25 points). The following table gives the frequencies of each
character in a file with 1 000 characters.

α β γ δ ǫ ζ η θ

100 20 300 50 400 80 10 40

1. (2 points) How many bits do we need to store the file if using a fixed-length code?



2. (8 points) Show the code built by the Huffman algorithm, both as a tree and as a list
(character, codeword).

3. (2 points) How many bits do we need to store the file with this Huffman code?

Assume now that all the characters have the same frequency (= 125).

4. (8 points) Show the code built by the Huffman algorithm, both as a tree and as a list
(character,codeword).

5. (2 points) How many bits do we need to store the file with this Huffman code?

6. (3 points) Generalizing from this example, what can you say about the code built by the
Huffman algorithm for an alphabet with n = 2b characters each of which occurs with equal
frequency f? Explain your answer.

Bonus exercise: longest common subsequence (15 points). Construct the matrices c

and b as in fig. 15.8 in the textbook for the words SPANKING and AMPUTATION, and give a
longest common subsequence for them.


