
CSE100 Algorithm Design and Analysis Homework set #2
Spring semester 2014 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
6–12 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Exercise 1: heapsort (26 points). We consider Heapsort to sort an array in decreasing

order by using min-heaps.

1. (3 points) State the min-heap property.

Then, using the same notation as in the textbook, write pseudocode for the following functions
(where A is the min-heap):

2. (3 points) Min-Heapify(A, i), which assumes that the binary trees rooted at Left(i) and
Right(i) are min-heaps, but that A[i] may be larger than its children. Min-Heapify lets
the value of A[i] float down so that the subtree rooted at i obeys the min-heap property.

3. (2 points) Build-Min-Heap(A), which builds a min-heap on the input array A (overwrit-
ing it).

4. (2 points) Heapsort(A), which sorts the array A in decreasing order, based on Min-

Heapify and Build-Min-Heap.

Finally:

5. (10 points) State a loop invariant for Heapsort and use it to prove its correctness. Assume
Min-Heapify and Build-Min-Heap are correct.

6. (6 points) Give the runtime for Min-Heapify, Build-Min-Heap and Heapsort as a
function of the array size n. Explain your answers.

Exercise 2: decision tree for comparison sorts (15 points). Consider the Bubble-

sort(A) algorithm (problem 2-2 in the book), using the following pseudocode:

Bubblesort(A)

1 n = A. length
2 for i = 1 to n− 1
3 for j = n downto i+ 1
4 if A[j] < A[j − 1]
5 exchange A[j] with A[j − 1]

1. (5 points) Draw the decision tree corresponding to Bubblesort when running on an array
of n = 3 elements A = 〈a1, a2, a3〉 as in fig. 8.1 (keep “≤” on the left child and “>” on the
right child).

2. (2 points) Mark the execution path followed for the array A = 〈6, 4, 2〉, as in fig. 8.1.

3. (2 points) For the tree you drew, what is the depth for the best and worst cases? Comment
on the result.



4. (3 points) For a tree corresponding to an array with n elements, what would be the depth
for the best and worst cases? Comment on the result.

5. (3 points) For the tree you drew, how many leaves does it have? Compare this with n! and
comment on the result.

Exercise 3: hash tables (27 points). Consider a hash table with m = 11 slots and using
the hash function h(k) = ⌊m(kA− ⌊kA⌋)⌋ where A = (

√
5 − 1)/2 and k is a natural number.

Consider the keys k = 80, 20, 1, 49, 61, 10, 56, 6, 30 (in that order).

1. (3 points) Give h(k) for each of those keys.

Now, consider inserting those keys in the order given above into the hash table. Show the final
table in these two cases:

2. (12 points) Chaining using as hash function h(k).

3. (12 points) Open addressing using linear probing and the same hash function h(k).

Exercise 4: hash tables (10 points). We have a hash table T1 that uses chaining to resolve
collisions; it has m slots and contains currently n elements. We have another hash table T2 that
uses open addressing; it contains currently n elements and occupies exactly the same amount
of memory as T1. Now, we execute a search for a key k which is in neither table. On average,
in which of the two tables does the search take fewer operations? Hint : assume that pointers
and keys occupy each one word of memory, and that an unsuccessful search requires on average
1 + α(T1) operations for T1 and 1

1−α(T2)
operations for T2, where α is the load factor.

Exercise 5: binary search trees (22 points).

1. (10 points) Starting from an empty binary search tree, draw the final tree resulting from
the insertion of the following keys: 8, 17, 15, 10, 4, 16, 20, 2, 30, 7 (in that order).

2. (2 points) Do the inorder tree walk, printing the resulting keys.

3. (10 points) Starting from the tree obtained in the former question, draw the tree resulting
from the removal of the following keys: 17, 15 (in that order).

Bonus exercise: bucket sort (20 points). (Exercise 8.4-4 in the book.) We are given n
points in the unit circle, pi = (xi, yi), such that 0 < x2

i
+ y2

i
≤ 1 for i = 1, 2, . . . , n. Suppose that

the points are uniformly distributed; that is, the probability of finding a point in any region of
the circle is proportional to the area of that region. Design an algorithm with an average-case
running time of Θ(n) to sort the n points by their distances di =

√

x2
i
+ y2

i
from the origin.

Hint : design the bucket sizes in Bucket-Sort to reflect the uniform distribution of the points
in the unit circle.


