
CSE100 Algorithm Design and Analysis Homework set #1
Spring semester 2013 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
1–4 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Exercise 1: asymptotic behavior (20 points).

1. (10 points) Assume you have two computers, CA and CB, capable of performing 106 and
108 operations per second, respectively. Both computers run a set of algorithms whose
precise complexities f(n) are given below. Determine the size n∗ of the biggest input that
can be processed in 1 second for each computer, as in the example.

f(n) n∗ for CA n∗ for CB

lg lg n√
n 1012 1016

14n+ 4
n log3 n+ n
n2 + 7n
n10

2n

3n

n!
nn

The precise complexity tells you how many operations are performed to solve an instance
of size n. Assume each operation takes the same time and that the input sizes are natural
numbers 1, 2, 3, . . .

2. (10 points) Prove formally that f(n) = an2 + bn + c where a > 0 is Θ(n2). Hint : find
values for the constants c1, c2, n0 in the definition of Θ(·) and show it holds.

Exercise 2: sorting algorithms, correctness and runtime (44 points). Consider an
algorithm Insertion-Merge-Sort with the following pseudocode:

Insertion-Merge-Sort(A, p, r)

1 if p < r
2 q = ⌊(p+ r)/2⌋
3 Insertion-Merge-Sort(A, p, q)
4 Insertion-Merge-Sort(A, q + 1, r)
5 InsertionMerge(A, p, q, r)

where the InsertionMerge algorithm has the following pseudocode:

InsertionMerge(A, p, q, r)

1 for j = q + 1 to r
2 key = A[j]
3 i = j − 1
4 while i ≥ p and A[i] > key
5 A[i+ 1] = A[i]
6 i = i− 1
7 A[i+ 1] = key

1. (9 points) Prove that InsertionMerge solves the same problem as the Merge algorithm
of p. 30–31 in the textbook but works in place. Hint : use a loop invariant.

2. (3 points) Prove that Insertion-Merge-Sort sorts the input array A. Hint : use induc-
tion.

3. (6 points) Identify the best and worst case of InsertionMerge and compute the runtime
T (n) in asymptotic notation for each. Be explicit about summing the number of iterations
in the loops.

4. (8 points) Identify the best and worst case of Insertion-Merge-Sort and compute the
runtime T (n) in asymptotic notation for each. Give the recurrence explicitly for each.

5. (5 points) Imagine that the partition in Insertion-Merge-Sort in two subarrays is
(9
10
n, 1

10
n) instead of (1

2
n, 1

2
n). Give the recurrence and its runtime again (consider only

the best case).

6. (4 points) Is Insertion-Merge better than Merge? Is Insertion-Merge-Sort better
than Insertion-Sort or Merge-Sort? Consider the complexity in time and memory
for each case.

7. (9 points) Give the pseudocode for an algorithm Selection-Merge-Sort(A, p, r) that
modifies Selection-Sort(A) (exercise 2.2-2) in the same way as Insertion-Merge-Sort

modified Insertion-Sort, so that it can merge two sorted arrays. Identify its best and
worst case and compute the runtime T (n) in asymptotic notation for each. Based on this,
would this improve over Insertion-Merge-Sort? Explain.

Exercise 3: recurrent equations (36 points). (This is based on textbook problems 4.1
and 4.3.) Give asymptotic upper and lower bounds for T (n) in each of the following recurrences.
Assume that T (n) is constant for n ≤ 2.

1. (6 points) T (n) = T (9n/10) + n
√
n

2. (6 points) T (n) = T (
√
n) + 1

3. (6 points) T (n) = 2T (2n) + n2

4. (6 points) T (n) = 7T (n/2) + n2 + 3n+ 1

5. (6 points) T (n) = T (n− 1) + n

6. (6 points) T (n) = 2T (n/4) +
√
n

Justify your answers. If you use the master theorem, specify which case and show that its
hypotheses are satisfied. If you use recursion trees to find a good guess, verify the guess with
the substitution method.

Bonus exercise: recurrent equations (10 points). Consider the recurrence

T (n) = aT (n/b) + f(n).

Case 3 of the master theorem requires that f(n) = Ω(nlogb a+ǫ) for some constant ǫ > 0 and
that f(n) satisfies the regularity condition af(n/b) ≤ cf(n) for some constant c < 1 and all
sufficiently large n. Prove that the regularity condition is always satisfied if f(n) = nk. (This
means we don’t need to check it when f is a polynomial.)

Bonus exercise: recurrent equations (30 points). Consider the following particular type
of recurrence:

T (n) =

{

1, n = 1

aT (n/b) + nc, n > 1

where a ≥ 1 and b > 1 are integers, and k = logb n is integer (that is, we can only pick sizes n
of the form n = bk where k ≥ 0 is an integer). Use mathematical induction to prove that

T (n) =

{

nc(1 + logb n), if c = logb a
a

bc
n
logb a

−nc

a

bc
−1

, if c 6= logb a.

Hint : as a simpler example, see exercise 2.3-3.
Consequently, prove the master theorem for this recurrence, that is, prove that

T (n) =











Θ(nlogb a), if c < logb a

Θ(nc lg n), if c = logb a

Θ(nc), if c > logb a.

