
CSE100 Algorithm Design and Analysis Homework set #1
Spring semester 2012 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
1–4 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Exercise 1: asymptotic behavior (20 points).

1. (10 points) Assume you have two computers, CA and CB capable of performing 106 and 108

operations per second, respectively. Both computers run a set of algorithms whose precise
complexities f(n) are given below. Determine the size n∗ of the biggest input that can be
processed in 1 second for each computer, as in the example.

f(n) n∗ for CA n∗ for CB√
n 1012 1016

14n+ 4
2 + lg (n10)
−
√
n log3 n+ n

10nlg 2 − 1
n!

(2n)dn/5+1e

The precise complexity tells you how many operations are performed to solve an instance
of size n. Assume each operation takes the same time and that the input sizes are natural
numbers 1, 2, 3, . . .

2. (10 points) Prove formally that f(n) = an3 + bn + c where a > 0 is Θ(n3). Hint : find
values for the constants c1, c2, n0 in the definition of Θ(·) and show it holds.

Exercise 2: running time (38 points). Consider the following function, where A is an array
containing integers, u and v are integers with u < v, and the initial call is Fcn-X(A, u, v, 1, A. length).

Fcn-X(A, u, v, p, r)

1 if p > r
2 return 0
3 if p == r
4 if A[p] > v
5 return 1
6 elseif A[p] < u
7 return −1
8 else
9 return 0

10 q = bp+ (r − p)/2)c
11 return (Fcn-X(A, u, v, p, q) + Fcn-X(A, u, v, q + 1, r))

Answer the following questions concisely:

1. (5 points) What does the function do?

2. (10 points) Give a recurrence for its running time T (n) using asymptotic notation and solve
it. What can you say about its worst, average and best case?



3. (10 points) Write the function using an incremental (as opposed to divide-and-conquer)
approach.

4. (8 points) Give its running time T (n) in asymptotic notation.

5. (5 points) How much did T (n) improve using the incremental approach? Can you think of
a way to reduce the running time order?

Exercise 3: recurrent equations (42 points). (This is based on textbook problems 4.1
and 4.3.) Give asymptotic upper and lower bounds for T (n) in each of the following recurrences.
Assume that T (n) is constant for n ≤ 2.

1. (6 points) T (n) = T (2n/3) +
√
n

2. (6 points) T (n) = 4T (
√
n) + 1

3. (6 points) T (n) = 27T (n/3) + n3

4. (6 points) T (n) = 13T (n/2) + n3 + 3n
√
n+ 1

5. (6 points) T (n) = 7T (n/3) + n2

6. (6 points) T (n) = 2T (n/8) + n1/3

7. (6 points) T (n) = T (n− 1) + n

Justify your answers. If you use the master theorem, specify which case and show that its
hypotheses are satisfied. If you use recursion trees to find a good guess, verify the guess with
the substitution method.

Bonus exercise: recurrent equations (10 points). Consider the recurrence

T (n) = aT (n/b) + f(n).

Case 3 of the master theorem requires that f(n) = Ω(nlogb a+ε) for some constant ε > 0 and
that f(n) satisfies the regularity condition af(n/b) ≤ cf(n) for some constant c < 1 and all
sufficiently large n. Prove that the regularity condition is always satisfied if f(n) = nk. (This
means we don’t need to check it when f is a polynomial.)

Bonus exercise: recurrent equations (30 points). Consider the following particular type
of recurrence:

T (n) =

{
1, n = 1

aT (n/b) + nc, n > 1

where a ≥ 1 and b > 1 are integers, and k = logbn is integer (that is, we can only pick sizes n of
the form n = bk where k ≥ 0 is an integer). Prove the master theorem for this recurrence, that
is, prove that

T (n) =


Θ(nlogb a), if c < logb a

Θ(nc lg n), if c = logb a

Θ(nc), if c > logb a.

Hint : draw the recursion tree, indicating the tree levels, subproblem sizes and subproblem costs,
and then sum all the costs.


