Total possible marks: 100. Homeworks must be solved individually. This set covers chapters 6–12 of the textbook *Introduction to Algorithms*, 3rd. ed., by Cormen et al.

Exercise 1: min-priority queues (35 points). Using the same notation as in the textbook, write pseudocode to implement a *min-priority queue* using a min-heap, ensuring that all operations run in $O(\lg n)$. Specifically:

1. (3 points) State the min-heap property.

Then, write pseudocode for the following functions (where A is the min-heap):

2. (5 points) $\text{Min-Heapify}(A, i)$, which assumes that the binary trees rooted at $\text{Left}(i)$ and $\text{Right}(i)$ are min-heaps, but that $A[i]$ may be larger than its children. Min-Heapify lets the value of $A[i]$ float down so that the subtree rooted at i obeys the min-heap property.
 Note: write an *iterative* version (the textbook’s is recursive).

3. (2 points) $\text{Heap-Minimum}(A)$, which returns the element of A with the smallest key.

4. (5 points) $\text{Heap-Extract-Min}(A)$, which removes and returns the element of A with the smallest key.

5. (5 points) $\text{Min-Heap-Insert}(A, key)$, which inserts an element with the given key in A.

6. (5 points) $\text{Heap-Decrease-Key}(A, i, key)$, which sets the value of the element in node i to key (assumed to be smaller than the current key value).

7. (5 points) $\text{Heap-Increase-Key}(A, i, key)$, which sets the value of the element in node i to key (assumed to be greater than the current key value).

8. (5 points) $\text{Heap-Delete}(A, i)$, which deletes the element in node i from A.

Hint: modify accordingly the corresponding pseudocode for max-heaps from the textbook. You may also want to write max-heap implementations of Heap-Delete and Heap-Decrease-Key, which the textbook does not provide.

Exercise 2: sorting (15 points).

1. (8 points) Consider the following array of integers:

$$A = [345, 435, 876, 644, 137, 786, 758, 983, 521, 645, 231]$$

Sort it in ascending order using radix-sort, showing the array after each of the 3 sorting steps.

2. (7 points) What are the worst- and average-case running times for heapsort, quicksort and radix sort for an array with n digits?
Exercise 3: hash tables (28 points). Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 (in that order) into a hash table of length \(m = 11 \). Show the final table in these two cases:

1. (14 points) Chaining using as hash function \(h(k) = k \mod m \).
2. (14 points) Open addressing using linear probing and the same hash function.

Exercise 4: binary search trees (22 points).

1. (12 points) Starting from an empty binary search tree, draw the final tree resulting from the insertion of the following keys: 12, 34, 1, 45, 33, 27, 8, 30, 66, 41 (in that order).

2. (10 points) Starting from the tree obtained in the former question, draw the tree resulting from the removal of the following keys: 34, 33 (in that order).

Bonus exercise: (20 points). (Exercise 8.4-4 in the book.) We are given \(n \) points in the unit circle, \(p_i = (x_i, y_i) \), such that \(0 < x_i^2 + y_i^2 \leq 1 \) for \(i = 1, 2, \ldots, n \). Suppose that the points are uniformly distributed; that is, the probability of finding a point in any region of the circle is proportional to the area of that region. Design an algorithm with an average-case running time of \(\Theta(n) \) to sort the \(n \) points by their distances \(d_i = \sqrt{x_i^2 + y_i^2} \) from the origin.

Hint: Design the bucket sizes in BUCKET-SORT to reflect the uniform distribution of the points in the unit circle.