
CSE100 Algorithm Design and Analysis Homework set #2
Spring semester 2011 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
6–12 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Exercise 1: min-priority queues (35 points). Using the same notation as in the text-
book, write pseudocode to implement a min-priority queue using a min-heap, ensuring that all
operations run in O(lg n). Specifically:

1. (3 points) State the min-heap property.

Then, write pseudocode for the following functions (where A is the min-heap):

2. (5 points) Min-Heapify(A, i), which assumes that the binary trees rooted at Left(i) and
Right(i) are min-heaps, but that A[i] may be larger than its children. Min-Heapify lets
the value of A[i] float down so that the subtree rooted at i obeys the min-heap property.
Note: write an iterative version (the textbook’s is recursive).

3. (2 points) Heap-Minimum(A), which returns the element of A with the smallest key.

4. (5 points) Heap-Extract-Min(A), which removes and returns the element of A with the
smallest key.

5. (5 points) Min-Heap-Insert(A, key), which inserts an element with the given key in A.

6. (5 points) Heap-Decrease-Key(A, i, key), which sets the value of the element in node i
to key (assumed to be smaller than the current key value).

7. (5 points) Heap-Increase-Key(A, i, key), which sets the value of the element in node i
to key (assumed to be greater than the current key value).

8. (5 points) Heap-Delete(A, i), which deletes the element in node i from A.

Hint : modify accordingly the corresponding pseudocode for max-heaps from the textbook. You
may also want to write max-heap implementations of Heap-Delete and Heap-Decrease-
Key, which the textbook does not provide.

Exercise 2: sorting (15 points).

1. (8 points) Consider the following array of integers:

A = [345, 435, 876, 644, 137, 786, 758, 983, 521, 645, 231].

Sort it in ascending order using radix-sort, showing the array after each of the 3 sorting
steps.

2. (7 points) What are the worst- and average-case running times for heapsort, quicksort and
radix sort for an array with n digits?



Exercise 3: hash tables (28 points). Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59
(in that order) into a hash table of length m = 11. Show the final table in these two cases:

1. (14 points) Chaining using as hash function h(k) = k mod m.

2. (14 points) Open addressing using linear probing and the same hash function.

Exercise 4: binary search trees (22 points).

1. (12 points) Starting from an empty binary search tree, draw the final tree resulting from
the insertion of the following keys: 12, 34, 1, 45, 33, 27, 8, 30, 66, 41 (in that order).

2. (10 points) Starting from the tree obtained in the former question, draw the tree resulting
from the removal of the following keys: 34, 33 (in that order).

Bonus exercise: (20 points). (Exercise 8.4-4 in the book.) We are given n points in the
unit circle, pi = (xi, yi), such that 0 < x2

i + y2i ≤ 1 for i = 1, 2, . . . , n. Suppose that the points
are uniformly distributed; that is, the probability of finding a point in any region of the circle is
proportional to the area of that region. Design an algorithm with an average-case running time
of Θ(n) to sort the n points by their distances di =

√
x2
i + y2i from the origin.

Hint : Design the bucket sizes in Bucket-Sort to reflect the uniform distribution of the
points in the unit circle.


