
CSE100 Algorithm Design and Analysis Homework set #2
Fall semester 2009 Miguel Á. Carreira-Perpiñán

Total possible marks: 100. Homeworks must be solved individually. This set covers chapters
6–12 of the textbook Introduction to Algorithms, 3rd. ed., by Cormen et al.

Exercise 1: sorting (50 points). Consider the following array of integers:

A = [345, 435, 876, 644, 137, 786, 758, 983, 521, 645, 231].

You have to sort it in ascending order with each of the following algorithms, illustrating inter-
mediate results as indicated below:

1. Heapsort: show the following in the same form as in fig. 6.4 (but show each max-heap both
as an array and as an almost complete binary tree):

(a) (10 points) Show the max-heap produced by Build-Max-Heap (p. 157).

(b) (13 points) Show the max-heap just after each call to Max-Heapify during the
HeapSort loop (p. 160).

2. (12 points) Quicksort (non-randomized version where the pivot is always the last element):
draw a recursion tree corresponding to each recursive call to Quicksort, where in each
node you show the state of the array just after the call to Partition.

3. (8 points) Radix-sort: show the array after each of the 3 sorting steps.

(7 points) What are the worst- and average-case running times for heapsort, quicksort and radix
sort for an array with n digits?

Exercise 2: hash tables (28 points). Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59
(in that order) into a hash table of length m = 11. Show the final table in these two cases:

1. (14 points) Chaining using as hash function h(k) = k mod m.

2. (14 points) Open addressing using linear probing and the same hash function.

Exercise 3: binary search trees (22 points).

1. (12 points) Starting from an empty binary search tree, draw the final tree resulting from
the insertion of the following keys: 12, 34, 1, 45, 33, 27, 8, 30, 66, 41 (in that order).

2. (10 points) Starting from the tree obtained in the former question, draw the tree resulting
from the removal of the following keys: 34, 33 (in that order).

Bonus exercise: (20 points). (Exercise 8.4-4 in the book.) We are given n points in the
unit circle, pi = (xi, yi), such that 0 < x2

i
+ y2

i
≤ 1 for i = 1, 2, . . . , n. Suppose that the points

are uniformly distributed; that is, the probability of finding a point in any region of the circle is
proportional to the area of that region. Design an algorithm with an average-case running time
of Θ(n) to sort the n points by their distances di =

√

x2

i
+ y2

i
from the origin. (Hint : Design

the bucket sizes in Bucket-Sort to reflect the uniform distribution of the points in the unit
circle.)


