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DICTUM: Distributed Irrigation aCtuation with Turf

hUmidity Modeling
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Lawns make up the largest irrigated crop by surface area in North America and carry with it a demand for over
7B gallons of freshwater each day. Despite recent developments in irrigation control and sprinkler technol-
ogy, state-of-the-art irrigation systems do nothing to compensate for areas of turf with heterogeneous water
needs. In this work, we overcome the physical limitations of the traditional irrigation system with the devel-
opment of a sprinkler node that can sense the local soil moisture, communicate wirelessly, and actuate its own
sprinkler based on a centrally computed schedule. A model is then developed to compute moisture movement
from runoff, absorption, and diffusion. Integrated with an optimization framework, optimal valve scheduling
can be found for each sprinkler node in the space. In a turf area covering over 10,000ft2, two separate deploy-
ments with four weeks of fine-grained data collection show that DICTUM can reduce water consumption
by 23.4% over traditional campus scheduling, and by 12.3% over state-of-the-art evapotranspiration systems
while substantially improving conditions for plant health. In addition to environmental, social, and health
benefits, DICTUM is shown to return its investment in 16 to 18 months based on water consumption alone.
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1 INTRODUCTION

Only 1% of Earth’s water is fresh and available for use [4]. Due to its scarcity, there is high in-
centive to reduce its usage across the board. In North America, turf, also known as lawn, is the
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largest irrigated crop by surface area, covering over 128,000km2 [8] and was estimated in 2015 to
consume in excess of 9B gallons of freshwater each day [16]. With a historic drought afflicting
the western United States following a similar shortage in the southeast United States, improved
irrigation efficiency at this massive scale can help reduce the strain on limited freshwater reserves.

Although we wish to reduce water consumption as much as possible, the primary goal of these
irrigation systems is to maintain plant health. To keep turf healthy, a proper amount of water
must be periodically applied. Providing too little water to the turf will cause it to turn brown and
die. Although traditional irrigation control strategies generally over-irrigate to be safe, this can
cause its own problems. In the short-term, excess irrigation can cause increased waste caused by
evaporation and runoff, and in the long-term can cause root rot that will kill the plant. Furthermore,
over-watering can cause erosion of the surrounding soil and even leach unsafe fertilizer chemicals
beyond the root zone and into the ground water, as occurred in California’s Salinas Valley and
Tulare Lake Basin, investigated by Reference [27].

Improper irrigation is the cause of these issues. Great improvements in irrigation system design
have been made recently: new sprinkler heads apply water much more slowly to avoid runoff and
leaching [5], and new irrigation controllers schedule irrigation using weather data to take into
account the water lost each day due to evaporation and plant transpiration, known coupled as
evapotranspiration. Even the best control strategies still behave as though all turf requires the same
amount of water, when in fact there often exist large variations in soil type and depth, topography,
and direct sunlight. If this information were utilized, every location throughout the irrigated space
could be given the amount of water it needs. However, as the infrastructure of traditional irrigation
systems is usually configured for each valve to actuate many sprinklers, such a system could not
even make proper use of fine-grained water requirement information, as all sprinklers must be
actuated for the same amount of time.

Our contributions addresses both of these limitations. First, we develop a computationally light
model that uses characteristics of the irrigated space to analyze the fundamental causes of fluid
movement. This model is then integrated into an optimization framework to allow for optimal
valve scheduling to be computed. The second contribution is the development of the DICTUM
sprinkler node, capable of actuating its attached sprinkler, sensing the moisture in its surrounding
environment, and communicating wirelessly with its sister nodes in the environment. With our
experience of two large-scale irrigation system deployments over a total of seven weeks, with
four weeks of fine-grained data collection and monitoring, we demonstrate that the model-based
DICTUM system can help provide more precise irrigation control to turf areas, reducing water
usage and substantially improving the quality of service over common practice and state-of-the-
art control strategies.

2 RELATED WORK

To accomplish the minimization later described in Equation (10a), we must know how fluid moves
across and through soil. This is well studied in the field of soil physics; very accurate models
including Hydrus [7] and Comsol Multiphysics’ Subsurface Flow Module [1] exist, which solve
partial differential equations for pressures that exist between soil and water particles in the porous
media. Although very accurate, these models are designed to compute water flow and absorption
on a much smaller scale than what is necessary for approximate irrigation control. As such, they
each require heavy processing and take a tremendous amount of time to complete.

An overly complicated fluid model makes optimization unreasonable, so alternative methods are
considered to simplify this complex system. These methods include the incorporation of observa-
tions of an accepted fluid flow model into a simplified model through the use of Data Assimilation.
Used to predict states of advanced systems given a particular input such as weather forecasting [29]

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 41. Publication date: October 2019.



DICTUM: Distributed Irrigation aCtuation with Turf hUmidity Modeling 41:3

and large-scale hydrological patterns from satellite images [33], data assimilation is often used to
create approximated system models that can then be used for optimization. However, the immense
size and discontinuity of the solution space can lead to an approximated model that is unable to
reasonably predict outcomes of the system. Another option, called Lumped Element Modeling,
is a method of breaking complex problems into simpler “lumped” sub-components. This method
has been used to create a simplified model of fluid jets for prototype analysis [24] and to model
aortic blood flow from arterial pressure in humans [36], among other applications. Although such
simplifications sacrifice accuracy, these approximations can greatly improve performance.

Researchers in Reference [23] build a one-dimensional soil water balance model to simulate
the vertical movement of moisture in an irrigated space based on soil characteristics, irrigation
schedule, real-time weather data, and irrigation infrastructure. With this simple model of moisture
depth, an interactive tool was designed for homeowners and landscapists to allow quick evalua-
tion of an installed system. This system provides some key insight on moisture changes, such as
evapotranspiration, that take place on a daily timescale, but over-simplifies short-term effects like
runoff, which can provide key insights into the movement of water across the surface. Although it
provides evaluation of a particular schedule, no strategies are offered for schedule improvement.

In Reference [37], a model was created using a cellular automata approach that incorporated ir-
rigation, surface, and sub-surface flow. By analyzing this model using an optimization framework,
it was determined in simulation that system efficiency can be improved by increasing the granu-
larity of control. However, due to model complexity and problem size, the optimization framework
had difficulty finding a globally optimal solution with large numbers of timesteps and sprinklers.

Irrigation controllers exist that utilize one or more soil moisture sensors spread throughout the
turf [15, 19] to gauge need for irrigation. However, as these systems do not perform any modeling,
they can easily become mis-calibrated (from placing different sensors in regions of turf with differ-
ent soil depths, for instance). Furthermore, these systems still have the same physical constraints
as a traditional irrigation system; it can not target irrigation to regions that need more or less.

Work done in Reference [32] identifies potential improvements to agriculture irrigation systems.
On-site and remote control systems are discussed, as well as their learning curves, which may pre-
vent unskilled farmers from adopting them. Bottlenecks are recognized in system development,
standardization of technology, and business models that must advance before control system al-
ternatives become accepted. Although a control system is not introduced, this work goes to show
that control strategy improvements are necessary and highly sought after.

Becoming more prevalently used in irrigation, evapotranspiration technologies [17, 28] use
weather stations to monitor air temperature, humidity, and other factors to estimate water lost
to the environment throughout the day. Using this information, irrigation systems can use knowl-
edge of their sprinklers’ coverage to compute required on-time for water replacement. As this has
become widely adopted, it will be used as side-by-side comparison with the DICTUM system.

3 SYSTEM OVERVIEW

Figure 1 shows an overview of the DICTUM system architecture. Our irrigation control system
uses multiple modules to provide control to the space. To explain how these modules work to-
gether to create a fluid processing pipeline, we first describe their roles. This processing pipeline
is described at irrigation time each day, when schedule generation occurs.

Our deployment consists of a distributed network of sensing and actuation (DICTUM) nodes, in-
tegrated into the plumbing infrastructure of the irrigation system. Each DICTUM node is equipped
with a soil moisture sensor, a solenoid to control the flow of water, and a mote to provide radio
communication capabilities. To allow the DICTUM system to react to changing soil conditions, an
attached volumetric water content (VWC) sensor is periodically sampled from the environment
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Fig. 1. DICTUM system architecture.

by each sprinkler node in the space. This collected data is then routed through the wireless sensor
network to the Basestation, interfacing between the 802.15.4 network and another communication
medium such as an ethernet or 4G network. Once received, this data is then incorporated with the
sensor readings collected from other nodes to create a “snapshot” of the soil moisture across the
entire space.

Once the current state of VWC in the soil is determined, it is fed into the Moisture Model for
integration. The Moisture Model, described in detail in Section 4, contains a mathematical formu-
lation for moisture movement throughout the system. This model is all-inclusive, modeling the
characteristics of the irrigation system and soil characteristics within the space, providing means
to calculate the conductivity through the soil. With the VWC collected, the model is passed to the
Irrigation Schedule Optimizer for analysis.

The Irrigation Schedule Optimizer sets up and solves the following constrained optimization
problem: The fluid flow model is incorporated as equality constraints at each spatial location and
time, which must be satisfied for an optimal solution to result in a valid flow. To ensure ade-
quate moisture levels across the space and thus a high quality of service, a goal water-saturation
level provides inequality constraints at each spatial location at the end of irrigation. Although in
principle the PDEs defining the model are nonlinear, we linearize them to make the optimization
problem convex, without local optima, and easier to solve computationally. The final result is a
linear program that, although large (due to the discretization), can be solved accurately in a rea-
sonable time. As the objective function minimizes the total water consumption of the irrigation
system, the solution provides optimal activation schedules for each actuation node in the space
while maintaining minimum moisture levels.

Once the schedules are received by the Basestation, they are disseminated through the wireless
sensor network to their respective DICTUM node. Upon reception of a schedule, the Distributed

Control System routes power to the attached solenoid following the received schedule, allowing
water to flow to the sprinkler.

4 MODEL DEVELOPMENT

We wish to model a particular irrigation system and use this information to find improved control
techniques. This two-dimensional model incorporates water movement from the sprinkler heads
to the ground, across the surface, through the sub-surface, as well as absorption into the soil.
Although many models exist that describe one or more of these components, we present here the
first model that efficiently combines them.
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Fig. 2. Sample retention and hydraulic conductivity.

4.1 Soil Characteristics

We first emphasize the differences between soil and typical porous media. Generally, a porous
medium maintains constant characteristics across its entire range of saturation. However, in soils,
two functional relationships govern the retention and movement of water through soil. First, an
attraction exists between water and the soil particles, known as matric suction. When the soil
experiences very low levels of saturation, the matrix exerts a strong suction, trying to pull water
from the surrounding environment. The relationship between tension head and volumetric water
content is known as the “water retention curve,” a characteristic equation of the soil type as defined
in Reference [25]. This relationship, as shown on the left axis of Figure 2, strongly impacts the
movement of water through the soil, as dry soil will act as a sink until increased saturation is
reached. Second, the hydraulic conductivity of soil is dependent on the local volumetric water
content. Due to the matric suction, the soil will increasingly resist the movement of moisture as
the volumetric water content decreases. A typical relation for hydraulic conductivity is also given
in Reference [25] and is shown on the right axis of Figure 2.

4.2 Fluid Flow Model

We model water displacement above the soil surface and through the subsurface of the soil as flow
through two different porous media. Fluid flow through porous media is well studied, dating back
to the work of Henry Darcy [22], now known as Darcy’s Law. To model the movement through
the soil, we use Darcy’s Law for isotropic porous media:

�u =
κ

η
(−∇P + �τ ), (1)

where P is the pressure, �τ is the tangential component of gravity along the surface of the porous
media, �u is the fluid velocity averaged over the thickness of the soil, and other quantities as defined
in Table 1. This model assumes that porous media everywhere has the same dependence on water
content. As our model tracks soil moisture at small scales, such a simplification is more practical
than the alternative of collecting and analyzing samples across the entire space.

Darcy’s equation requires the determination of the pressure, which is generally linearly related
to the amount of water above the point in question. In our model (see Figure 3), we compute
the depth-averaged subsurface flow by considering a soil depth L. In this case, the mean pressure
driving flow includes the weight of water in the subsurface above a point, ρдLθ , the weight of
water on the surface, ρдh, where h is the height of water above the soil surface, and the matric

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 41. Publication date: October 2019.



41:6 D. A. Winkler et al.

Table 1. Model Variable Reference

Variable Usage Variable Usage

fk Actuation function of sprinkler k ρ Fluid density
ck Coverage of sprinkler k ζ Sub-surface boundary constant
θ Volumetric soil moisture content μ Surface boundary constant
h Surface fluid height αh Surface flow parameter
�u Velocity of water in soil K (θ ) Hydraulic conductivity
�v Velocity of water on surface ψ (θ ) Matric suction
κ Soil permeability Fs Fluid from sprinklers
κд Grass permeability �τ Tangential component of gravity
η Fluid viscosity θpwp Minimum θ for Healthy Plants
L Thickness of soil (m) ϕs Porosity of soil layer

Fig. 3. Physical model unit diagram.

suction of the soil ρдψ (θ ). We thus express the mean pressure in soil as P = ρд(h + Lθ +ψ (θ )).
We can therefore express the liquid velocity in the subsurface as

�u = −K (θ )∇h + K (θ )�τ

ρд
− K (θ ) (L +ψ ′(θ ))∇θ , (2)

where we defined the hydraulic conductivity as K (θ ) = ρдκ (θ )/η.
To track the time-rate of change of the volumetric soil moisture content, θ , we use the diver-

gence of the moisture flux, �uθ , and the inflow from surface water, ζhK (θ ), where ζ = 1/(L2ϕs )
is a proportionality constant mapping surface water height to volumetric content in the subsur-
face based on soil porosity and depth, calculated by balancing the pressure gradient with the soil
permeability. We thus have

∂θ

∂t
= −∇ · (θ�u) + ζhK (θ ). (3)

As the velocity, �u, is itself the gradient of the volumetric soil moisture content, the movement of
water will effectively behave as a diffusive process, moving sub-surface moisture towards areas
of lower concentration. With the inclusion of a gravity term, �τ , in the velocity equation, water
will tend to move in the direction of steepest descent. Last, by allowing water to move through
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the boundary from the surface into the sub-surface, we allow irrigation on the surface of the soil
to positively affect the amount of water moving through the sub-surface. Together, these terms
result in sub-surface water movement that realistically depends on volumetric water content, local
topography, and surface conditions.

In addition to tracking the soil moisture, we need to determine the height of the surface water,h.
Depending on the species of lawn chosen to model, a square inch of turf can have tens to hundreds
of blades of grass, each of which will impede the movement of water across the surface of the soil.
By comparing the inertia of the fluid and the drag forces caused by the blades of turf, we find
that for surface water velocities less than 1cm/s, the surface flow through the turf can be modeled
as fluid flow through a (very) porous medium. Additional information and the calculations that
support this approach can be found in Appendix A. The velocity of water through the turf averaged
over the height h, denoted by �v , is therefore computed using Darcy’s Equation for isotropic porous
media, as was done for the sub-surface velocity in Equation (2):

�v =
κд

η
(−ρд∇h − �τ ) = −αh∇h −

κд

η
�τ , (4)

where the fluid density, permeability, and gravity terms have been absorbed into αh . Similarly to
sub-surface movement, the velocity through the layer of grass is dependent on the orientation of
the surrounding topography, as well as the viscosity and density of the fluid.

The permeability used in Equation (4), κд , is not as well defined as that of the sub-surface fluid
flow. The shape, size, and density of the grass layer is dependent on the species of grass, as well
as its health. Research has been conducted [21, 34] for the application of filter design that defines
the permeability of a fibrous media based on its overall porosity and the size of the fibers. Using
the proposed method, we find an approximate permeability of 10−5m, a value similar to that of
well-sorted gravel. This completes the description of the velocity of surface water, and we may
use this velocity to keep track of the height of water on the surface:

∂h

∂t
= −∇ · (h�v ) + Fs − μhK (θ ),

Fs =

n∑
k=1

ck fk (t ),
(5)

where Fs is the rate of irrigation, determined using the activation fk (t ) of sprinkler k at time
t and coverage ck of sprinkler k . The amount of water lost to soil is the same as that added to
soil moisture, converted from soil moisture to pure water, where μ = ζ Lϕs/ϕд , with ϕs ,ϕд as the
porosities of soil and grass, and L is the soil depth. We note that evaporation and leaching terms
were not included in our formulation, due to the way our case study was conducted. At the request
of campus authorities, all irrigation was performed in late evening, providing ample time to absorb
into the soil and allowing only minimal evaporation to occur. Although these terms are omitted
in the present study, they could easily be introduced for an application that requires them.

4.3 Boundary and Initial Conditions

For the PDE-based model to accurately represent the movement of moisture through the turf and
soil, we must also specify boundary conditions. Primarily, these boundary conditions must capture
how moisture moves in and out of our domain on the sides and on the bottom. In our deployment
location, the turf is a sod layer with a thickness of approximately 1.5 inches. Below this sod layer
lies a thick layer of clay. As the hydraulic conductivity of clay is 60–3700× smaller than the con-
ductivity of a loamy soil [25] and our optimization only includes movement of water within the
first couple of hours following the start of irrigation, we consider that leaching into deeper soil
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is negligible, and thus omitted. The boundary conditions on the sides of the surface assume an
expanse of identical surface without fluid so that h = 0. With this constraint, any water on the
surface located directly adjacent to the boundary will begin to lose moisture in the direction of
the boundary subject to gravity. Likewise, the boundary conditions for the sides within the soil
layer assume a surround of soil with a fixed volumetric water content of θ = θpwp, the minimum
volumetric content to maintain turf health. Any moisture within the soil adjacent to the boundary
will lose or gain moisture in the direction of the boundary subject to gravity or suction effects.

In addition to those boundary conditions, we must also provide an initial state of the system as
a starting configuration. As we irrigate once daily, it is assumed that there is ample time for all
surface water to be absorbed into the soil. As such, the initial condition for surface moisture is set
to zero. The soil moisture content, however, must be measured from the soil to provide an accurate
snapshot of the moisture distribution prior to irrigation. To provide this, current data from each
sensing node is referenced and fed into the model. As the sensors are coarsely distributed spatially
throughout the area, the data is upsampled to the same granularity as the optimization problem
using a bilinear interpolation.

4.4 Fluid Flow Model Simplification

We simplify the model in two ways for reasons of computational efficiency. First, we linearize the
model PDEs. Although this is not necessary if one only wants to solve the PDEs to obtain the flow
over time given a schedule, it considerably facilitates the numerical optimization over the sched-
ule. Nonlinear equality constraints make the feasible set nonconvex and give rise to local optima,
which complicate finding a good optimum. They also require nonlinear optimization, which is
slower. Second, we discretize the spatial and temporal domains and approximate the derivatives
using finite differences. With these simplifications, since the objective function and inequalities
are already linear in our application, the resulting optimization problem is a linear program for
which efficient solvers that can handle millions of variables and constraints are available. As seen
later, this allows us to obtain a valid schedule in a relatively small amount of time.

4.4.1 Fluid Flow Model Linearization. The goal of the linearization is to characterize each
equation in the model in terms of linear combinations of optimization variables. To remove
non-linearities arising from optimization variables multiplied by each other, we make reason-
able assumptions about the behavior of the system to substitute these non-linearities with linear
counterparts.

We break each optimization variable into a base value, with subindex 0, and a small deviation,
denoted with a hat. For example, the volumetric moisture content, θ , is rewritten in the form
θ = θ0 + θ̂ . Each occurrence of the original four optimization variables is replaced with a similar
representation and simplified to achieve the following four linear equations, where we define a
function φ (θ ) = K (θ ) (L +ψ ′(θ )) to simplify notation:

∂h

∂t
= −∇ · (ĥ�̂v + ĥ�v0 + h0 �̂v + h0�v0) + Fs − η

(
h0K (θ0) + h0K

′(θ0)θ̂ + ĥK (θ0) + ĥK ′(θ0)θ̂
)
, (6)

∂θ

∂t
= −∇ · (θ̂ �̂u + θ̂�u0 + θ0�̂u + θ0�u0) + ζ

(
h0K (θ0) + h0K

′(θ0)θ̂ + ĥK (θ0) + ĥK ′(θ0)θ̂
)
, (7)

�̂u = −K (θ0)∇ĥ − K (θ0)∇h0 − K ′(θ0)θ̂∇h0 − K ′(θ0)θ̂∇ĥ + K (θ )�τ

ρд
− φ (θ0)∇θ0 (8)

−φ (θ0)∇θ̂ − φ ′(θ0)θ̂∇θ0 − φ ′(θ0)θ̂∇θ̂ − �u0,

�̂v = −αh∇h +
κд

η
�τ − �v0. (9)

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 41. Publication date: October 2019.



DICTUM: Distributed Irrigation aCtuation with Turf hUmidity Modeling 41:9

Fig. 4. Accumulated model error across irrigation period for each day of experiment.

As we assume that the deviations are small relative to the base value, the underlined terms that
represent the nonlinearities of the original formulation should be much smaller than other terms
appearing in the equations and are ignored. As h0�v0 in Equation (6) and θ0�u0 in Equation (7) do
not change spatially, the divergence of these terms is zero as well, so they are omitted.

4.4.2 Fluid Flow Model Discretization. The derivatives appearing in our modeling equations are
approximated with finite differences. We use forward differences for the time derivatives for θ and

h; for example, dθ/dt ≈ θi, j,t+1−θi, j,t

Δt
, where Δt is the time interval size and t is the temporal index,

with t = 0, . . . ,Nt . We use centered differences for the spatial derivatives for θ and h; for example,

dθ/dx ≈ θi+1, j,t−θi−1, j,t

2Δx
, where Δx is the spatial grid size and i, j are the indices of a spatial cell for

i = 0, . . . ,Nx and j = 0, . . . ,Ny . Consider the discretization on a continuous range [0, Lx ], where
length Lx = Nx ∗ Δx in the x direction. The entire range is broken into Nx segments of length Δx .
This discretization is performed on all variables of our linear model equations, resulting in the six
equations found in Appendix B.

4.5 Model Accuracy

Across four weeks of DICTUM system deployment, we track the evolution of soil moisture in the
system in response to the valve actuations chosen by the model-based optimization of the DICTUM
system. As later described in Section 5, each day an optimization problem is solved that finds valve
schedules that will minimize system water consumption while maintaining adequate moisture
levels everywhere in the space. In addition to the optimized valve schedules, this optimization
also produces the predicted sequence of soil moisture levels that will occur during irrigation using
the PDE model. To determine the accuracy of the PDE model, each day, we compare the final
moisture level predicted by the model in optimization to the true final moisture levels experienced
across the space after irrigation following the optimized schedules. Each day, we track the root
mean square error (RMSE) between the predicted and true final moisture values and normalize it
across the range of moisture levels experienced in this dataset, a range of 17% volumetric content
in this particular experiment. These errors, tracked each day, can be seen in Figure 4, where we can
see the error in the first days of the deployment can reach as high as 25%. This is in part due to the
coarseness of the initial moisture distribution measurements. Moreover, as we show in Section 7,
the first days of an experiment tend to be where the control strategy must correct for poor initial
moisture conditions of the space, and in this case, we suspect that these atypical initial conditions
tend to reduce the accuracy of the model. This is supported by the fact that as the system runs and
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Fig. 5. Average model error that accumulates over a 60-second window in each day of experiment.

guides moisture conditions into a more typical range, the daily model error reduces to the order
of ∼10% in the last several days of Figure 4.

In its current operation, the DICTUM system is used once at irrigation time to optimize valve
schedules for the day’s irrigation. However, if the optimization performance allows for it, it would
be preferable for the system to also perform intermediate schedule optimization using freshly
sensed moisture values across the space in the middle of irrigation, to correct for error in the
PDE model. To determine the effect this re-correction would have on model accuracy on the same
historical data as the previous error analysis, we consider a system that uses fresh data and re-
computes optimization at every 60-second control timestep. Then, considering the same metric as
before, we compute the average model error that is able to occur within this 60-second interval
for each day in the experiment. Figure 5 shows that the average error tends to be between 1%
and 2% of the true value, indicating that using re-correction in the DICTUM system, on average,
the predicted moisture level will be no more than 2% away from the true moisture level in the
space, a significant accuracy improvement in comparison to the 10%–25% error possible when no
re-correction is done as shown in Figure 4.

As we discuss at length in Section 2, there are no existing models that have the features required
for a model-based optimization in irrigation control; for optimization, we require a programmatic
interface, the ability to model both sub-surface and surface fluid as well as the movement between
the two, and relatively high performance to make schedule optimization tractable. Although the
model used in the DICTUM system has some error in operation, it meets all the requirements for
the system to function. Despite these imperfections, we later demonstrate in Section 7 that the
DICTUM system is able to achieve significant system benefits in both efficiency and quality of
service.

5 OPTIMIZATION OVER THE SCHEDULE

For use as an irrigation control system, we must now use our model from Section 4 to produce
optimal sprinkler scheduling for the system. The objective of this optimization is to produce a
schedule that provides enough moisture at all points in the space to maintain health while mini-
mizing system water consumption.

Our optimization problem is the following linear program (LP) with variables defined in Table 2:
The objective function is total water spent over a period Nt of time. We define fk (t ) as a binary
function that equals 0 if sprinkler k is off at time t and 1 otherwise, then the water spending is
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Table 2. Optimization Variables

Variable Description
i, j Spatial index ∈ {0, . . . ,Nx }, {0, . . . ,Ny }
t Temporal index ∈ {0, . . . ,Nt }
k Sprinkler location index ∈ {1, . . . ,K }
fkt Sprinkler k actuation at time t ∈ {0, 1}
h (i jt ) Height of water on surface
θ (i jt ) Soil volumetric water content
θinitial(i j ) Sensed soil moisture at time t = 0, upsampled to PDE grid Nx × NY

ux
(i jt )

u
y

(i jt )
Soil water velocity, x, y direction

vx
(i jt )

v
y

(i jt )
Surface water velocity, x, y direction

proportional to
∑K

k=1

∫ Nt

0
fk (t )dt . Discretizing over time gives as objective function

∑K,Nt

k,t=0 fkt ,
where fkt are K × Nt optimization variables (the sprinklers’ schedule).

We have as additional optimization variables the values of h,θ ,ux ,uy ,vx ,vy , (6 variables) at
each spatiotemporal cell, with a total of Nt × Nx × Ny × 6 variables. So, the complete set of opti-

mization variables is { fkt ,hi jt ,θi jt ,u
x
i jt ,u

y
i jt ,v

x
i jt ,v

y
i jt }

Nx ,Ny,Nt

i, j,t=0 .
The equality constraints arise from the necessity of the joint values of these variables to satisfy

the fluid flow PDEs everywhere in time and space. There are 6 PDEs, hence, we have 6 equality
constraints for each spatiotemporal cell. They are given by the linearized, discretized PDEs of
Appendix B. As each constraint involves only 4 variables, because of the spatial neighborhood
relation induced by the finite differences, the matrix of equality constraints is sparse.

As discussed in Section 4.3, we initialize our soil fluid levels at time t = 0 with the most recent
soil moisture levels sampled across the space with our distributed sensors, upsampled to the spatial
discretization level of our PDE model with a bilinear interpolation. This upsampled soil moisture
snapshot is defined in Table 2 as θinitial and is used to constrain the soil moisture levels at time
t = 0 as shown in Equation (10e). Similarly, we constrain the surface water height to be zero at all
locations at the beginning of irrigation as shown in Equation (10f), as irrigated moisture will have
been absorbed into the soil well before the next irrigation is to occur.

The inequality constraints define the goal state of the system; namely, a schedule must provide
volumetric water content in the soil exceeding the minimum water content plants need, θpwp, and
be within prescribed lower and upper limits θl and θu. These constraints are of the bound type, i.e.,
they have the form “variable ≤ constant” for each variable. The LP is defined as follows:

min
{fkt ,hi jt ,θi jt ,u

x
i jt ,u

y
i jt ,v

x
i jt ,v

y
i jt }

Nx ,Ny ,Nt
i, j,t=0

K∑
k=1

Nt∑
t=0

fkt s.t. (10a)

0 ≤ fkt ≤ 1, k = 1, ...,K, t = 0, ...,Nt , (10b)

θl ≤ θi jt ≤ θu, i = 0, ...,Nx , j = 0, ...,Ny, t = 0, ...,Nt , (10c)

θpwp ≤ θi jNt
, i = 0, ...,Nx , j = 0, ...,Ny , (10d)

θi j0 = θinitial,i j , i = 0, ...,Nx , j = 0, ...,Ny , (10e)

hi j0 = 0, i = 0, ...,Nx , j = 0, ...,Ny . (10f)

PDE model equations (12)–(17)

The PDE model equations are as calculated in Section 4.4.2 and can be found in Appendix B.
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Fig. 6. Percent of actuations requiring rounding across deployment 1 (left of red line) and deployment 2
(right of red line).

Fig. 7. Daily effect of rounding on sprinkler on-time across deployment 1 (left of red line) and deployment
2 (right of red line).

The optimization variables fkt represent the binary actuation of a physical water valve, which
makes the problem an integer linear program (ILP). ILPs are NP-complete and must be approx-
imated in practice. Here, we simply relax them to the continuous LP by letting each variable be
real in [0,1] and then rounding them to integer values for use in the physical system. Although
other approaches exist that can give better approximations (such as branch-and-bound), they are
impractical for the size of our problem. While this method will introduce some error, it is expected
to be small relative to errors introduced due to the model simplifications discussed in Section 4.4.
Furthermore, we found across our two deployments that the optimal schedules tend to leave the
sprinklers on for long periods of time, with optimal values of fkt on the 0/1 boundary. Figure 6
shows the percent of fkt values that do NOT lie on the 0/1 boundary and thus require rounding; it
can be seen that on the worst day, just over 1% of actuations require rounding. By then comparing
the optimal schedules before and after their values are rounded, we can determine the effect this
rounding has on the schedules used for irrigation. Figure 7 shows that on the worst day of our ex-
periments, this rounding caused less than 1s of deviation in our schedules, which is insignificant,
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Fig. 8. Sensing and actuation node locations.

as irrigation takes nearly an hour each day. Interestingly, a higher percent of actuations require
rounding in the first deployment but do not lead to an increased effect on the sprinkler on-time.

The discretization in space and time results in a large number of variables and constraints. For
example, using a coarse spatial grid of 10 × 10 with 100 timesteps results in 10,000 cells, and so
60,000 variables (plus 100×K schedule variables for K sprinklers), 60,000 equality constraints, and
10,000 inequality constraints. Fortunately, the equality constraints are sparse and the inequality
constraints are simple bounds. In the initial use of this system [38], Stanford’s CVX convex op-
timization library [26] was used to solve the LP due to its convenient programmatic interface.
However, we quickly realized that its performance suffered for large optimization problems such
as ours, taking on the order of an hour to find optimal schedules even at a very low spatial/temporal
discretization level. Most of this run-time was spent setting up the constraints and variables. The
optimization codebase was later ported to the Julia programming language [18] for its similar ease
of use and much improved speed (both in setting up the data and in solving the actual LP). A
performance comparison between these two tools can be found in Section 5.2.

5.1 Proof-of-concept Simulation

As the model is integrated into the optimization framework, we can perform a proof-of-concept
experiment to ensure optimization produces schedules that follow intuition. Figure 8 shows the
topography used to test and node locations, made to resemble the hillside used in our case study,
as shown in Figure 11. The hillside was modeled with soil characteristics as would be found in the
deployment location, and the optimization was performed. The schedule produced can be seen in
Figure 9(a), where the dark blocks correspond to active sprinklers as time progresses on the x axis.
As this is an example problem, the time is purposefully unitless, as it does not represent a real
scenario. This schedule can be observed to favor irrigation at the top of the hill and favor Nodes 1
and 7 least, as they are located in the bottom corners. This follows intuition, as any unused water
at the top of the hill will move away as runoff and benefit the downhill turf.

To continue the example, the soil was adjusted to mimic a less-absorbent clay and reduce
its thickness. The thin soil requires less water, but as the clay is less absorbent, watering all at
once would cause most water to be lost as runoff. The schedule produced in response to this
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Fig. 9. Example of optimized schedules.

environmental change is shown in Figure 9(b), with the dark blocks corresponding to active
sprinklers. The optimizer finds a solution that causes actuation to occur intermittently, making
irrigation non-continuous. As the less-absorbent soil causes runoff to occur much more dramati-
cally, the optimal solution prevents the lower sprinklers from actuating at all, allowing the runoff
from above to provide adequate moisture to the region below.

5.2 Effect of Model Granularity

As discussed in Section 4.4.2, we must select both a temporal and spatial discretization level for our
discretized moisture movement model, which will affect both the tractability of the problem and
the accuracy of the model. Although the use of the slower CVX during our physical deployments
prevented a thorough analysis, with the initial moisture conditions of each day of our deployments,
we can re-create the identical optimization problem that would have been run on each day of our
deployment in the new Julia optimization framework and vary the discretization. The resulting
schedule could then be run using the maximum spatial-temporal granularity model available as
ground truth to see the effect of using a lower granularity model when solving the optimization
problem and corresponding solution schedule.

To consider the effect granularity has on performance, optimization is run for each day of the
deployment using several temporal and spatial discretization levels, and the run-time is recorded as
shown in Figures 10(a) and 10(b), respectively. When varying the spatial discretization, we fix the
temporal discretization to a very fine level; and likewise when varying the temporal discretization,
we fix spatial discretization to a very fine level. As we expect, a very fine discretization level in
both time and space results in the highest run-time of just a couple of minutes, with reduced
granularity allowing the problem to be solved much faster, as a rougher discretization reduces
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Fig. 10. Discretization effects across first (left of red line) and second (right of red line) deployments. Lower
is better for all metrics.

the number of optimization variables and constraints that must be evaluated by the optimizer. In
addition, we consider the run-time of the CVX framework used in our deployments in comparison
to the Julia framework; we find that at the standard spatial and temporal discretization level used
in our deployments, CVX takes around 40mins to optimize the schedules. In comparison, we found
Julia is able to solve the same optimization problem in just under 1s, a performance improvement of
about 2400×. Using the Julia optimization framework, we found that we could solve optimization
problems with significantly more constraints and optimization variables much faster, but as the
problems grow very large, the limiting factor eventually becomes system memory on the machine
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running the optimization. For instance, considering optimization of our schedules with spatial
granularity of .1m and temporal granularity of 15s, the number of optimization variables exceeds
28M, with a similar number of equality and inequality constraints. While this LP can be solved
within tens of minutes using Julia, reasonable as optimization takes place only once per day, the
Julia process solving this optimization reports that around 12G of system memory is required.

It is clear that using a model with a coarse granularity has performance benefits, but we also
want to see how this sacrifice will affect model accuracy. The best way to determine this effect
would be to vary the temporal/spatial granularities and re-run the experiments. However, as each
experiment takes weeks, this would severely limit our ability to thoroughly search the full range
of discretization intervals. Instead, for each day of experimentation, we solve the optimization at
varying temporal and spatial granularities and then run the resulting schedule through our model
at the highest granularity to act as a simulated ground-truth model. By comparing the computed
schedule to one computed with the ground-truth model, we can see the effect it has on system
efficiency; and by finding on average how much each simulated location falls beneath our desired
moisture level at the end of irrigation, we can see its effect on quality of service.

The change in irrigation water consumption as the temporal discretization is varied can be seen
in Figure 10(c), and the change in quality of service can be seen in Figure 10(e). We can see that
as the temporal granularity is made more coarse, the resulting schedules consume slightly more
water, but on average, we see that the quality of service slightly degrades as well. As the causes of
water movement in the space occur at different timescales, the timing of water application to the
soil can have a strong effect on the final distribution of soil moisture. This is an effect described
in Section 5.1, where variations in environmental characteristics can make it necessary to utilize
more advanced irrigation schedules—for instance, through intermittent actuation. However, as
the model used in optimization becomes more temporally coarse, it becomes more difficult to
accurately anticipate the timing requirements of irrigation and can result in a decreased quality
of service despite using slightly more water. As neither increased water consumption or degraded
quality of service is desired, it is clear that the finer the temporal granularity used to compute
schedules, the better.

In comparison, varying the spatial granularity has a more profound effect; the simulated change
in system efficiency can be seen in Figure 10(d), and quality of service can be seen in Figure 10(f).
Reduction in spatial granularity removes spatial locations from the moisture movement model,
meaning their moisture requirements are no longer considered when optimizing schedules. As
shown in Figure 10(f), this results in a significantly decreased quality of service, with locations
across the space missing their required moisture levels by an average of almost 10%. However,
by underestimating water needs in the irrigation system, the system also requires less water to
reach the perceived (although incorrect) moisture requirements. As Figure 10(d) shows, this leads
to significant water savings in the system, with as much as 25% less water consumed with the
roughest spatial granularity. A sacrifice in the model’s spatial granularity causes a clear tradeoff
between quality of service and system water consumption. It is difficult to estimate the long-
term effects of this degraded quality of service on the health of the plant, and it is possible that
very hardy grass species may survive, potentially resulting in water savings in the system. In
general, however, maintaining the high quality of service is absolutely necessary in maintaining
plant health, and this is achieved by using a model with the finest spatial granularity.

6 CASE STUDY: LIVE DEPLOYMENT

In many applications, it is possible to compare a newly developed model to other accepted mod-
els. However, as an all-inclusive model for our application does not exist, we compare to reality
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Fig. 11. Deployment side-view.

by evaluating the performance of an irrigation system using the control modifications we have
proposed.

We chose to deploy two systems side-by-side once a suitable location is found. Ideally, the two
systems will cover similar soil and turf, face the same direction so sun exposure will be equivalent,
and have completely independent irrigation to avoid cross-contamination. In addition, to ensure all
sprinkler coverage is the same, the same water source is used to power both systems, and actuation
is provided to both sides with the installation of our DICTUM nodes. The only difference between
the systems are the control schedules sent to each side.

At the beginning of our project, we intended to use an existing irrigation system to perform our
deployment. In looking for a suitable location, we came to realize that the granularity of irrigation
control on our university’s campus was less than ideal. Locations spanning more than 10K square
feet across heterogeneous terrain were actuated by a single control valve. As such, it would not
be feasible to show the benefits of higher-granularity actuation using the existing system, so we
began planning a custom irrigation system.

6.1 Seeking a Suitable Location

With the help of university personnel, a suitable location was found on a stepped hillside (see
Figure 11) far away from the nearest foot-traffic. The hill, rising about 9 feet over a distance of
70 feet, acted as an elevated surround for a university soccer field, the hill stretching more than
200 feet. To take advantage of this topography, it was decided to place two irrigation systems side-
by-side, each spanning a 70’×70’’ area along the hillside. Between the two systems were 5 feet of
unirrigated space to prevent any spray from one system from entering the other side. As a whole,
the two irrigation systems spanned an area of 70’×145’’, approximately 10,150ft2.

6.2 System Development and Deployment

The underground irrigation system used by groundskeepers to maintain the hillside we deployed
on was plumbed with high-flow PVC water lines leading to each of their sprinklers. As it would be
risky to tap into this permanent infrastructure to test our temporary system, we used lower-flow
quick-couplers, fitted with standard hose spigots. We discovered that the nearest quick-coupler
could provide enough water flow to activate one of our side-by-side irrigation systems, but not
both simultaneously. Throughout our case study, irrigation of the two systems is performed one
immediately after the other to avoid this issue.
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To choose the type and number of sprinklers for our side-by-side deployment, we consulted
sprinkler manufacturer specifications; a general rule of thumb for system planning is that the
coverage of one sprinkler should reach 75%–100% of the distance to the next closest sprinkler to
avoid uncovered areas on the diagonal. To cover one of the two proposed areas covering 70’×70’
with these recommendations, we would require four sprinklers in a 2 × 2 grid, each with a reach
exceeding 52 feet, or 9 sprinklers in a 3 × 3 grid, each with a reach exceeding 26 feet. Sprinklers
that can exceed 52 feet are generally of the “rotor” variety, pointing in only one direction and
rotating slowly to cover the region. The flow required by these larger rotors is typically more than
our quick-coupler water source could provide. It was found the the low-flow MP-Rotator 3000
sprinkler [5], a new rotor that is known to be remarkably efficient, could reach up to 30,’, 9 of
which can be easily powered by our quick-coupler water source. As the MP-Rotator is quickly
replacing older sprinkler technologies at our university for their slow-application and minimum
runoff, we decided they would be the best choice for our deployment.

As the deployment was meant to be temporary, we designed it such that it could be removed in
a reasonable amount of time. Although a commercialized version of DICTUM would be installed
in the ground, our temporary system was placed on the surface for ease of access to our prototype.
The nodes themselves were placed on the ground just next to the sprinklers, while the solenoid
providing actuation was fixed to the sprinkler riser. By placing our system on the surface, we are
able to avoid damage to the lawn that installing into the ground would cause.

Last, our deployment included a central basestation fitted with power, a small Sheeva Plug com-
puter [12], an elevated 802.15.4 mote to receive data from the sensing nodes, and a 4G hotspot to
allow us to communicate with the wireless sensor network from a remote location. Although our
basestation was overbuilt to facilitate ease of debugging and close monitoring of the prototype
system, a commercialized system may have only the mote to interface with the sensor network,
and an interface to any external service (local, cloud, etc.).

6.3 Node Development

In our first deployment, our device was fitted with an ordinary solenoid designed to regulate the
flow of high-pressure water. This solenoid was found to work very reliably, and as it defaults to
an off state when power is cut, it is also a safe choice. However, its weakness was in its high
power requirement, as it must pull a constant 350mA to hold the valve open. Later discussed in
Section 7.4, this dominates the power profile of the device and caused the node lifetime in our first
deployment to fall under one week. Additionally, as the power supply in our first hardware version
was unregulated, the collected sensor data would begin to sag at the end of battery life, as the
sensor’s supply voltage would drop. We mitigated these weaknesses during our first deployment
with frequent battery changes to prevent this sensor sag from occurring.

These problems are addressed in the hardware version used for our second deployment, where
we chose to use a latching solenoid for sprinkler actuation to extend system lifetime. Whereas a
normal solenoid requires constant power to stay in an open position, a latching solenoid requires
only a 50ms pulse of either positive or negative voltage to switch between an open or closed state.
One advantage to a non-latching solenoid is the inherent safety; a loss of power in the control
board will automatically deactivate water flow. To provide this safety in a latching solenoid, a
simple circuit can be built into the control board that will close the solenoid if the board fails,
as shown in Figure 12. A pin is maintained on the microcontroller that changes from 0 to 1 in
event of failure (or from 1 to 0; a NOT gate can be used to invert it). Once this pin is active, it
immediately brings the top pin of an XOR logic gate to 1, allowing current to flow through while
the capacitor on the bottom pin charges. Once the capacitor charges, the second pin of the XOR
logic gate activates, terminating the current. This pulse, generated while the capacitor charges, is
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Fig. 12. Example of safety mechanism for latching solenoids.

Fig. 13. Sensing/actuation (DICTUM) node.

for a period tp ∝ CR, where C and R are the capacitance and resistance values used in the circuit.
This pulse will deactivate the solenoid, preventing additional water consumption after node failure.
With this configuration, the control node will benefit from the extremely low-power operation of
a latching solenoid without sacrificing safety.

The main challenge in the development of the DICTUM node was the organization of multiple
input/output connections from the mote. To address this, we manufactured custom printed circuit
boards that would organize the connections from the Tmote Sky. This interface board, shown with
the rest of our prototype device in Figure 13, has connections for battery power, sensor (right), and
solenoid (left). The different voltages required by the mote and solenoid were provided by voltage
regulators built into the board. As the chosen latching solenoid requires the board to produce a
positive (opening) and negative (closing) voltage for operation, the board was equipped with an
h-bridge. Commonly used in robotics to drive a motor forwards and backwards from a single DC
power source, an h-bridge is designed for applications like ours that require bi-directional current.

The other key feature of the DICTUM node is the ability to measure the volumetric water con-
tent in the surrounding soil. We opted to purchase research-quality Decagon EC-5 [2] sensors,
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Fig. 14. Daily soil moisture cycle.

with a reported accuracy of ±3%. The Decagon sensors cost roughly $110, but data fidelity in our
model verification was paramount. Raw sensor readings collected over a period of one day with a
high sampling frequency can be seen in Figure 14. The sensors report the dielectric constant of the
soil, an electrical property highly dependent on the volumetric water content. A linear calibration
function provided by the sensor manufacturer is used to convert the raw readings to volumetric
water content. An attentive reader will notice the sharp increase in the late afternoon due to ir-
rigation, stable readings throughout the night, with sensor fall beginning as the sun comes up at
7:45am. This decrease steepens as the sun rises and faces the deployment directly after 10am. In a
sensor-dense environment, a more economical alternative to the EC-5 may be chosen, such as the
$35 Watermark sensor [35], which can be calibrated to ±5% accuracy.

6.4 System Comparison

In this study, we compare the operation of the DICTUM system against two baseline control sys-
tems. The first baseline, evaluated over two weeks of fine-grained data collection, employs a trial-
and-error control strategy used widely in practice (including our campus). In this technique, a
greenskeeper will monitor an irrigation system for days or weeks; if an excess of runoff provides
evidence of over-watering, or if brown patches provide evidence of under-watering, they will ad-
just the system accordingly. This irrigation scheduling, often remaining unchanged through entire
seasons, leads to a misuse of water, as it does not account for changing weather or soil require-
ments. We emulate this strategy by matching exactly the amount of water coverage as would be
provided by the greenskeepers of our campus.

The second baseline control strategy, evaluated in a two-week deployment, employs a state-
of-the-art evapotranspiration (ET) control strategy. As described in Section 2, these systems use
weather forecasting to estimate the amount of water lost by the soil due to evaporation and plant
transpiration. Irrigation controllers that use ET technology typically irrigate every 1–3 days, re-
placing water lost over that period. To emulate an ET system, we query a local weather station
that computes hourly ET loss and compute the previous day’s water losses. With our sprinklers’
surface coverage rate, we create daily valve schedules to do exact replacement of these losses.

7 EXPERIMENTAL RESULTS

Over four weeks of fine-grained data collection, we ran two irrigation systems side-by-side on
identical patches of turf, periodically collecting soil moisture data from each. In the first deploy-
ment, our campus’ control strategy was tested and for the second deployment, state-of-the-art
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evapotranspiration (ET) control was used. In both deployments, these systems were compared
against schedules computed by our model-based optimization, actuated using our custom-made
independent actuation/sensing platform (DICTUM) nodes. The goal of these case studies was to
determine if a system could be made that reduced the amount of water used while maintaining a
satisfactory level of moisture in the soil for the turf to remain healthy.

7.1 Quality of Service

The primary objective of an irrigation system is to maintain plant health. A very efficient system
that is unable to meet this objective will be replaced with a less-efficient system that provides
satisfactory water coverage to the turf. To remain healthy, turf needs proper soil nutrients in the
appropriate amounts, adequate solar irradiation to power biological processes, and an adequate
level of moisture in the soil near the plant roots. Although the irrigation system has no control
over solar exposure or soil nutrients, we have direct control of soil moisture through actuation
of the sprinklers. In plant physiology, the level of soil moisture at which plants can no longer
extract water from the soil is known as the permanent wilting point (θpwp) [13, 30, 31]. Long-term
exposure to soil with moisture below this level will cause the turf to wilt and die, so we aim to
minimize the amount of time spent beneath this threshold, as it will ensure a better opportunity
for the plant to thrive.

The permanent wilting point (θpwp) for loamy soils like that found in our deployment is typically
between 10% and 15% [9], so we assume the worst case and assign θpwp to be 15%. We expect that
if DICTUM were to distribute moisture in a smarter way by targeting areas that would otherwise
receive inadequate water, the DICTUM sensor readings will spend less time underneath the θpwp

threshold than the compared baseline. The sensor data collected by the distributed DICTUM nodes
from the collection period and the minimum healthy saturation θpwp=.15 (black line) are shown
for our first deployment against the Campus control strategy and our second deployment against
the ET control strategy in Figures 15 and 16, respectively.

We can see that in both deployments, sensors in the DICTUM system spend significantly less
time beneath the minimum moisture threshold than the compared baseline. Interestingly, we can
see that seasonal rain was experienced once during each deployment, on day 10 in Figure 15 and
on day 11 in Figure 16. In both cases, this resulted in a steep increase in all moisture sensor values
that continued into the following two days. In our first deployment, the Campus and DICTUM
control strategies spend a total of 56.9h and 16.3h beneath θpwp, respectively, indicating a 3.5×
improvement in quality of service. Similarly, in our second deployment, the evapotranspiration
system spends a combined 68.1h beneath the θpwp across the entire deployment, over 4× more
than the 16.7h experienced by the DICTUM system.

We can see in both side-by-side deployments that there were occasional periods of data loss, on
days 2, 6, 7, and 9 in Figure 15 and days 2 and 11 in Figure 16. Our system included a basestation
Sheeva Plug [12] computer that acted as a bridge between the public internet and our wireless
sensor network, with data forwarded over a USB connection to an attached Telosb. Occasionally,
this USB connection would fail at night, resulting in corrupted data transmission between the
two devices; we noted that this particularly occurred when the basestation was exposed to cold
ambient temperatures at night, but further investigation is required to determine the exact cause
of this failure. Important to note is that as the data connection would re-establish itself when
conditions improved and a snapshot of data is only required as initial conditions to optimization
once per day, these lapses in data had no effect on the operation of the DICTUM system.

Although the amount of time spent beneath the minimum moisture threshold gives a good
indication of quality of service, it signifies that all time spent beneath the threshold is equal. In
reality, the further under the minimum moisture threshold, the worse the health of the plant will
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Fig. 15. Deployment sensor trends for all Campus (top) and DICTUM (bottom) systems, as collected by the
installed DICTUM nodes.

become. To take this into account, we consider the sum squared amount of time spent beneathθpwp.
In this way, the system will be punished more the further below the minimum moisture threshold.
The sum squared time beneath θpwp can be seen across our first deployment in Figure 17, where
the Campus control strategy is significantly worse than the DICTUM system until day 11, when
the seasonal rain pushes the soil moisture levels into the acceptable range. In total, the Campus
control strategy is 8.17×worse than the DICTUM system in this metric. Likewise, we evaluate our
second deployment as shown in Figure 18. On day 3, we can see that the DICTUM system quality
of service dips temporarily, but on all other days provides significant improvement in comparison
to the evapotranspiration system. We can also see on day 12 that the rain on the previous day
pushes the soil moisture levels to acceptable levels across the space. Across this deployment, the
evapotranspiration system is 6.28× worse than the DICTUM system with respect to this metric.
Although these analyses show that DICTUM is not perfect, it also demonstrates that more precise
watering strategies can provide a significantly improved quality of service, despite using less water,
as we will see in the following section.

7.2 Water Consumption Analysis

Throughout the deployment, the total on-time for each sprinkler was recorded in both systems.
With knowledge of each sprinkler’s distribution angle and the regulated water pressure, we can
accurately estimate the amount of water consumed under any given schedule.

In comparison to the campus irrigation system, DICTUM is consistently more efficient, as shown
in Figure 19, due to the campus irrigation system using a fixed schedule. We can see, however, that
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Fig. 16. Deployment sensor trends for all Evapotranspiration (top) and DICTUM (bottom) systems, as col-
lected by the installed DICTUM nodes.

Fig. 17. Daily quality of service vs. Campus strategy (lower is better).

as our campus irrigation system is equipped with a rain detection sensor, the 11th day of irrigation
is completely disabled in response to that day’s precipitation. Irrigation is also disabled here in the
DICTUM system, but this is in response to significantly higher soil moisture levels removing the
need for irrigation. We can see that whereas the campus strategy continues providing full irrigation
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Fig. 18. Daily quality of service vs. evapotranspiration strategy (lower is better).

Fig. 19. Daily water consumption of Campus and DICTUM systems.

on the following days, the DICTUM system is able to significantly reduce the amount of irrigation
in response to continued elevation in soil moisture levels for the last 3 days of system deployment.

A side-by-side comparison can also be seen for the deployment against the evapotranspiration
controller in Figure 20. The variation of water consumption of the evapotranspiration system in-
dicates changes in local weather. Low water consumption of both systems on days 9, 10, and 11
is due to cooler local weather, where the ET side consumed significantly less water. However, we
can see in Figures 16 and 18 that these days of reduced water consumption also result in the worst
days of quality of service, meaning the ET controller was too aggressive in its water savings on
these days. Interestingly, a similar effect can be seen on day 6; the ET controller reduces water use
in response to weather conditions, but at the cost of a reduction in quality of service, as shown in
Figure 18. Rain on the 12th day caused both systems to cease irrigation until two days later, when
the soil became dry enough to require it.

Across the two deployments, the DICTUM system consumed 12.3% less water than the evap-
otranspiration strategy, and 23.4% less in comparison to our campus’ control strategy. Schedules
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Fig. 20. Daily water consumption of evapotranspiration and DICTUM systems.

Fig. 21. DICTUM sensor readings through rain.

created by the DICTUM system were shown to consume as much as 651 gallons and as little as
280 gallons, a 371-gallon variation in response to the state of soil moisture. The reason our system
is able to save water while providing a higher quality of service to the space is due to our abil-
ity to pinpoint regions within the irrigated space with varying moisture requirements. Using our
model-driven approach, we can optimize actuation to send more water to areas that would other-
wise receive insufficient moisture, while sending less water to the areas that would otherwise be
over-watered.

Sensor readings through rain during our first deployment can be seen in Figure 21. To respond to
such weather events, the weather stations used for evapotranspiration monitoring are generally
equipped with a precipitation sensor. These sensors deactivate the irrigation system when rain
is first experienced [6] or when a measured amount of rain has fallen. In the case that the rain is
sufficient to irrigate the turf, this is satisfactory, but if the rain is very light, DICTUM might choose
to provide additional irrigation.
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Fig. 22. Average moisture coverage of compared systems.

7.3 Moisture Uniformity

An interesting pattern recognized throughout the two deployments was the emergence of moisture
uniformity. The optimization performed by DICTUM will create schedules that compensate for any
areas of high or low moisture levels using soil moisture and topographical information. However,
due to lack of moisture information and the physical limitations of the irrigation system (inability
to actuate individual sprinklers), the ET and our campus’ systems are unable to correct for uneven
moisture. These artifacts can be seen in Figure 22, which shows a spatially interpolated view of
the average moisture level of the three considered systems across our two deployments.

In this figure, the top of the image aligns with the uphill region depicted in Figure 8. We can
see that as the irrigated water tends to flow downhill, the Campus and ET systems end up with
inadequate soil moisture at the top of the hill; and in the Campus system, we can see extra water
building up at the bottom of the hill. In comparison, the topographical effects are accounted
for in the schedule creation of the DICTUM system, as more uniform moisture can be seen
across the space with the exception of a small spot on the right-hand side where a bit of extra
water can be seen to accumulate. Although variation in seasonal weather patterns between these
two separate deployments makes a true side-by-side comparison difficult to make, these results
demonstrate DICTUM’s ability to produce schedules that correct for heterogeneities to provide
homogeneous water coverage by taking advantage of distributed actuation.

7.4 Energy Consumption Analysis

From a wireless sensor network standpoint, the ability of a system to operate for a long period
of time without user intervention is fundamental. Irrigation control devices are no different, es-
pecially if they are meant to be buried in the ground. The first version of the devices used a non-
latching solenoid, which requires constant power to allow water to flow at irrigation time, dom-
inating the power profile of the device as shown in Figure 23. As a solenoid can be active for as
much as an hour each day for irrigation, we found that, during our first deployment, we had to
constantly change batteries, once or twice per week. Our second version greatly improved with
the use of a latching solenoid, which required only a short pulse of power to throw the valve be-
tween the off and on positions. This allows the device to be truly low-power, as this on-off cycle
will only occur a few times per day in the worst case, with a clearly improved power profile, as
shown in Figure 24.

For additional energy savings, the radio in each node is duty-cycled, activating for only a 10s
period every 10mins. It was computed that using this duty-cycle, the 4 D cell batteries providing
power to our nodes could run for over two years without requiring change. However, we note that
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Fig. 23. Example energy trace of the sensing/actuation node with non-latching solenoid as used in the first
deployment. Note that the high power consumption associated with solenoid activation will continue until
the sprinkler is deactivated, potentially as long as an hour into the future.

Fig. 24. Example energy trace of the sensing/actuation node with latching solenoid.

collected data is only required in our processing pipeline just before irrigation each day as initial
conditions to optimization. In practice, a much more energy-efficient solution would be to con-
tinue sampling the onboard sensors but to store all this data on the mote’s flash storage and send
the entire dataset in batch just before irrigation. As these data samples are small, a day’s data can
be easily sent within a minute of radio on-time each day, allowing our prototype irrigation system
to run uninterrupted in excess of 14 years while still performing its daily irrigation and data collec-
tion. The power effect of these peripheral devices on our latest prototype can be seen in Figure 24,
where radio, solenoid, and sensor power consumption is shown over background CPU usage.

8 RETURN ON INVESTMENT ANALYSIS

Installing a system such as ours has many health, political, and environmental benefits that are
difficult to quantify, but the economic benefits are crucial when deciding whether or not to install
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Table 3. Sprinkler Node Manufacture Cost

Component Price
Mote $37.57
Moisture Sensor $110
Batteries $4
Solenoid $15
Waterproof Enclosure $10
Manufacture & Assembly $10

$186.57

Fig. 25. Return of Investment timeline with varying water pricing.

such a system. In particular, we must consider the return on investment, or the time it takes a
system to save enough money to cover the cost of installation and usage. To calculate the return
on investment, we take into account the initial cost of the replacement system and the monetary
savings expected from the increased efficiency of the replacement system.

Here, we consider the cost to develop a single DICTUM node in bulk for return on investment
analysis. The primary components can be readily found: the sensor, solenoid, batteries, and wa-
terproof enclosure are all possible to purchase from other manufacturers. In our prototype, the
communication module used was a Tmote Sky [14]. However, as our application requires very
specific circuitry to provide power to the various modules, commercialization of the DICTUM
node would involve the manufacture of a stripped-down communication module, with the inclu-
sion of the additional components described in Section 6.3. The pricing of a bare-bones Tmote Sky
replacement, as well as the other various DICTUM components, can be found in Table 3.

To evaluate the expected return of investment, we computed the cost of the system and cal-
culated the net investment as time progresses. The factor that most influences system pay-back
is price of water. As this value is constantly changing, we perform the analysis using the current
price for our campus, $5.60 per thousand gallons, and incorporate a deviation of 10% to account for
changing water-market prices. Although the unit itself carries a high initial cost, return of invest-
ment can be expected to occur in 16–18 months, as shown in Figure 25. Considering the immense
political pressure for irrigation water to be more expensive [3, 11], it is a good bet that the savings
from an irrigation system such as ours will be on the rise in the near future.
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It is difficult to directly extend the savings seen in our prototype to all irrigated space on a
university’s campus due to the heterogeneity of the installed system architectures. However, with
slight modifications, the independent actuation control platform can be easily extended to control
sprinklers of any type, delivering site-specific actuation for small-large scale systems. For example,
on a campus such as ours, the majority of irrigated spaces use rotor sprinklers. As the rotors use
substantially more water, independent actuation could provide an even greater positive environ-
mental and financial impact, to be investigated in future work.

9 LIMITATIONS AND FUTURE WORK

To simplify the placement of irrigation infrastructure, sprinklers are almost always installed in a
grid pattern. However, it might be possible to use the developed model to compute ideal sprinkler
locations to compensate for natural topological characteristics for a system that has not yet been
installed. In future work, we hope to evaluate the potential for water savings by also allowing
variation in sprinkler positioning.

For DICTUM to estimate water movement, it must understand the spatial characteristics of the
irrigated turf. This includes the topography of the terrain and estimates of soil type and depth.
Topography measurement of advanced terrain can be performed by various imaging methods by
satellite, drone, or other emerging technologies, and soil characteristics may be estimated by the
system installer, but they remain a burden. To lessen these requirements, future work may be
directed to data-driven system identification, where soil moisture measurements throughout the
space and knowledge of fluid movement can be used to build the model over time.

In optimization, we wish for our schedules to guide soil moisture into healthy levels, i.e., above
θpwp. Although we use a value of θpwp as physically measured and reported in plant physiology
literature, in practice it may be better to tune this value by hand. Although θpwp may have been
correct in the original model described in Section 4, it will not be correct in the model we optimize
due to the approximations we introduce in Section 4.4. The method of tuning this parameter and
the effect of this choice is left for future work.

To correct for PDE model error, it is possible to perform intermediate schedule optimization
using fresher soil moisture data in the middle of the irrigation period. However, with the CVX
optimization library used during our experiments, the 40mins optimization time would be sub-
stantially disruptive in the middle of irrigation, as it would cause a long pause for computation
in irrigation that the optimization did not find necessary. Furthermore, due to system pressure
limitations, groundskeepers often assign a maximum irrigation time to allow different areas to
be scheduled in series, in our system chosen to be three hours. However, with the more recent
port to the Julia programming language, subsequent optimizations can be performed in around
1s, making this a very reasonable feature for future implementations of the DICTUM system. By
reducing the persistent model error through this re-correction, the DICTUM system will be able
to more effectively meet its primary goal of maintaining adequate moisture levels while doing its
best to minimize water consumption. Depending on the nature of the model error, it is possible
that this re-correction may cause a penalty to the system efficiency to further improve quality of
service, but as the DICTUM system already has substantially improved quality of service, we ex-
pect any penalty to be slight. As further experiments would be required to quantify these potential
improvements by adding this feature, we leave it to future work.

As initial conditions of soil moisture are collected at only a finite number of sensing locations
and upsampled by interpolation to the spatial granularity of the PDE grid, it is possible that
conditions between the sensed locations may deviate from those expected by the model. Unfortu-
nately, this can be caused by several anomalous conditions such as differing soil depth, soil type,
and faulty or incorrectly installed sprinklers, which will cause model disagreement to the true
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conditions in the space and may be difficult to notice and correct in the model. However, there are
several emerging aerial imaging technologies [10, 20] that allow the plant health to be monitored
at a significantly higher spatial resolution than our distribution of soil moisture sensors. While
they do not allow the soil moisture to be directly measured, necessary for short-term control
decisions during irrigation, they will allow the control system to identify regions of the space
that have unhealthy plants. If this plant health data shows regions between sensors that are
experiencing poor plant health, it can be used to expose a local anomaly, which can then be
incorporated into the PDE model for improved control or trigger an alert for local groundskeepers
to search for a physical system fault. This will allow our system to provide quality guarantees at
all locations throughout the space.

Due to the computational requirements of optimizing the schedule, the model only considers
moisture movement that occurs during irrigation and as such does not include long-term effects
such as leaching and weather that cause the fluid to be lost throughout the rest of the day. This
is limiting, as it forces us to assume that all locations in the space lose water in the same way,
which may not be true in practice. Future work is necessary to consider these losses across
the full 24-hour cycle and include this information when finding irrigation schedules to ensure
satisfactory water levels at all times.

10 CONCLUSIONS

Fresh water is a delicate resource, and we must find ways to use it sustainably. The largest irri-
gated crop by surface area in North America, turf has a demand for an estimated 9B gallons each
day. Due to current shortages, there is strong social, environmental, and monetary incentive to
shrink this enormous consumer. In this work, we seek to improve the efficiency of turf irrigation
systems by analyzing heterogeneous water needs across a span of turf. To this end, we develop
a computationally light moisture movement model to be used as constraints in an optimization
problem, which is then used to produce optimal valve scheduling within an irrigation system to
minimize water consumption while maintaining healthy levels of moisture everywhere. To test
its effectiveness, we produce the DICTUM sprinkler node, with the ability to actuate, sense local
soil conditions, and communicate wirelessly with sister nodes in the network. Through two sep-
arate deployments spanning a total of four weeks, we find that the DICTUM system can reduce
system water consumption by 23.4% over our campus’ control strategy, and by 12.3% over a state-
of-the-art evapotranspiration system. Despite this reduced water usage, DICTUM was also found
to reduce turf exposure to unhealthy levels of moisture by a factor of 3.5 over the campus’ control,
and a factor of 4.08 over the evapotranspiration control. The DICTUM system is expected to return
its investment in 16–18 months based on water savings alone.

APPENDICES

A GRASS AS POROUS MEDIA

Darcy’s law [22] is applicable to systems where the drag due to the multiple obstructions is the
dominant fluid force. To determine when flow through turf may be modeled as flow through a
porous medium, we estimate and compare the drag, viscous force, and inertial force per unit vol-
ume. Denoting a typical flow velocity scale as U , a typical grass blade size as a, viscosity as μ,
density as ρ, the thickness of the liquid layer as h, and the porosity as ϕ, we estimate the drag
per volume, based on the low Reynolds number drag of an elongated obstruction of length h and
lateral size a, as

D ∼ 4πμUh(1 − ϕ)

ha2
=

4πμU (1 − ϕ)

a2
. (11)
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Within the liquid, the viscous force per volume is estimated from the viscous term in the Navier-
Stokes equations as Fv ∼ μU /h2. Finally, the inertial force per volume is estimated, also from the
Navier-Stokes equations, as Fi ∼ ρU 2/h.

As typical values for water and grass blades, we use ρ = 1g/cm3, μ = 0.01g/cm s, a = 0.1cm,

h = 1cm, and ϕ = 0.9, and find Fv

D
∼ a2

4π h2
1

1−ϕ
∼ 1/100, showing that the drag is dominant over

viscous forces for any velocity of the flow. The ratio of inertial forces to drag is Fi

D
∼ a2ρU

4π μh
1

1−ϕ
∼ U .

The applicability of our model is therefore limited to systems where the water flows at velocities
U < 1cm/s, which corresponds to most intermittent irrigation regimes.

B DISCRETIZED MODEL FORMULATION

The following six equations hold at each spatiotemporal cell (i, j, t ) and represent the discretized,
linearized flow motion of Equations (6)–(9) over the variablesu andv (velocity of water in soil and
surface, respectively, both horizontal components x and y for each), h (surface fluid height), and
theta (volumetric moisture content). They also represent the equality constraints in our optimiza-
tion problem.

hi, j,t+1 − hi, j,t

Δt
= − 1

2Δx

(
(ĥvx

0 + h0v̂
x )i+1, j,t − (ĥvx

0 + h0v̂
x )i−1, j,t

+ (ĥv
y
0 + h0v̂

y )i, j+1,t − (ĥv
y
0 + h0v̂

y )i, j−1,t

)
+ Fs

−η
(
h0K (θ0) + h0K

′(θ0)θ̂ + ĥK (θ0) + ĥK ′(θ0)θ̂
)
, (12)

θi, j,t+1 − θi, j,t

Δt
= − 1

2Δx

(
(θ̂ux

0 + θ0û
x )i+1, j,t − (θ̂ux

0 + θ0û
x )i−1, j,t

+ (θ̂u
y
0 + θ0û

y )i, j+1,t − (θ̂u
y
0 + θ0û

y )i, j−1,t

)
+ ζ

(
h0K (θ0) + h0K

′(θ0)θ̂ + ĥK (θ0) + ĥK ′(θ0)θ̂
)
, (13)

ûx
i, j,t = −

K (θ0i, j,t )

2Δx
(ĥi+1, j,t − ĥi−1, j,t + h0i+1, j,t − h0i−1, j,t )

−K ′(θ0i, j,t )θ̂i, j,t (h0i+1, j,t − h0i−1, j,t ) +
K (θi, j,t )�τ x

ρд

−
φ (θ0i, j,t )

2Δx
(θ0i+1, j,t − θ0i−1, j,t + θ̂i+1, j,t − θ̂i−1, j,t )

−φ ′(θ0i, j,t ) (θ0i+1, j,t − θ0i−1, j,t )θ̂i, j,t − ux
0 i, j,t , (14)

û
y
i, j,t = −

K (θ0i, j,t )

2Δx
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, (15)

v̂x
i, j,t = −αh

(
hi+1, j,t − hi−1, j,t

2Δx
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+
κд

η
�τ x −vx

0 i, j,t , (16)

v̂
y
i, j,t = −αh

(
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)
+
κд

η
�τy −vy
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