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Modeling the behavior of 802.15.4 links is a nontrivial problem, because 802.15.4 links experience different
level of dynamics at short and long time scales. This makes the design of a suitable model that combines the
different dynamics at different time scales a nontrivial problem. We propose a novel multilevel approach, the
M&M model, involving hidden Markov models (HMMs) and mixtures of multivariate Bernoullis (MMBs) for
modeling the long and short time-scale behavior of wireless links from 802.15.4 test beds. We characterize
the synthetic traces generated from our model of the wireless link in terms of the mean and variance of
the packet reception rates from the data traces, comparison of distributions of run lengths, and conditional
packet delivery functions of successive packet receptions (1’s) and losses (0’s). Our results show that when
compared to the closest-fit pattern matching model in TOSSIM, the proposed modeling approach is able to
mimic the behavior of the data traces quite closely, with differences in packet reception rates of the empirical
and simulated traces of less than 1.9% on average and 6.6% in the worst case. Moreover, the simulated links
from our proposed approach were able to account for long runs of 1’s and 0’s as observed in empirical data
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1. INTRODUCTION

The common denominator in all wireless sensor networks (WSNs), regardless of their
underlying application, is the use of the radio to communicate information extracted
from the sensed environment and, more importantly, to coordinate with other nodes.
Consequently, radio communication and intelligent usage of the radio is a critical com-
ponent of wireless distributed system in general and WSNs in particular. Due to the
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low-power nature of WSNs, the radio used for communication is especially susceptible
to changes in the quality of the wireless medium, resulting in packet losses which can
be attributed to limited transmission power levels as well as multipath effects result-
ing from lack of frequency diversity. Experiments [Zhao and Govindan 2003] conducted
with these low-power radio-equipped sensor nodes have shown, using empirical mea-
surements, that there exists a “gray area” within the communication range of sensor
radios where the packet reception varies widely. Data collected using SCALE [Cerpa
et al. 2003] led to the following conclusions: (i) no clear correlation between packet
delivery and distance in an area of more than 50% of the communication range, (ii)
temporal variations of packet delivery are correlated with mean reception rate of each
link, and (iii) percentage of asymmetric links in a sensor network varies from 5% to
30%. These studies [Zhao and Govindan 2003; Cerpa et al. 2003, 2005; Srinivasan
et al. 2006, 2008, 2010] help confirm that low-power wireless communication is unpre-
dictable, sensitive to changes in the environment, and known to significantly change
over different time scales.

In systems research, a well-designed simulator provides users with the ability to test
new ideas in an inexpensive manner. The simulator models the key elements of a given
system, for example, hardware, such as the CPU, network interfaces, sensors, etc., and
software, such as the operating system. This allows the user to focus his attention on the
design, testing, and analysis of algorithms in a controlled and repeatable environment.
Recent studies [Pawlikowski et al. 2002; Kotz et al. 2004] have indicated the presence
of a wide chasm between real-world radio channel behavior and existing radio channel
models in wireless simulators. This leads to significant differences in performance of a
system in simulation as compared to a real-world deployment. Thus, improving wireless
simulators by incorporating accurate and robust radio channel models will reduce the
gap between simulation and real-world performance. To reach this goal, we believe it is
required to collect data traces of packet reception information over long periods of time
at fine granularity. This data would be the seed for creating radio channel models that
would help simulate more realistic packet losses, thus helping application designers
increase the robustness of their applications by accounting in simulation for losses in
the wireless medium.

Existing sensor network simulators [Levis et al. 2003; Levis and Lee 2003; Girod
et al. 2004] consider very elementary channel models, as will be described in Section 2.
Studies [Lee et al. 2007] have tried to complement these models with additional infor-
mation in the form of noise data, but still these models inadequately and inaccurately
characterize the spatial and temporal variations in the radio channel over different
time scales. The problem of existing wireless simulators is their inability to simulta-
neously model the effect of changes in wireless communication over short and long
time-scales and over distance. To create accurate models for simulating the wireless
channel, it is essential to collect data from the target deployment area. In cases where
this is not possible, the simulator should be able to recreate realistic channel conditions
from a comprehensive database of models created before hand.

In this article, we propose a novel multilevel approach involving hidden Markov
models (HMMs) and mixtures of multivariate Bernoullis (MMBs) for modeling the long
and short time-scale behavior of links in wireless sensor networks, that is, the binary
sequence or trace of packet receptions (1’s) and losses (0’s) in the link. In this approach,
the transition matrix of an HMM models the long-term evolution of the trace (level 1) as
transitions among a set of unobserved, level-1 states. These states typically correspond
to a roughly constant packet reception rate (as determined by the data) and might
correspond to different regimes of the link. Within each level-1 state, the short-term
evolution of the trace (level 2) is modeled by an MMB emission distribution for each
state of the HMM. This captures the faster, but not random, variations of the sequence
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of packet receptions and losses. We characterize the synthetic traces generated from
the model in terms of several statistical measures: moments (mean and variance) of the
distribution of packet reception traces, run-length distributions of packet receptions
and of packet losses, and conditional packet delivery functions (CPDFs). To compare
run-length and CPDF distributions, we designed a new metric called the Nearest-
Neighbor Distance. This metric aims to solve the problem of comparing distributions
with unequal supports. In addition, a full implementation of the M&M model for the
TOSSIM simulator is provided.

The rest of the article is organized as follows. A review of related work is provided
in Section 2. In Section 3, we identify issues that need to be addressed to resolve
the deficiencies in link models for WSN simulators. A new Markov-based modeling
approach for addressing these issues is proposed in Section 4. In Section 5, we evaluate
the performance of our proposed approach. Section 6 contrasts the modeling of links
in existing WSN simulators against our proposed approach. In Section 7, we discuss
issues related to our modeling approach and, finally, in Section 8, we summarize our
results and discuss future work.

2. BACKGROUND AND RELATED WORK

Models for characterizing the behavior of wireless links have been a widely stud-
ied area in networking literature [Rappaport 2001]. These studies can be classified
into radio propagation models and packet loss models. Radio propagation models pre-
dict the average received signal strength and its variability at a given distance from
the transmitter. They can be further subdivided into large-scale propagation models
and small-scale propagation models [Rappaport 2001]. In practice, radio propagation
models are created from a combination of analytical and empirical methods based
on actual field measurements. The field measurements help incorporate the effects of
known and unknown factors in the measured environment. One of the most common
radio propagation models is the log-normal shadowing model [Rappaport 2001]. In con-
trast, packet loss models try to discover the underlying bursty packet loss distribution.
Errors in packet reception can be attributed to causes, such as interference in the chan-
nel and fading effects which lead to irrecoverable bit errors. Packet loss models can be
broadly classified into two areas: (a) packet delivery function estimation approaches
and (b) Markovian approaches.

2.1. Packet Delivery Function Estimation Approaches

Reis et al. [2006] noted the fact that in wireless networks, measurements of average
behavior over even relatively short time periods tend to be stable, even for widely
separated intervals. They exploit this to develop models for wireless delivery with in-
terference using RSSI measurements. They model delivery probability as a function of
interference, which the authors posit is the prime cause of variation in packet delivery.
The receiver model is used with the RF profile to compute that the probability that a
packet is correctly received in the presence of competing transmissions. In experimen-
tal evaluations, the approach has an RMS error of 0.5 and 0.3 for 802.11a and 802.11b
networks, respectively, compared to a model that ignores interference. Similarly, Reddy
and Riley [2007] utilized RSSI and packet retry measurement values to create a radio
propagation and packet error rate model, respectively.

Kashyap et al. [2008] proposed a measurement-based approach to model the physical
layer behavior, mainly, radio propagation, carrier sense, and packet reception models.
Radio propagation is modeled using a log-normal shadowing model. A carrier sense
model is created using a function fitted to measurements of received signal strength
between a pair of nodes at different locations. Packet reception is modeled by curve-
fitting of packet reception probability and signal to noise ratio data. In experiments
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conducted on a 12-node test bed, using the proposed approach, there was a 10% dif-
ference between measured and predicted throughput capacity in contrast to a 50%
difference in more traditional simulation models.

Lenders and Martonosi [2009] combine a physical receiver model with a MAC de-
ferral and interference model. Here, the physical receiver model models the effects of
radio propagation, environmental noise, and node mobility, whereas the MAC model
predicts packet delivery in the presence of carrier sense and interference from con-
current transmissions. The physical receiver model utilizes the windowed average at
each time instance to compute the packet reception probability. The MAC model uses
the packet reception probabilities from the physical receiver model to simulate carrier
sense (channel deferral). This approach was evaluated using five mobile 802.11 nodes
competing for the same channel under different environment and mobility conditions.
Across various settings, the root mean square error (RMSE) of the estimated versus
measured benchmark packet probability was below 12 percent. The error of the es-
timated throughput versus the effective observed throughput was below ten percent,
in contrast to up to >50 percent for a naive model that ignores carrier sense and
interference effects.

The common theme in these approaches is that a function relating physical layer
characteristics, such as RSSI or SINR, to packet reception is computed from measure-
ment data. Using this empirical pdf of packet reception, the packet delivery probability
is computed. The problem with such approaches is that packet errors are assumed to be
independent which has been proven incorrect in empirical studies [Cerpa et al. 2005;
Srinivasan et al. 2008] showing temporal correlations between successful and failed
packet receptions. Burstiness behavior in packet delivery where packet receptions and
losses shows high correlation is not captured in these models. Also, all of these models
do not account for the fact that packet reception shows long periods of stability.

2.2. Markovian Approaches

The Gilbert model [Gilbert 1960] is a probabilistic model for simulating burst noise in
data transmission channels. In this model, a hidden Markov model with two states is
used to generate noise bursts the first state has zero probability of encountering an
error, whereas the other state has a certain fixed nonzero probability for transmission
errors. The transition probabilities control the amount of time spent in each state, thus
controlling the error patterns from a given set of parameters. Analysis of traces [Nguyen
et al. 1996] for the AT&T Wavelan system concluded that loss behavior could not be
accounted by the two-state Markov model. They proposed a methodology to model
the error-free and error traces using exponential and Pareto distributions to model
segments of the trace. Traces modeled [Towsley et al. 1999] from measurements of
Internet packet loss compared between a Bernoulli model, two-state Markov chain
model, and kth order Markov chains to check for the accuracy of the loss estimation
over 38 stationary trace segments. They concluded that all these models are inadequate
as they could not accurately model losses in their dataset.

Markov-based Trace Analysis (MTA) [Konrad et al. 2001] and Multiple MTA [Konrad
et al. 2006] approaches propose modeling channel errors by decomposing a trace with
nonstationary properties into a set of piecewise stationary traces consisting of lossy and
error-free states. Lossy states exhibit stationarity, where a sequence of lossy states can
be modeled by a traditional discrete time Markov chain (DTMC). In Salamatian and
Vaton [2001], HMMs were proposed for modeling packet reception traces and choos-
ing a model based on the likelihood criterion. Markov-based stochastic chains were
proposed [Khayam and Radha 2003] to model 802.11b channel behavior for bit errors
and packet losses. The study compared the performance of high-order Markov chains,
two-state Hidden Markov Models, and hierarchical Markov models and concluded that
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Markov chains of order nine (i.e., 2° states) are required for accurate models for the
bit error process. These studies helped reinforce the notion that for any modeling ap-
proach to simulate behavior of wireless links, the model needs to account for the long-
and short-term variations in the link quality. Also, the model should be easy to train
and show close correlation between the input and the simulated data traces. Further
discussion of the aforementioned approaches and our proposed approach is provided in
Section 7.

2.3. TOSSIM

TOSSIM [Levis et al. 2003] is a discrete event simulator for sensor networks running
on the TinyOS operating system. It allows users to write TinyOS code in a simulation
environment that is scalable and bridges the gap between algorithm testing and appli-
cation development. TOSSIM simulates behavior of the CPUs, radios, and sensors in
different sensor nodes, networking stacks, and other OS primitives.

TOSSIM supports several radio models, namely the Simple Propagation model, the
Link Layer model [Zuniga and Krishnamachari 2004], and the CPM model [Lee et al.
2007]. In the Simple Propagation model, every node can receive packets transmitted
by any other node. The Link Layer model specifies the behavior of the wireless link
depending on the radio and the channel characteristics for static and low-dynamic
environments. CPM is based on a statistical model created from noise reading traces
collected from the deployment environment. It computes the probability distribution
of n; given the noise readings (n;_p, n;_py1,...7%_1), where k is the duration of noise
history considered by the model. A £ = 0 would make each noise value independent,
while % equal to the length of the trace would provide an exact replay of the noise
trace. The CPM models helps capture the short-term link quality variation caused by
factors, such as 802.11 traffic. In a recent paper [Rusak and Levis 2008], two approaches
(Expected Value PMF and Average Signal Power Value) were proposed to estimate the
signal power of missing packets in a packet reception trace, and using this data, the
CPM algorithm models the variations in packet signal strength. These existing models
require the modeling of two separate physical-layer measurements, namely, RSSI and
noise/interference values to create a representative model of a real environment.

In contrast, in this article, we propose the modeling of correlations between succes-
sive packet receptions and failures from a given packet reception trace as the packet
reception traces are a direct indicator of the link quality.

3. WIRELESS LINK MODELING
3.1. Collection of Packet Reception Traces

In order to create an accurate packet loss model, we required a comprehensive data-
base of packet reception traces of links having different reception rates. For this task,
we collected data from a 75-node MoteIV Tmote Sky test bed deployed along the ceiling
of the Science and Engineering Building (SE test bed). Each mote is comprised of an
ultra low-power Texas Instruments MSP430 F1611 micro-controller featuring 10 KB
of RAM, 48 KB of flash, and an 802.15.4-compliant Chipcon CC2420 radio (channel 26)
for wireless communication. The node locations are fixed for the duration of our ex-
periments (refer to Figure 1 for details). All the motes in a group are connected to a
Linksys NSLU2 network storage device via an USB hub. The Linksys NSLU2 device
is used to bridge serial communication between the motes and a central server over
the local network.

W-e performed a number of experiments to collect packet reception traces from a
diverse set of links (see Table I). In each experiment, we have one fixed sender and
multiple receivers. The sender sends 64 packets per second with an interpacket interval
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Fig. 1. SE test bed: 25 groups of three nodes each separated by a distance of 40 cm. Nodes are placed at
fixed locations along the corridor ceiling of the building.

Table I. Summary of Experiments Conducted on the MoteLab and SE Test Beds
Testbed Program Num. Expts.  Duration  Num. Packets/Expt. CC2420 Tx power levels

SE RssiDemo 9 1 hour 230,400 1-31
SE RssiDemo 1 6 hours 1,382,400 7
SE RssiDemo 3 12 hours 2,764,800 89,11
SE RssiSample 3 30 minutes 196,608 —
MoteLab  RssiDemo 18 30 minutes 115,200 31
MoteLab RssiSample 3 30 minutes 196,608 —

Note: 802.15.4 channel 26 is used in all experiments.

(IPI) of 16 ms on channel 26 for durations of 1, 6, and 12 hours. The receivers record
the sequence number, received signal strength (RSSI), and link quality indicator (LQI)
values of each received packet. We also collected the same data from the MoteLab
testbed [Werner-Allen et al. 2005], but the duration of each experiment was limited
to 30 minutes due to storage concerns regarding the large amount of data generated
in every run. After each experiment, we created records or traces of packet reception
for each of the receiver nodes. In addition, we also gathered noise data (channel 26)
for all nodes using the RssiSample program on both the test beds. The length of the
noise traces is equivalent to the meyer-heavy trace collected in Lee et al. [2007]. The
noise traces are meant to be utilized for a faithful comparison between the TOSSIM
simulation model and our proposed approach.

3.2. Exploratory Data Analysis

In this section, we highlight issues that need to be addressed when modeling 802.15.4
wireless links. We term links having packet reception rate (PRR) < 10% as bad or poor
links, links having PRR between 10% and 90% as intermediate links, and links having
PRR greater than 90% as good links. Links having PRR = 0% are termed as inactive
links.

Prior studies have shown that 802.15.4 links can vary significantly over time [Cerpa
et al. 2003, 2005; Lin et al. 2006; Srinivasan et al. 2006, 2008, 2010; Rusak and Levis
2009]. In Figure 2, the average network throughput per hour averaged over all the links
having PRR > 10% in the network is shown as a function of time of day for the 12 hour
experiments. The figure clearly shows that the average network throughput is not
constant, but fluctuates with time. This is a clear indication of variation of PRR across
nodes in the network. The radio transmission power levels in experiments 24, 26, and
28 correspond to values 11, 10, and 8 in the CC2420 registers. This would lead one to
think that the throughput should be highest for experiment 24, followed by level 26 and
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Fig.2. Variation of the average data throughput per hour for all good and intermediate links in the network.

Table Il. Summary of Variation of Link Quality in a Network as a
Function of Sender Radio Transmission Power

CC2420
Exp. # Tx. Lvl Good Bad Interm  Inactive
24 11 20 (48%) 8(19%) 7 (17%) 7 (16%)
26 10 19 (45%) 7A7%) 3 (7%) 13 (31%)
28 8 19 (45%) 10 (24%) 3 (7%) 10 (23%)

28, respectively. However, from the data, we see that the throughput for experiment
24 is less than that of the others. This can be explained by the higher total number
of intermediate links (see Table II) compared to the other experiments. An interesting
artifact of the environment can be seen in Figure 2, which shows a fairly consistent
decrease in throughput from midnight to midday in all three experiments. From our
experimental data, we observed that good and bad links are relatively stable over time,
whereas intermediate links show significant variation in link quality over time. This
is consistent with previous findings reported [Cerpa et al. 2003, 2005; Rusak and Levis
2009; Srinivasan et al. 2010]. In general, in simulation, it is easy to model good links, as
they do not show significant variation with time [Metcalf 2007; Rusak and Levis 2008].
On the other hand, there is a significant difference between the models of intermediate
links in simulation and the real world. If the accuracy of simulation models of these
intermediate links were improved, then it is possible that WSN application simulations
could show the potential benefits of using these intermediate links when their quality
is high enough for transporting data instead of permanently ignoring or blacklisting
them. In addition, it would help application designers to test performance of algorithms
for the common case and the corner cases that are one of the causes of protocol failure.

To emphasize this point, we plot the variation in PRR and RSSI of a representative
intermediate link. For this link (see Figure 3), the PRR is plotted as a function of time,
where each PRR value is calculated for a two second interval (i.e., for 128 consecutive
packets at a time). Figure 3 also shows the corresponding variation in RSSI values of
the received packets. From Figure 3, we see that the average PRR of link 1 is 42%,
65%, and 19% for hours 1, 2, and 3, respectively, and the corresponding average RSSI
values are —91.85 dBm, —91.8 dBm, and —91.67 dBm, respectively. In each hour, we see
that the PRR and RSSI values fluctuates widely, cycling between good, intermediate,
and bad states. In each state, the link is relatively stable for a given period of time
before a significant change in link quality. A closer look at the sequence of received
packets within a few tens of seconds reveals that packet receptions and losses are not
independent, that is, intermediate links show significant bursty behavior. This behavior
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is similar to that previously reported [Rusak and Levis 2009; Srinivasan et al. 2010]. It
shows that links of intermediate quality manifest highly dynamic behavior over time at
different time scales, thus highlighting the nontrivial nature of the modeling problem
for such links.

3.3. Our Modeling Approach

We consider our observed data as binary sequences, where 1 indicates successful packet
reception and 0 indicates lost or corrupted packets. (We will also consider a sequence
of continuous values, namely the reception rates in [0, 1] indicating the average over
a binary window.) The fundamental motivation for our modeling approach is that
observed traces display structure at different temporal scales. In Figure 4, for example,
one can see that over a period of minutes, the link seems to switch between two states:
one with PRR ~ 0.1 and the other with PRR ~ 0.7. We call this long-term dynamics. In a
period of seconds, however, while the PRR may stay roughly constant, it is more likely to
observe a bursty sequence 0000111111 than a wildly oscillating sequence 1010101101.
We call this short-term dynamics. In order to simulate realistically the behavior of
links, we want a model that is flexible enough to replicate this multiscale structure,
and we want to estimate its parameters (which determine its typical PRRs or its local
burstiness) from observed traces. In the next section, we describe the details of our
model, the multilevel Markov (M&M) model (Appendices A and B give an overview of
hidden Markov models and mixtures of multivariate Bernoulli distributions).

4. THE MULTILEVEL MARKOV (M&M) MODEL

We model a possibly infinite binary sequence (the data trace) as a sequence of binary
strings (windows) X; of length W, as shown in Figure 5. A hidden Markov model (HMM)
with S different states ¢ = 1, ..., S models transitions between long-term states, and
has S? tunable parameters (the transition probabilities p(q; = j|g;—1 = i)). Each long-
term state g has its own distribution p(x|q) of emitting binary W-windows, which

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 17, Publication date: November 2013.



Improving Wireless Link Simulation Using Multilevel Markov Models 17:9

[LONG TERM DYNAMICS ]

SHORT TERM DYNAMICS ‘

o
o -
—
=
-
= —
o
o -
— =
—
=
E—

=4
=)

PRR (avg = 0.5943)

PRR (avg = 0.5943)
o
=

10011011111101111011111111100
11001101001010011111111111111
‘ 01111111111110110111011101000

00000000000000000000000000000

000000000000
0.2
n

10 20 30 40 50 60 % 10 20 30 40 50 60
time (in minutes) time (in minutes)

(@ (b)

Fig. 4. Tlustration of long- and short-term dynamics in an empirical trace (avg. PRR = 59.43%). (a) Long-
term dynamics are periods of nearly constant PRR (10% and 70%, respectively) which persist for periods in
the order of minutes. (b) Short-term dynamics are the burstiness observed in packet delivery over a period
of seconds, indicating that packet receptions and losses are highly correlated.

0.2

00011111, 10001110, 00011111, 00011110,

p(q1]90) p(qz2|q1)

q0

(Q p(xiqr)

t=0 t=1 t=2 t=3

Fig. 5. Graphical model of a HMM which emits binary strings x; of length 8. In the M&M model, p(g:|q;—1)
is modeled by the transition matrix of the HMM, and p(x;|q;) is modeled using a MMB emission distribution
for the HMM.

captures the short-term behavior of the link in that state, that is, the dynamics of
the variations in consecutive packet reception successes or failures that has its own
parameters (described next). Thus, W controls the trade-off of short versus long term.
The emission distribution of the HMM p(x|q) is a mixture of multivariate Bernoulli
(MMB). For each state g, this mixture has M components, and each component has
W + 1 parameters: a mixture proportion and a vector p = (ps, ..., pw) of Bernoulli
parameters.

Next, we explain how to simulate a binary trace from our model (sampling) and how
to estimate good model parameters from measured data (learning).

4.1. Sampling
In order to generate a trace of length L bits from the model, we sample as follows.

—Generate a long-term state sequence of length L/ W using the transition probabilities
of the HMM.
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—For each long-term state ¢ of this sequence, we sample a W-window x from its p(x|q)
(i.e., the corresponding MMB emission distribution).

The trace is the concatenation of the L/ W windows.

4.2. Learning: Hidden Markov Model Parameter Estimation

An HMM with MMB emission distribution (HMM-MMB) models the wireless data
trace in terms of a sequence qo, q1, ..., qgr of hidden (unobserved) random variables
called states and a sequence X = (Xp, X1, ..., X7) of observed random variables (see
Figure 5). The parameters of the HMM are the transition probability matrix p(g; =
Jlg:—1 = i), the MMB emission distribution p(x|q = i) for each state, and the initial
state probability p(go = i). We jointly estimate these parameters using the expectation-
maximization (EM) algorithm we derived for HMM-MMBs. We optimize the following
Q function given the HMM-MMB model with its S2 + SM(W + 1) + S free parameters
(denoted ©).1

QO.0)=>" Y log(P(X,q.m;0)X. q. m;O), @
qeQ meM

where Q is the set of all state sequences, q is a vector of length T' representing a specific
state sequence, M is the set of all component sequences compatible with q, and m is
vector of length T' containing a component sequence corresponding with each state
inside . ©' are our estimates of the parameters in the previous iteration. P(X, q|®) is
the complete-data likelihood function given by

T
P(X,q, m;0) = p(qo) [ | plailgi-1)p(x:, milq), 2)

t=1

and, p(x;, my|q;) is the MMB emission distribution (Appendix B) for state g; and com-
ponent m;.

w
P&t mulge) = Cgm [ ] Pt = Pamn) ™.

w=1

The @ function then becomes

T
QO.0)=>Y" 3" log(p(qe)P(X. q. m;®)

qeQ meM ¢t=1

T
+) Y > log(plgilgr-1))P(X, g, m;0") 3)

qeQmeM ¢=1

T
+> ) Y log(p(x:, mlg:)P(X, g, m; ©).

qeQmeM t=1

Setting the derivative of the @ function with respect to each parameter to zero, we get
the following expressions.

m—p(qo—L)—P(X—;@/),z_l,...,S, (4)

1Notations followed are similar to the procedure described in Bilmes [1997].
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where 7 is the vector of initial state probabilities.

Zt 1PX,qi1=1,q: = j;0)
thl P(Xv Qtfl :I'5 6/)

a;; = plq = jlgi—1=1) = i, j=1,...,8, (5)

where A = (q;;) is the transition matrix of the HMM containing S? parameters.

Plq, = —IX;
g = i1 Plar = i mgs = UX; ©) i=1,....Sandl=1,.... M, (6)

Zt 121 ' Plg: =1, mg,; = 11X ®)’

it = ZtlxtP(Qt—lmqtf—”X@) =1,....,Sandl=1,..., M, (7)

Zt 1 Plgr =i, mg, =1[X; @)’

where {c;;, pil}lz“1 are the component proportions and Bernoulli parameter vectors for
the MMB for state i.

In each step of the EM algorithm, we first compute the complete data likelihood
using the parameter estimates in the current step. Using this value, we compute the
updated parameter estimates by maximizing the @ function. This continues till we
reach a local optima. In the end, the most likely sequence of state values corresponding
to an observed sequence can be obtained using the Viterbi algorithm [Forney Jr. 1973].

4.3. Model Initialization

Finding good initialization values for the model parameters (transition probabilities
and emission distribution) is done as follows.

—Transition probabilities. The binary input trace is transformed into a sequence of
PRRs (in [0, 1]) computed over a window size W. We define a continuous HMM
with S states and a continuous emission distribution (beta, normal) and use the
EM algorithm to estimate by maximum likelihood its parameters (which we then
discard) and its transition probabilities, given the sequence of PRRs.

—MMB parameters. Use the Viterbi algorithm [Forney Jr. 1973] to obtain the most
likely state sequence for each input trace and grouped it into the same cluster all
windows assigned to the same state. Practically speaking, this tends to group win-
dows associated with similar PRR values. For each long-term state, we trained an
MMB model only on its corresponding cluster. The training vectors in each cluster
are split in training (70%) and testing sets (30%). For each training-testing set combi-
nation, we try ten different initializations for the MMB parameters. We used an EM
algorithm for MMB, as described in Carreira-Perpinidan and Renals [2000], resulting
in the initial estimates for proportion and Bernoulli W-dimensional vector for each
of the M mixture components. The parameters with the highest log-likelihood on the
test set are selected as initialization for the MMB emission distribution of the HMM
in the M&M model.

For models with hidden variables, such as HMMs or mixtures (of widespread use in
machine learning and statistics), local optima are a known problem. In practice, one
usually tries multiple restarts, and while one can’t generally expect to find the global
optimum, typically one finds a good enough local optimum. Using the aforementioned
initialization methods, the EM algorithm converges to one of several local optima for
the problem.
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Fig. 6. Graphical Representation of the M&M Model. The transition probabilities are overlaid on the arrows
showing the state transitions. The MMB emission distribution for each state is represented by a matrix of
shaded squares, wherein the degree of shading indicates if the output is 1 (black square) or 0 (white square).

4.4. Graphical Representation of the M&M Model

Figure 6 shows a graphical representation of the M&M model for S = 2, M = 5, and
W = 128. The transition probability matrix is shown using a transition diagram for
the HMM. The MMB emission distribution of each state is represented using a format
similar to Hinton diagrams. Each state output is represented by an M x W matrix
of shaded squares, wherein the shaded area inside each square is proportional to the
Bernoulli parameters for the MMB distribution. If p = 1, then the square appears
black and if p = 0 then the square appears white. The diagram is meant to provide a
visual representation for the 1/0 output of the M&M model. Longer runs of 1’s would
be outputted by a model if we see sequences of consecutive black square, and longer
runs of 0’s would be outputted for sequences of consecutive white squares.

5. EVALUATION OF THE M&M MODEL

To evaluate the performance of our approach, we trained models for links with differ-
ent reception rates from the experimental data traces (training set, length = 230,400).
As the problem is unsupervised (i.e., there is no ground truth to compare with) and
the generated sequences can have any length, we do not compare the likelihood
value that the models produce for a trace. Instead, we compare on the basis of sta-
tistics computed on the traces versus a different set of unseen data traces (testing
set) having similar PRR characteristics. For each link, we proceeded as follows: (1)
we learned the model parameters given the (training set) data traces and differ-
ent combinations of model sizes, that is, S (e {2,4,6}), M (e {2,4,5,10, 15}), and
W (e {8, 16,24, 32,48, 64,96, 128, 160, 192}). (2) For each model, we sampled a se-
quence as long as computationally possible (to reduce the variability in our statistics).
(3) From this sequence, we computed the following statistics and compared them with
the same statistics computed for the testing set (different from the training set).

(1) PRR, to assess the long-term behavior of a link.

(2) Distributions of run lengths of 1’s, r1(n), and 0’s, ro(n), forn = 1, 2, ... This assesses
both the global and local behavior. The run-length (RL) distribution estimate is de-
fined on a range independent of the data, namely, [1, co). Different RL distributions
can easily be compared (e.g., with the Lp distance) and have statistics defined on
them (e.g., variance). Each new bit changes the RL distribution in a localized way:
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it adds 1 to the appropriate run length. The information about long bursts is easily
seen by looking at the tail of the RL distribution and can be enhanced by having
each run of length L count as L, instead of 1. We term this weighted run length
(WRL) distribution. It is similar to the RL distribution except that it enhances the
longer runs. Later, we plot the W RL distributions to emphasize the occurrence of
long runs of 1’s and 0’s.

(3) The conditional packet delivery function (CPDF) [Lee et al. 2007] C(n), defined
as the conditional probability of observing a 1 after n consecutive 1’s or 0’s. This
assesses the global and local behavior. The CPDF estimate is defined only on a
range [0, R], where R is the length of the longest run, which depends on the data
sequence. It is not defined beyond R, because no such run is observed. In fact, even
in that range, C(n) is highly sensitive to the sequence, particularly for the larger
n. CPDF's are sensitive to the appearance of a single burst which adds an area of
probability approximately equal to 1 around n = L/2, where L is the burst length.
This happens no matter how long the trace is and no matter how often such bursts
occur, as long as they occur at least once. Each new bit (1/0) in the sequence changes
a possibly large part of the CPDF (up to the whole of it). Thus, CPDFs are good for
detecting a burst of 1/0’s but not suitable for determining the frequency of 1/0’s. It
is difficult to compare CPDF's from different datasets as the length of the largest
burst will vary from sequence to sequence. While one can eliminate all d values
having less than a minimum number of runs, this loses information by truncating
the tail.

(4) Allan deviation? [Aguayo et al. 2004] (AD) is computed as the square root of one-
half of the average differences between squares of successive samples over a given
sampling period. The formula for AD of a sequence of samples x; is

1 n—1 )
AD = m ;(xi+1 — X))

The AD plot summarizes the difference between successive samples of a quantity
at different time scales. In our case, the samples are PRRs computed over different
window sizes. According to Aguayo et al. [2004], the AD will be high for window
sizes near the “characteristic burst length”. In our study, we utilized the AD plots to
determine the combination of S, M, and W that shows the most similarity between
the simulated traces and the testing traces.

5.1. Comparing RL and CPDF Distributions

To compare differences in the distributions of the run lengths and CPDFs of the
testing and simulated traces, we can compute the average Li;-norm between them.
However, when computing the average Li-norm, the difference in the two distributions
is weighted equally for the common cases, that is, short runs/bursts of 1/0’s, and for the
rare cases, that is, very long runs of 1/0’s. The absence of rare cases in the simulated
traces does not significantly affect the L;-norm between the two distributions, thereby
potentially misrepresenting the performance of a modeling approach. The inability
of a modeling approach to account for the rare cases is a serious shortcoming for
simulation users, as they will not be able to adjust the behavior of algorithms/protocols
for such cases which will eventually result in failure under real-world conditions. On
the other hand, the L;-norm would exaggerate the difference between traces from the
same model when the length of the long runs/bursts varies slightly. To highlight the
effect of the absence of rare cases and that of minor differences between rare cases

2http://www.allanstime.com/.

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 17, Publication date: November 2013.



17:14 A. Kamthe et al.
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Fig. 7. Computing the distance between two distributions U and V. In this illustration, U is defined at 1,
2 and 100, and V is defined at 1 and 2 only.

from the same model, we designed a new metric called the Nearest Neighbor Distance.
Although this is not the only way to emphasize the importance of rare events [Kullback
and Leibler 1951; Rubner et al. 2000], it worked well in our case.

Nearest Neighbor Distance (NND). Let U and V be two functions, each defined on a
(possibly different) subset of the natural numbers. In our case, U and V are the RL or
CPDF distributions from the empirical and simulated traces, and we consider the RL
distribution to be defined only where its value is positive. We define a nonsymmetric
distance D(U, V), as the sum over all the existing entries i of U of the following:
|U@G@)— V@) if V() is defined, and |U @) — V(j)| + «a|j —i| if V(@) is not defined, where
J is the closest entry to i for which V() is defined. That is, D(U, V') behaves like the
L distance, where both U and V are defined, and like a penalized L, distance to the
closest entry, where V is defined, otherwise. We chose « = 1/1000 empirically. We tried
several values that could highlight differences in traces with regards to missing runs
of I’s and 0’s. With « = 1/1000, we observed that we did not severely penalize cases
where the difference in run lengths was not significant <50. On the other hand, if there
was an absence of long runs of 1’s or 0’s, then our choice of @ was sufficient to capture it.
Figure 7 shows a sample calculation of D(U, V) and D(V,U). NND is then computed
as (DU, V)+ D(V,U))/2, which is now symmetric.

5.2. Model Selection—Trade-off between S, W, and W

Before settling on a model size, we would like to analyze the trade-offs associated with
it. Using many parameters (higher S, W, and M) yields a powerful model but is more
prone to over-fitting and local optima. In addition, such models are computationally
costly. On the other hand, using few parameters may not yield a powerful enough
model. Generally, a model with fewer parameters is preferred because (i) a model
should make as few assumptions as possible (Occam’s razor) and (ii) the data required
for training the model to a given degree of accuracy grows exponentially with the
number of variables. From the simulation user’s point of view, the model should be
able to generalize to traces having similar long- and short-term dynamics, that is, the
simulated traces should have small NND values and the AD plots of the simulated
and testing traces should be qualitatively similar. Also, the simulated traces should
converge to the model PRR quickly (i.e., shorter trace length). Let us suppose that for
training a model, we are using a trace of length L with a certain S, W, and M. Here,
the ratio ﬁ determines approximately the number of observed sequences that can
be attributefiv to each of the MMB components in each state of the HMM. Due to the
high dimensionality of the problem, it is necessary for each MMB component to have
adequate number of training sequences. Therefore, as a rule of thumb, ﬁ > 100
would ensure that condition to be satisfied, that is, each MMB component in each state
of the HMM will have >100 training sequences (of window size W).
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Fig. 8. Variation in log-likelihood of the testing set as a function of S, M, and W using the M&M model for
an empirical trace. In (a), (b), and (c), the different lines correspond to different values of M(= 2, 4, 5, 10).

Having more parameters leads to higher log-likelihood on the training set but makes
the model more prone to over-fitting problems. In machine learning, model selection is
done using a validation set. Models with different number of parameters are trained,
and their performance is measured on an independent dataset. The selected model
is the one with the best predictive performance on this independent dataset. In the
M&M model, we measure the performance in terms of log-likelihood on an independent
dataset that we term the test dataset, which was not used for training the model.
Therefore, we select a model based on its performance on some unseen data which was
not used for training the model. When the EM algorithm for HMM with MMB emission
distribution converges to a solution, the model having the highest log-likelihood on the
testing trace is selected. In general, the log-likelihood on the test set increases as we
increase the number of model parameters and then starts decreasing after a certain
point. Figure 8 shows the variation in the log-likelihood on the testing trace as a
function of S, W, and M. The figure indicates that model selection on just the basis of
log-likelihood will lead to models with small W (= 8, 16, 24, 32). Also, this demonstrates
that our metric (log-likelihood on the test set) is not biased towards models with larger
number of parameters. Regarding use of criteria, such as AIC, such criteria do not
take account of the uncertainty in the model parameters, and in practice, they tend to
favour overly simplistic models [Bishop 2006].

The role of W in the M&M model is to split the responsibilities between the transition
probability matrix and the emission distribution. In principle, moving the modeling
responsibility entirely to the transition matrix (by making W = 1 and having high S)
or to the emission distribution (by making W very large) could work by having a very
large number of parameters. In practice, it would not, because it would require a far
larger training set, and the model would be plagued with local optima of bad quality.
Essentially, the short- and long-term description is a divide-and-conquer strategy, and
could be applied in general with a hierarchy of levels. Besides, long-term transitions
can happen no faster than every W bits, which puts an upper limit (although very
large in our traces) on W. Figure 9 plots the effect of variation in window size W on the
quality of the packet loss model for a given training trace (S = 6). From Figure 9(c), we
see that at very small values of W = 8, the transitions between the long-term dynamics
of the link are not captured accurately in the transition matrix of the underlying HMM-
based model. As window size increases, models with higher values of W (W = 64) show
similar variation in long-term dynamics as the original link. Also, from Figure 9(c), we
see that for small W (= 8), the model is unable to account for the longer runs of 1’s and
0’s, as seen in the original link. In contrast, the model for W = 64 has longest run of
77 1’s (original link has 73 1’s) and 46 0’s (original link has 120 0’s).

Table III ranks models based on the NND computed between the simulated and
the testing trace. A lower NND is an indicator of how well the M&M model is able
to simulate bursts of 1/0s. We observe that models with longer W (>= 64) perform
better in terms of modeling long-term dynamics and run-length distributions of 1’s
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Fig. 9. Average PRR over time from (a) experimental one-hour data trace, (b) M&M simulated trace (W =
128), and (¢) M&M simulated trace (W = 8), respectively. On the right side, we see the statistics for each
link for the weighted run lengths (WRLs) and CPDF's. Note: (i) WRL values do exist for each integer and are
zero if not shown; (ii) CPDF values do not exist beyond a maximum run length, so CPDF plots are truncated
at maximum run length.
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Table lll. NND and Log-Likelihood (LL) Values for
the Testing Trace Using the M&M Model for Trace

in Figure 9
NND
S M W RL CPDF LL
4 4 128 0.861 19.63 —123,589
6 10 24 0.864 23.12 —120,252
6 5 24 0.887 23.60 —119,537
6 4 24 0906 2451 —119,417
6 4 48 0939 2496 —120,806
6 2 24 0939 2432 -119,398
4 5 128 0943 19.92 -123,610
6 5 48 0943 2393 —-120,929
6 4 128 0.989 20.52 123,422
6 5 64 0993 2217 -120,129

Note: The values in bold indicates the model with
balanced performance in terms of NND and LL.
The first model performs best in terms of NND
but worse in terms of LL.

and 0’s, compared to ones with smaller W (< 64) (from Figure 9). Thus, we need to
select a model that strikes a balance between log-likelihood, NN D values, and long-
term dynamics performance. The values in bold indicate the model size (S, M, W) that
provides the best balance in terms of the log-likelihood, NN D computed with respect
to the testing trace, and long-term dynamics. We also plot the Allan deviation (see
Figure 10) of three links: (i) a trace which was generated assuming independent packet
loss pattern, (ii) the simulated trace, and (iii) the testing trace. The point in the plot
where the Allan deviation of the simulated and testing traces deviates from that of
the independent trace indicates the characteristic burst length of the simulated and
testing trace. From Figure 10, the Allan deviation plots of the testing trace indicates
that packet reception is independent for time intervals less than one second but show
bursty packet reception for intervals greater than one second.

In the measurement study of link burstiness, Srinivasan et al. [2008] have observed
that waiting for 500 ms breaks the packet-loss correlation. While studying the self-
similarity property of links, Rusak and Levis [2009] have observed that links start
displaying self-similarity (correlations) after 640 ms. In the design of STLE, Becher
et al. [2008] and Alizai et al. [2009] set the threshold for identifying an intermediate
link to three packets when the IPI was set to 250 ms. This design choice has the
underlying assumption that intermediate links show stable short-term behavior over
a period of >750 ms. During the evaluation of Roofnet, Aguayo et al. [2004] observed
that bursty links show correlation out to at least one second. These empirical studies
support the case for longer window sizes. Having longer window sizes for the M&M
models would help capture the correlations that exist in real-world wireless links.
While this would negatively affect model performance in terms of log-likelihood (see
Figure 8 and Table III), from a simulation users point of view, M&M models with
longer window sizes would capture the correlations that exist in real-world wireless
links. Also, we saw in Figure 9(b) that M&M model with W = 64 was able to capture
long- and short-term behavior better than models with smaller W (= 8). In addition,
the one second interval from the Allan deviation plot (Figure 10) coincides with window
size W = 64.

These results show that for the M&M model to be of practical use, we need longer
window sizes. Hence, we settle on W = 64 as the choice for window size. For the number
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Fig. 10. Variation in Allan deviation of PRR for (i) a trace with independent packet-loss pattern, (ii) the
simulated trace with S = 6, M = 5, and W = 64, and (iii) the testing trace.

of states, we select S = 6 and M = 5 for mixture components for each state. Our M&M
models with the chosen size do not simultaneously perform best in terms of NN D and
LL but balance the trade-off associated with it. Note that for this particular model size,
we used traces that contain at a minimum of 230,400 packets with an IPI = 16 ms.
There is no formula for selecting the model size, as links may display a different burst
pattern and dynamics that might require a different choice of model size. As a reference
for simulation users, we offer the following guidelines for choosing a desired model size.

(1) For a given training wireless link, choose W by plotting the Allan deviation plot.
Select a W such that the packets inside the W-length window cover a time interval
greater than the burst length.

(2) Select S greater than or equal to the number of long term states, one observes in
the wireless trace.

(8) For M, choose a value of five or less. Having more than five components increases
drastically the number of parameters in the model and may lead to overfitting.

(4) In addition to points (1-3), make sure that the ﬁleO rule is satisfied, as it
ensures that each Bernoulli prototype gets enough training data (i.e., >100). As a
caveat, note that the rule assumes a uniform distribution of training data for each
prototype which might not be true always.

5.3. Model Convergence

Another point of interest is the rate of convergence of traces generated from the model
parameters, or simply put, the variance between the original and generated traces.
Ideally, we want the average packet reception rate of the simulated traces to be equal to
that of the original trace. However, in reality, the simulated traces show some variance
due to the stochastic nature of the model. The rate of convergence of the generated
traces can be inferred from the model parameters, making certain models more suitable
than others.

Using the Perron-Frobenius theorem [Meyer 2001], for the transition matrix of an ir-
reducible finite Markov chain, the eigenvector corresponding to the leading eigenvalue
is the unique stationary distribution for that Markov chain. Hence, in the M&M model
for a packet reception trace, using singular value decomposition, we can calculate the
leading eigenvalue and the corresponding eigenvector that gives the stationary distri-
bution of the HMM. The ratio, A, between the first two eigenvalues gives the rate of
convergence of traces generated from the model. The closer 1 is to 1, the slower is the

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 17, Publication date: November 2013.



Improving Wireless Link Simulation Using Multilevel Markov Models 17:19

Table IV. Variation in A as We Vary S and W for an Empirical Trace

S | W=32 | W=64 | W=96 | W=128 | W=160 | W=192
2 | 1.0101 | 1.0105 | 1.0078 | 1.0064 1.0077 1.0059
4 | 1.0051 | 1.0016 | 1.0086 | 1.0118 | 1.0123 1.0095
6 | 1.0048 | 1.0115 | 1.0102 | 1.0122 1.0061 1.0037
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Fig. 11. Dependence on frequency of sending packets during data collection.

convergence. Table IV shows the values of A as a function of S and W. The numbers in
bold italics indicate the best value of A (faster convergence) (S =4, W = 160).

In addition, given the stationary distribution, we can compute the average PRR of
the HMM-MMB model as follows.

S
PRR = vguq,

g=1

where, v, is the value in the eigenvector giving the stationary distribution of the HMM
corresponding to the gth state and p, is the average PRR. From the MMB emission

distribution,
w

DY
Hq = Zcqm wzév =
m=1
where, ¢4, is the mixture proportion for the mth mixture component in the gth state
and pgn, is Bernoulli prototype in the wth position.

5.4. Sensitivity Analysis: Dependence on IPI during Data Collection

During data collection for building the M&M model, we sent fixed-size packets at a
frequency of 64 Hz or 64 packets per second (pps) in our experiments. In contrast, earlier
studies [Rusak and Levis 2008] have collected the same data at a lower frequency
(4 Hz). To analyze the dependence of frequency of sending packets during the data
collection phase on the quality of our model, we reduced the amount of data used
for creating the model from the original 64 Hz down to 1 Hz. Figure 11 shows the
variation in reception rates for the same link modeled using different amounts of data.
From Figures 11(a), 11(b), 11(c), and 11(d), we see that as the frequency increases, the
greater amount of data used for creating the model helps the simulated trace follow the
behavior of the original trace (see Figure 9(a)) very accurately at long and short time
scales. As data collection frequency decreases, the simulation traces from the model
get smoothed out, resulting in loss of detail in the short-term correlations. Hence, we
advocate collecting data at high frequency when possible.

5.5. M&M Simulation Results

Table V shows comparisons between the test traces and the simulated traces from
the M&M model (S = 6, M = 5, and W = 64). The average difference between the
PRR of the simulated and the test link PRR is less than 1.9%, whereas the average
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Table V. Comparison between Empirical Traces (Testing Set) and Simulation Traces Using
the M&M Model and TOSSIM

Test M&M TOSSIM

Trace PRR Avg. Li-norm NND Avg. Li-norm NND
PRR Mean+StdDev CPDFs RL CPDFs RL PRR CPDFs RL CPDFs RL
0.469  0.475+0.020 0.12  0.007 40.1 2.1 0417 0.698 0.029 40.6 2.8
0.520  0.512+0.002 044  0.052 102 22 0.002 0.990 1.026 4,238 207
0.614  0.618+0.031 0.31 0.004 31 04 0115 0680 0.201 12.5 1.9
0.621 0.632+0.010 0.30 0.004 68 06 0146 0.746 0.193 12.5 1.9
0.675  0.741+0.008 0.39  0.041 105 19 0.001 0.902 0523 6,965 181
0.706  0.740+0.020 0.24 0.008 201 2.1 0225 0.859 0.180 261 5.2
0.723  0.748+0.024 0.37  0.057 101 3.2 0.116 0.854 0.204 111 4.1
0.728  0.750+0.029 0.21 0.021 273 1.7 0270 0.844 0.135 159 5.2
0.886  0.890+0.017 0.11 0.030 47 19 0.001 0979 1.001 80 227
0.906 0.912+0.011 0.26 0.049 30.7 1.6 0.065 0941 0.210 40.6 8.3

standard deviation in the PRR of the simulated M&M links is 0.017. The worst-case
difference in PRR is 6.6%. Table V also shows the difference between the run-length
and CPDF distributions in terms of the average L;-norm and the NN D. The minimum
difference between the CPDF's in terms of the average Li-norm and the NND is 0.11
and 3.1, respectively, and the maximum difference is 0.44 and 201, respectively. For
the run lengths, the minimum difference in terms of the average L;-norm and the
NND is 0.004 and 0.4, and the maximum difference is 0.44 and 3.2, respectively. The
maximum difference between the distributions occurred when the M&M model is not
able to simulate the longer runs/bursts as seen in the testing trace and is captured by
the NND computations.

When sampling state sequences from the M&M model, there is a possibility that
the overall proportion of time the link stays is a particular state is different from the
testing trace. Our goal was to be able to simulate traces which matched performance
of the testing trace with similar long- and short-term dynamics as observed in the
training data. While simulating traces, we sampled state sequences from the model
20 times to observe the long-term behavior. For computing other statistics, we sampled
traces 100 times. However, we restricted our choice to traces that had a PRR within
5% of the training trace PRR. Therefore, in Table V, the standard deviation in PRR of
simulated traces in all cases is less than 5%. While constraining the variability of the
traces, it allows for a comparison to the testing trace on more even terms (i.e., state
sequences (long-term behavior) are similar but not same).

5.6. M&M Simulator

In order to make the M&M model accessible to WSN simulation users, we have in-
corporated it in the TOSSIM simulator for TinyOS 2.0. The M&M simulator provides
the end user the capability to simulate a network with links having different PRRs.
Using the approaches described in Kamthe et al. [2009], we have created a library
of M&M models with intermediate PRRs ranging from 0% to 100%. The simulator
generates PRR traces using these pre-computed models and utilizes the values (1/0)
in the trace to make a decision regarding the link quality. In addition, the simulator
can re-execute PRR traces generated in prior experiments or user supplied traces to
allow for deeper analysis of link quality on program execution. The files required for
the M&M simulator are available at Kamthe [2009].

6. PERFORMANCE COMPARISONS WITH TOSSIM COMMUNICATION MODEL

We conducted a statistical comparison between empirical data traces (testing set), sim-
ulation traces from the M&M model, and traces from TOSSIM, the TinyOS simulation
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environment. TOSSIM requires a link-gain model wherein a unidirectional link be-
tween a source and destination is associated with a gain value, that is, the received
signal strength between the source and destination. For simulating traces in TOSSIM,
for each of the empirical traces (testing set), we computed the median RSSI value of
the received packets in the traces. We used this as the gain for the link gain model for
the TOSSIM links.

TOSSIM utilizes a communication model called Closest Pattern Matching
(CPM) [Lee et al. 2007]. In order to utilize CPM, users must first collect a high-frequency
noise trace from a deployed WSN that will be used to bootstrap the noise model. As men-
tioned in Section 3.1, we used the RssiSample application to collect these traces from
the same environment where we collected our packet reception traces. To compare the
performance of TOSSIM with the proposed M&M model, we bootstrapped the TOSSIM
noise model using traces collected from the SE and MoteLab testbeds. The Signal-to-
Noise Ratio (SNR) is computed using noise values generated by the CPM model. Using
this SNR value, the corresponding PRR value is determined using a SNR-PRR curve
(implemented in TOSSIM for TinyOS 2.x)? [Zuniga and Krishnamachari 2004]. The
packet reception status (success/fail) for a packet is decided by sampling once from a
Bernoulli distribution with p = PRR. In essence, the CPM model captures short-term
correlations as the noise dynamics are modeled using data collected over interval of
~3—4 minutes (1ms sampling interval). Note that during data collection, the noise sam-
ples were collected immediately after or very close to the time we collected the trace
data.

Figure 12 shows the variation in PRR of a particular link and the simulated traces
generated using TOSSIM and the M&M model trained on the same link. The goal of
Figure 12 is to qualitatively contrast the link-quality variation in simulation traces
from TOSSIM and the M&M models with respect to an original link manifesting com-
plex link dynamics. It is clear from Figure 12(b) that TOSSIM is unable to capture
the long-term variations in PRR that are better modeled by the M&M model (see
Figure 12(c)). Furthermore, the average PRR of the M&M link (27%) is closer to the
original link PRR (28.47%) than the TOSSIM link PRR (49.49%).

Figures 12(a), 12(b), and 12(c) show the weighted RL and CPDF distribution of 1’s
and 0’s for the original link, TOSSIM simulation trace, and M&M simulation trace,
respectively. We observe that the M&M model has longest run of 55 1’s (original link
has 92 1’s) and 151 0’s (original link has 546 0’s). On the other hand, TOSSIM generated
trace with 16 1’s and 23 0’s. It is clear that TOSSIM is not able to simulate the longer
runs of 1’s and 0’s. This is also reflected in the NND computed for the TOSSIM and
M&M traces. The NN D for the RL distribution of the TOSSIM and M&M traces is 4.07
and 1.8, respectively. The NND for the CPDF distribution of the TOSSIM and M&M
traces is 82.2 and 40.16, respectively. These values indicate that, quantitatively, the
M&M traces are closer to the original traces than the TOSSIM traces.

Table V shows the summary of the comparison between the empirical traces (testing
set) and traces generated using TOSSIM and the M&M model. The first point to notice
is that there are significant differences in PRR between the actual link and TOSSIM
model with a minimum difference of 5% and a maximum of 88%). In contrast, the M&M
model has a maximum and minimum difference in PRR of 6.6% and 0.4%, respectively.
The maximum NND for the run-length distribution of the TOSSIM and M&M traces
is 226.9 and 3.2, respectively. The maximum NND for the CPDF distribution of the
TOSSIM and M&M traces is 6,965 and 201, respectively. These values indicate that,
quantitatively, the M&M traces are closer to the (unseen) testing traces than the

3http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos.lib/tossim/CpmModelC.nc?view=
log.
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Fig. 12. Average PRR over time from (a) experimental one-hour data trace, (b) TOSSIM simulated trace,
and (c) simulated trace using the M&M model, respectively. On the right side we see the statistics for each
link for the weighted run lengths and CPDFs of packet reception (top) and losses (bottom).
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TOSSIM traces. The combined knowledge of the difference in PRRs and the average
Li-norm and NN D values for the distributions of run lengths and CPDFs indicate that
TOSSIM does not do an adequate job of modeling the link variations.

We believe the poor performance of TOSSIM can be explained by the inadequate
characterization by the path-loss model and the noise model being able to account only
for short-term correlations. Currently, TOSSIM uses the gain of the link and the noise
value computed by CPM to decide whether the packet is received or dropped. However,
the generic constants of the path-loss model are not the same for all environments. This
may lead TOSSIM to make significant errors while computing the PRR of a packet at
the receiver. In addition, it has been shown that the RSSI values recorded by nodes
have errors due to calibration issues [Chen and Terzis 2010]. These may introduce
inaccuracies in computing the SNR which further propagate to PRR calculations. While
it is possible to eliminate this error by calibrating all receiver nodes, it introduces an
additional nontrivial overhead. Raman et al. [2009] have shown that intermediate links
occur due to the unpredictable behavior at the RSSI threshold. This indicates that any
model, such as the path-loss model, which uses SNR values that are dependent upon
RSSI would inadequately characterize the link behavior. This would not affect packet-
loss models such as ours that only use knowledge of packet receptions and losses
to model the link behavior. In Table V, there are cases where the TOSSIM traces
differs significantly in PRR from the test trace. Also, in such cases, the values of NND
are extremely large. This can be attributed to the unpredictable link behavior at the
RSSI threshold, resulting in the SNR-PRR curve in TOSSIM outputting a PRR that
is very different from the one observed in the wireless trace. In other cases, lower
NND for M&M model traces indicates better performance in terms of run-length
distributions. Here, our choice of « does not exaggerate the slightly worse performance
of the simulation traces when there minor differences in the run-length distributions.

7. DISCUSSION
7.1. Relevance to Other Analytical Models

The Gilbert-Elliott model [Gilbert 1960; Elliot 1965] is a particular case of the M&M
model, where we have a single-bit window (W = 1) and S = 2 states, and each state
has a single-component MMB (M = 1). Its only tunable parameters are the transition
probabilities and the Bernoulli parameters (total four parameters). The generality of
our model allows us to model and learn from data, not just bursts, but far more complex
behaviors. The Markov-Based Trace Analysis (MTA) [Konrad et al. 2001] is an exten-
sion of the Gilbert-Elliott model wherein one state corresponds to the error-free state
of the channel and the other state is comprised of a discrete time Markov chain of order
six to model the lossy state of the channel. This was further extended to account for
variability in wireless links by using a hierarchical model with multiple states [Konrad
et al. 2006], where each state is comprised of a two-state MTA-based model. Salamatian
and Vaton [2001] used hidden Markov models with Bernoulli emission distributions for
modeling packet reception traces from Internet communication channels. Their model
is a particular case of the M&M model with single-bit window (W = 1) and S < 4
states, and each state has a single-component MMB (M = 1).

7.2. Model Adaptation

As our model is trained using packet reception data, this methodology presents several
caveats for users of our simulation model. (1) Although, the model is highly accurate
for data collected from a given environment, a simulation user would be limited to
simulating their network based on conditions during the data collected at the SE and
MoteLab test beds. (2) If the user wants to simulate network conditions in a particular
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environment, (s)he should collect at least some packet reception traces in the target
environment. In many settings, the benefits from a pure data-driven approach are not
that large, because the generalizability of simulating from traces is a big limitation.
For example, one would like to model the characteristics of a real environment in a
simulated network without having to first deploy a network to measure its properties
or by collecting significantly smaller data traces than the one used to train the model in
a different environment. This problem can be solved by using model adaptation tech-
niques similar to those proposed in Kamthe et al. [2011], wherein an algorithm was
proposed that can adapt a preexisting MMB trained with extensive data to a new wire-
less link from which very limited data is available. The adaptation approach constrains
the new MMB’s parameters through a nonlinear transformation of the existing MMB’s
parameters. The transformation has a small number of parameters that are estimated
using a generalized EM algorithm. The authors showed that their approach can learn
MMB models from data traces of about one minute, which demonstrate comparable
loglikelihood to MMB models using ten times more data. However, the caveat of such
methods is that they are unable to account for the long-term characteristics, which is
captured by the transition matrix of the M&M model, when the entire trace (approx.
one hour) is available for training the model parameters.

7.3. User Control

The M&M model is a purely data-driven approach. It is possible to combine this with
a non-adaptive approach so that the user may have manual control on specific charac-
teristics (such as the amount of overall burstiness or fading rate) while still generating
realistic traces. Future work could propose hybrid models containing a large number
of parameters that are automatically tunable on a training set (e.g., the Bernoulli pa-
rameters), and a small number of “control” parameters that are set by the user. For
example, consider an MMB having W = 6 and M = 2. ¢;’s indicate mixture proportions
and p;’s indicate Bernoulli parameters for the mixture components. In this mixture, if
the user wants the model to output increased runs of 1’s of length 3 and runs of 0’s of
length 2, then the goal could be easily achieved by changing the mixture parameters
as shown.

Before After

!

¢ : (p1,...,Dpe) ¢+ (pi,....pg)
6 : (4,7,6,7,8 5 — 6:(4,2,9,.9.9 .2
4 : (4,3,3,2,2,6)— 4:(4,3,9,.1,.1,.9)

Similarly, it is possible using a simple heuristic to find Bernoulli parameter values
above/below a certain threshold (0.6 and 0.2 in the example) equal to the length of the
required bursts and adjust them and their neighboring parameter values to ensure
bursts of required lengths.

7.4. Model Limitations

A low-power wireless link with, say, two long-term states having the same average PRR
but completely different short-term dynamics—independent behavior in one state and
long bursts of 1/0’s in the other—could be modeled adequately using the M&M model
with proper initialization. However, modeling the transition matrix could be an issue
if the transitions between the long-term states occurs just once in the entire trace.
This can be attributed to the lack of data, and longer traces which could capture more
transitions between long-term states could help alleviate the problem. In addition, the
M&M model does not perform well when modeling dynamics, wherein the PRR changes
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monotonically with time, as the output distribution of the M&M model will converge
to the average PRR, resulting in an inadequate model of the short-term dynamics.

Overfitting may be avoided during the modeling process by ensuring that we have
long data traces (at least 230,400 packets) for parameter estimation. This combined
with our <= > 100 rule which assumes a uniform distribution of training vectors will
greatly rei{lce the chances of overﬁttlng

As stated in Section 5.5, the maximum difference between the run-length distribution
occurs when the M&M model is not able to simulate the longer runs/bursts, as seen
in the testing trace, and is captured by the NND computations. This is related to
the training data issue. Extremely long runs of 1’s/0’s are split into training vectors of
length W. Since these runs are rare in the case of intermediate links, then such training
sequences get combined with other sequences resulting in the prototype values in the
MMB component to not be close to 1. This in turn reduces the probability of replicating
extremely long runs of 1’s/0’s, culminating in higher NN D values for the simulation
traces.

7.4.1. Extension to Longer Time Scales. Rusak and Levis [2009] observed that link vari-
ation is present at different time scales (seconds, minutes, hours, and days). It is at-
tributed to the presence of structure at different time scales, which they term scaling.
When training the M&M model, the duration of our longest data traces was 12 hours.
The level of long-term dynamics for traces up to 12 hours can be accounted for using the
M&M model. For longer duration traces, of the order of days, months, years, the level
of long-term dynamics might be greater than that of the 12 hour traces. For modeling
such traces, the M&M model may not suffice. However, the modeling approach from
Kamthe et al. [2009] can be used for longer time scales using an N-level hierarchy.
For these longer duration traces, the strategy would be to model the dynamics of the
longest time scales (e.g., years) at level 1 of the multilevel model. All subsequent level
of dynamics, for example, month, weeks, days, hours, would have to be accounted at
levels 2, 3, 4, and 5, respectively. At level 5, there would be an M&M model emitting
binary sequences, which is ultimately the object of interest to the simulation user.

8. CONCLUSIONS AND FUTURE WORK

We presented a new multilevel Markov model (M&M) to replicate more realistic short-
and long-term dynamics in wireless simulations. Our M&M model generalizes many
existing wireless link models, can model complex correlations if sufficient parameters
are used, and is straightforward to learn from data and to sample from. New M&M
models could be created by mixing preexisting M&M models from a library. Based on
extensive evaluation using long experimental data traces collected in multiple test-bed
environments, we showed that the model significantly outperforms other simulation
tools available in the WSN community.

There are multiple areas for future work. Regarding modeling, one could use the
emission distribution restricted Boltzmann machines, which are another powerful way
of representing high-dimensional binary data. Transforming existing model parame-
ters to simulate new environments using orders of magnitude less training samples by
applying model adaptation techniques is part of our research agenda. Moreover, the
model could be extended to emit signal strength values, thus, modeling physical layer
characteristics, such as RSSI values of wireless traces.

APPENDIXES
A. HIDDEN MARKOV MODELS

A good description of HMMs and MMBs can be found in Bishop [2006] and Carreira-
Perpinan and Renals [2000]. AWHMM models an observed sequence of (continuous
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or discrete) vectors in terms of a sequence qg, q1, ... of hidden (unobserved) random
variables called states and a sequence X(, Xi,... of observed random variables (see
Figure 5). The HMM represents the probability of the observed sequence in terms of
the state transition probability p(qg = jlg = i) (which assumes the Markov property
and is independent of time) between every pair of state values, and the emission
probability p(x|q = i) of outputting a vector x when in state i. The latter can be, for
example, a Gaussian or beta (or mixture thereof) for continuous x and a Bernoulli,
multinomial (or mixture thereof) or a simple probability table for discrete x. Thus, the
probability of observing xg, X1, ..., X7 is

T
p(xo, X1,....x7) = Y plgo) [ | p(xelg)p(gslge 1),

q0,.-,9T t=1

where the sum is over all possible state sequences. A HMM is then described by the
dimension W of the observed vector x, the number of state values S, the S x S matrix
of transition probabilities a;; = p(q = jlg = i), and the parameters of the emission
distribution for each state value.

For simple emission distributions, the HMM parameters (transition probabilities and
emission parameters) can be estimated given only a sequence of observed vectors {x;} by
maximum likelihood using an expectation maximization (EM) algorithm [Baum et al.
1970], which iterates from initial parameter values. This is the training or learning
problem, and it is possible to converge to a local optimum. The most likely sequence of
state values corresponding to an observed sequence can be obtained using the Viterbi
algorithm. This is the decoding problem. Sampling from a trained HMM given an
initial state value simply requires sampling states from the transition probabilities
and sampling an x for each state from its emission distribution.

B. MIXTURES OF MULTIVARIATE BERNOULLI DISTRIBUTIONS

A Bernoulli distribution for a binary random variable x assigns probability ptox =1
and 1— ptox = 0. A Bernoulli distribution in W binary variables is the product of W in-
dependent univariate Bernoulli distributions with parameter vector p = (p1, ..., pw)7.

W
p(X) = l_[ P —p)t
i-1

A mixture distribution is constructed given M component distributions p;(X), ..., ppu(x)
and M component proportions ci, ..., ¢y (with each ¢, € (0, 1) and Zfil cm=1).

M
px) = Z CmPm(X),
m=1

and, if M > 1, then the components of x are not, in general, independent from each
other; in fact, we can model complex correlations this way. The parameters {c,,, pm}”ML:1
of a mixture of multivariate Bernoulli distributions (MMB) can be estimated given a col-
lection of N W-dimensional binary vectors using an EM algorithm [Carreira-Perpinan
and Renals 2000], which iterates from initial parameter values and can converge to
a local optimum. Sampling from a MMB simply requires picking a component with
probability proportional to its proportion, and then sampling the binary vector from
its Bernoulli.
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