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ABSTRACT OF THE DISSERTATION

Mean-shift Algorithms for
Manifold Denoising, Matrix Completion and Clustering

by

Weiran Wang

Doctor of Philosophy in Electrical Engineering & Computeredce

University of California, Merced, 2013

Professor MigueA. Carreira-Pergian, Chair

Modern high dimensional data poses serious difficultiesdoious learning tasks. How-
ever, most high dimensional problems exhibit manifold&tuite, i.e., there exist only a
few degrees of freedom that matter for the task at hand. Exglsuch intrinsic struc-
ture is the key to designing accurate and efficient learniggrahms. In this thesis, we
demonstrate the use of mean-shift, a popular mode-findidglastering algorithm, for
learning problems involving manifold structure. In pautar, we propose several new
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algorithms based on the mean-shift update for the tasks oifaté denoising, matrix
completion, and centroid-based clustering.

The first algorithm, manifold blurring mean-shift (MBMS) d@s algorithm of the predictor-
corrector type. It alternates a predictor, blurring mehifitstep that acts as an isotropic
low-pass filter and a corrector, projection step that reraalie shrinkage of data along
the manifold, where the manifold structure is estimateddmal PCA. The algorithm
achieves anisotropic denoising, can be used as a pre-pnogestep for dimension re-
duction and classification, and significantly improves qu&vious manifold denoising
algorithms. Furthermore, we apply MBMS to matrix complefioissing value prob-
lems by iteratively denoising the whole dataset and fillinghe observed entries. In
contrast to the popular low-rank approaches based on algldibaar assumption, our
algorithm preserves locally linear structure instead wtiendata is globally nonlin-
ear. This simple approach provides a fresh view of the matipletion problem, and
greatly improves over several previous approaches.

We also propose two new, mode-based algorithms for clugtefihe first one, which we
call the K-modes algorithm, partitions a dataset into agpeeified number of clusters,
and provides a representative centroid of each clusteh Eawtroid is the mode of the
kernel density estimate defined by each cluster and is tizasdd in a high-density area.
The algorithm is computationally inexpensive and more sbbuan K-means and mean-
shift. We then provide a continuous relaxation for the handifion rule of K-modes and
impose a Laplacian smoothing penalty so that similar input@es receive similar as-
signments. The new algorithm, which we call the Laplaciam&des algorithm, is able
to handle non-convex, complex-shaped clusters, has areaffaptimization procedure,
and shares nice properties with many well-known clusteaiggrithms.

The proposed mean-shift algorithms are simple and very &asyplement, yet they
have superior performance on the tasks of consideratiopaced to previous approaches.
We demonstrate them on various high dimensional datasetsdifferent domains.
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Chapter 1

Introduction

1.1 Manifold learning

In the field of machine learning, one often come across datasth manifold structure.
In this thesis, we refer to “manifold structure” the followg intuitive properties of the
dataset:

e Although the dataset may live in very high dimensional inppéce, there is in-
trinsically only a few degrees of freedom that control theeyation of data points
or matter for the task at hand. These degrees of freedom éx&wer dimen-
sionallatent spacewhose dimensionality is called thrinsic dimensionalityof
the dataset.

e Small changes in the latent space corresponds to small ebafigata in the input
space.

¢ Inthe input space, there exists a so-catkagent spacat each data point, which
is a linear subspace and has the same dimensionality agtimnsimdimensional-
ity, and a local neighborhood of the point lies approximatet this space. As a
result, each point can be approximately reconstructeaiindy its local neigh-
borhood.
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Figure 1.1 Sample images from the MNIST benchmark.

In real-world applications, datasets with manifold stametabound. We give two exam-
ples below.

Figure 1.1 shows sample images of the well-known MNIST ddatdseCun et al., 1998),

which is a widely used benchmark for handwritten digit reutign. The dataset con-
tains 28x28 grayscale images of digits 0-9 from multiplersiselt is obvious that

small changes in translation, rotation, scaling, and dbffié writing styles (e.g., self-

intersection of digit 2 and short bar for digit 7) will chantfee appearance of image
(pixel values) slightly, and should not change the idertitghe image. On the other
hand, a good digit recognition system shall take into actthia structure and be in-
variant to these variations.

Another good example of manifold structure is the sensadings from the motion-

capture problem: there might be multiple sensors attacheket joints of the human
subject, each recording the position of a joint, but the gereadings are highly redun-
dant as the degrees of variations in a given motion sequantygically quite lower.

Thus the motion sequence approximately lies in a nonlinear,dimensional latent
space. Figure 1.2 shows the motion-capture data recordeddeveral cycles of a run-
ning sequence (217 points, each corresponds to 34 3D mpeketsts 2D latent repre-



Figure 1.2 Motion-capture data of a running sequence and its latgaresentation.
Left: the latent space, data points are connected in thees¢iguiorder of their corre-
sponding observations, some of which are plotted as a stark the loop is travelled
clockwise. Right: 3 trajectories in latent space (contajr80 equispaced samples) and
reconstruction of the corresponding trajectory in obsgisgace (lower plot). This fig-
ure is taken from Carreira-Pefjgin and Lu (2007).

sentation obtained by Carreira-Péign and Lu (2007). The latent representation of this
sequence is a loop, which characterizes the motions segweng well, and sampling

in the latent space produces realistic motions. The recwyda the high dimensional
observed space also gives a good chance for reconstrubgngadings even when a

large proportion of them are missing.

As we can seen, exploring the manifold structure help ugbatiderstand the genera-
tion of data, and should be incorporated for particulariesy tasks at hand. Manifold
learning, also called dimension reduction, has been a \&@iyearesearch area (Belkin
and Niyogi, 2003; Carreira-Peff@n and Lu, 2007, 2008; Coifman et al., 2005; Donoho
and Grimes, 2003; Hinton and Salakhutdinov, 2006; Roweissaud, 2000; Tenenbaum
et al., 2000), and the abovementioned properties are theimpgrtant intuitions in this
field.

From a computational point of view, learning a full-fledgeatgametric model for high
dimensional data often leads to severe over-fittingrge of dimensionali}y thus di-



Figure 1.3 Paths followed by the Gaussian mean shift algorithm forouer starting
points, overlaid on a contour plot of the Gaussian kernekifgrstimate p(x) (in the
homoscedastic, isotropic case but with non-unifarin The data pointg; are marked
“+”. Amode is located at the centre of each ellipse; the slimdicates the eigenvectors
(rescaled to improve visibility) of the Jacobian J(x) attim@de. The thick-line polygon
is the convex hull of the data points. This figure is taken f@anreira-Pergian (2007).

mension reduction techniques are also useful for modellaggation. This accounts
for the success of the currently very popular lasso (Tilasjr1996), group-lasso (Yuan
and Lin, 2006), low-rank (Cars and Tao, 2010) regularization techniques, which can
also be considered as dimension reduction by introduciagsgg. Dimension reduction
may also significantly reduce the training and test time obaeh



1.2 Mean-shift algorithms

The mean-shift algorithm originates in an idea of Fukunaua ldostetler (1975) and
has been developed by Cheng (1995), Carreira-Ranpi2000), Comaniciu and Meer
(2002) and others. Given th& data points{x;,...,xy} C R, consider a kernel

density estimate (kde) with kernél(t) for ¢ > 0:

p(x) = ZmZLK(d(X,Xi;Ei)), (1.1)

wherer; € (0,1) is the mixing proportion of poinzt(satisfyingziji1 m=1), %;Isits
covariance matrix (positive definitey; is a normalization constant that only depends on
3, (e.9.,Z; = |2n%;|'/? for the Gaussian Kernel), anlgx, x;; 3;) = (x—x;)7 2, (x—

x;) is the Mahalanobis distance. Most widely used are the GaugsirnelG (t) = e~*/?
and the Epanechnikov kernel

K(t):{ 1—¢, if tel0,1),

0, otherwise

We can find modes (local maxima) pfx) by seek stationary point@’% = 0, and
solving for x suggests a fixed point iteration scheme called mean-shidatep We
mainly focus on the simple setting where the data points bamstant weightsi; = %)
and the kde uses Gaussian kernel with isotropic covariaBige=( 0°I). This setting
brings into bear an elegant mean-shift update rule

exp (=3 [|(x = xa)/a]) -

n|x) = , x + f(x) = n|x)x,, (1.2
P = o (a0 2 6

mapping any poink € R” to a weighted mean of points in the dataset. The difference
f(x) — x is called themean-shiftvector and hence the name of the update. Since the
weightsp(n|x) are non-negative, each update lies in the convex hull of thaset, see
Figure 1.3 for an illustration of mean-shift path. We referthis setting assaussian
Mean-shift (GMS)



The mean-shift algorithm can then be applied to clusteringumning mean-shift up-
dates from each data point, declaring each mode as repaéserdf one cluster, and
assign data point to the mode it converges to. The algorithnonparametric and the
clustering is deterministic given the bandwidth Mean-shift has proven particularly
successful in computer vision applications such as imagmmesgtation (Comaniciu and
Meer, 2002) and tracking (Comaniciu et al., 2003). Howeveés, also well-known that
mean-shift suffers greatly from high computational comitfe(O(N?D) per iteration)
and slow convergence speed. The Gaussian Mean-shift (Gligt8)tam is equivalent to
the EM algorithm and has in general linear convergence €der¢ira-Pergian, 2007).
In fact, accelerating mean-shift has been a topic of actgearch (Carreira-Pefiain,
2006a; Yuan et al., 2010).

The Blurring Mean-shiftalgorithm is a different version of the usual mean-shifialg
rithm. In blurring mean-shift, each point of the datasetialty moves to the weighted
mean of the previous dataset after each iteration, and treusvhole dataset get up-
dated. Focusing on the Epanechnikov kernel for computatiefficiency, Fukunaga
and Hostetler (1975) already observe the potential of inlgmrmean-shift for clustering
and dimensionality reduction (denoising). Cheng (199%rlatoves the convergence
of blurring mean-shift, an unusual one where the whole @atesnverge to a point.
Carreira-Pergian (2006b) further proves the convergence rate to be cubiBdassian
kernel (much faster than the GMS algorithm) and suggestsstatiopping criteria to
obtain a partition of dataset in t@aussian Blurring Mean-shift (GBM&)ustering
algorithm.

1.3 Contributions

In this thesis, we apply the mean-shift algorithm to a rangearning tasks involving
manifold structure. The contributions and organizatiothed thesis are summarized as
below.

¢ In Chapter 2, we apply the mean-shift algorithms to the proldé manifold de-



noising. We propose a predictor-corrector type of algamithat alternates two
steps: a first (blurring) mean-shift step that acts as a lassgilter and shrink
the noise in all directions in input space, and a second ctmrstep that removes
the shrinkage of data along manifold, with manifold struetestimated by local
PCAs. As a result, the noise orthogonal to the manifold has ber@oved while
signal along the manifold has been kept. We name this newitdgoManifold
Blurring Mean-shift (MBMS)This simple algorithm has close relationship to the
research of anisotropic denoising in computer graphicsraage denoising com-
munities, and significantly improves previous manifold @isimg algorithms in
the field of machine learning.

In Chapter 3, we apply the MBMS algorithm to the matrix completmissing
value problem. One basic idea of missing value reconstmids to assume that
the data matrix has low-rank. While there exists nice opttian problems and
certain theoretical guarantees to this approachgltbleally low-rank assumption

is somewhat restrictive. When the data is globally nonlinesr shall instead
make use of itdocally linear property. So we take the reconstruction of a low-
rank matrix completion algorithm as starting point, comesithis reconstruction
to be noisy at missing entries, and apply our manifold dengialgorithm, with
values at known entries fixed. This simple approach prowvédiessh view of the
matrix completion problem, and greatly improves the stgrpoint.

In Chapter 4, we propose a nédi-modesalgorithm for clustering. As a popular
clustering algorithm, mean-shift model the data with nanapnetric kernel den-
sity estimate (kde) and iteratively moves each data poowsitds the modes (lo-
cal maximum of kde). But it is difficult to find a pre-specifiedmioer of clusters
because the number of modes are implicitly determined bkéneel width pa-
rameter. We combine density and hard clustering assignamehproposed a new
objective function called<{-modes, which can patrtition data into a pre-specified
number of cluster, while the centroid of each cluster is tloelenof kde defined
by each cluster and can be found by mean-shift updates.KThedes returned
by the algorithm live in high density area of the data spackae prototypical



representatives of the dataset, and thus provides bettierstanding of the data
and clustering result.

In Chapter 5, we improve th&-modes algorithm for datasets with manifold struc-
ture. The abové(-modes algorithm has the drawback that it can only find convex
clusters. We combin&-modes with the Laplacian smoothing techniques (widely
used in spectral clustering, manifold regularization, isempervised learning),
and provide a new model that can handle non-convex, congticshaped clus-
ters. Part of the model requires solving a convex quadratigram with simplex
constraints. We applied to this problem the gradient ptmeaalgorithm and its
Nesterov’s acceleration techniques, which leads to a viemgls procedure that
facilitates efficient projections onto the probability gil@x, has nice convergence
rate, and scales very well. We name this new algoritlaplacian K-modes It
shares nice properties with many well-known clusteringatgms.

In Chapter 6, we give concluding remarks and discuss futwesareh for manifold
learning with mean-shift.

In Appendix A and Appendix B, we give self-contained proofs &m efficient
algorithm for computing the projection onto the probapitmplex and the con-
vergence rate of gradient projection algorithms, respelsti



Chapter 2

Manifold Blurring Mean-shift
algorithms for manifold denoising

In this chapter, we propose a new family of algorithms foralsimg data assumed to
lie on a low-dimensional manifold. The algorithms are bamethe blurring mean-shift
update, which moves each data point towards its neighbotgdmnstrain the motion to
be orthogonal to the manifold. The resulting algorithms rmsaparametric, simple to
implement and very effective at removing noise while preisgy the curvature of the

manifold and limiting shrinkage. They deal well with extrerutliers and with varia-

tions of density along the manifold. We apply them as preggsing for dimensionality
reduction; and for nearest-neighbor classification of MNt#gits, with consistent im-

provements up to 36% over the original data (Wang and CafReraian, 2010).

2.1 Introduction

Machine learning algorithms often take as starting poiniga-dimensional dataset of
N pointsX = (xi,...,xy) € RP*Y and then learn a model that is useful to infer
information from this data, or from unseen data. Most altpons, however, are more or
less sensitive to the amount of noise and outliers in the dadaexample, spectral di-
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mensionality reduction methods such as Isomap (Tenenbaal 2000) first estimate
a neighborhood graph on the dataXe&nd then set up an eigenvalue problem to deter-
mine low-dimensional coordinates for each data point. Bt#hssare sensitive to noise
and outliers, in particular building the neighborhood drapmay be hard to find a good
value (if it exists at all) for the number of neighbdrer the ball radiug that will avoid
disconnections or shortcuts. Other dimensionality radaclgorithms, such as latent
variable models (e.g. mixtures of probabilistic PCAs (Tigpand Bishop, 1999)), try
to learn a parametric model of the manifold and noise by mariniikelihood. How-
ever, these models are prone to bad local optima partly damgeoise and outliers.
Although there are different ways of reducing the effecta@te and outliers, such as
learning a graph in a more robust way (Carreira-Heémpiand Zemel, 2005) or using
robust error functions, in this paper we concern ourseliés avdifferent approach: to
denoise the datas&t as a preprocessing step.

Data preprocessing is commonplace in machine learning. iGamdor example, the
many simple but useful operations of subtracting the measgply as a running aver-
age), low-pass filtering, standardizing the covariancegmoving outliers by trimming.
Other operations are specific to certain types of data: eesgeor blurring for images,
energy removal or cepstral normalization for speech. Thegeations help to achieve
some invariance to unwanted transformations or to reducerand improve robust-
ness. Here, we are interested in more sophisticated degdesthniques that adapt to
the local manifold structure of high-dimensional data. Wk assume that the dataset
X comes from a manifold of dimensioh < D to which noise has been added. We
will not make any assumptions about the nature of this notbe—form of its distri-
bution (e.g. whether long-tailed), or whether it variesngiéhe manifold. Denoising a
manifold is also useful by itself, for example 3D mesh smowhn computer graphics
(Taubin, 1995) or skeletonization of shapes such as digitsvever, we will focus on
denoising as a preprocessing step for supervised or unssgetearning.

A good denoising algorithm should make as few assumptionstahe data as possi-
ble, so nonparametric methods are preferable; and protieceaime result for a given
dataset, i.e., be deterministic. At the same time, it shbakk a small number of user
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parameters to control the algorithm’s behavior (e.g. thewarhof denoising). We pro-
pose an algorithm that fulfills these desiderata. It is basetivo powerful ideas: the
noise removal ability of locally averaging with a kernel ehte o (implemented with
the mean-shift algorithm); and the linear approximatioootl manifold structure of
dimensionL (implemented with local PCA on thlenearest neighbors).

2.2 Review of related work

2.2.1 Machine Learning algorithms

In the machine learning field, one natural way of smoothintpisise dimensionality
reduction techniques. Given the problem setting defineckntiGn 2.1, for some point
p € R”, one could achieve a denoised versipa R” in at least two possible manners:

1. First projecip to the latent space usingdamension reduction/projection mapping
F, and project its latent representation back to data spang aseconstruction

mappindf, i.e.,q = f(F(p)).

2. Projectp onto the manifold by minimizingninycy ||p — f(y)||. By finding the
optimizing parametey, q is set to bef (yy).

Some dimensionality reduction techniques provide bothpmays, such as autoencoder
(DeMers, 1993; Hinton and Salakhutdinov, 2006), lateniadde models (Brand, 2003;
Tipping and Bishop, 1999), and some unsupervised regresdgmrithm (Carreira-
Perpiian and Lu, 2008). While some other techniques provide onlyabenstruction
mapping, for instance most of the unsupervised regresyonitams (Lawrence, 2004;
Smola et al., 2001). Most spectral methods (Belkin and Niy2@02; Coifman et al.,
2005; Roweis and Saul, 2000; Tenenbaum et al., 2000) provilgelte latent represen-
tation of input data without giving any of the mappings. Hoet denoising can still be
achieved in this case, as by Etyngier et al. (2007).
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In spite of the fact that dimensionality reduction techmisjgan be used to achieve de-
noising, we argue that these methods (often sensitive seraoid/or local optima) may
learn a better manifold if the training set is preprocesseetinove noise and outliers.
Thus the aim of this research work is to propose a nonparangeinoising method that
imposes minimal model assumptions and acts as preprogessios for other purposes
(dimensionality reduction, supervised learning, etc).

Unnikrishnan and Hebert (2007) propose an algorithm to germoint set that has man-
ifold structure in 2-D or 3-D space, if the noise model of tamgpling sensor is known.
The algorithm models the neighborhood of each point withtiplel linear subspaces
which may intersect with each other. And as a result, thehimithood is described as
zero level set of some polynomial, the coefficients of whialstrsatisfy certain con-
straints for it to degenerate as product of linear equatidn=onstrained weighted least
squares minimization is then formed, and solved with ih#sion from the uncon-
strained version of the problem. The problem with this apphois that it can not deal
with very high dimensional data, since the number of coeffits in the polynomial
will be (”j;d) wheren is the dimension of input sampled data ahd the degree of
the polynomial, and the problem then becomes intractableafgen andd. Also, the
authors note that choosing the correct support region ofage function is crucial to

the performance of the algorithm and it is still an open peohl

Hein and Maier (2007) extend the main idea of surface smiogtim the computer
graphics literature to arbitrary dimensions. The papett#ishes a diffusion process us-
ing graph Laplacian for the input point set, and solves ihvlie implicit Euler scheme.
It also builds a noise model for the sampled manifold data, @erives large sample
limit and mathematical analysis based on theory of graphdcigmn. Experiments show
that the denoising algorithm could act as a preprocessapyfet some semi-supervised
learning problem to get better performance. The problerh this approach is that it
produces obvious shrinking phenomenon and the dataset#mmes disconnected
and concentrates in local clusters. This effect is inhetleietto the usage of isotropic
graph Laplacian.
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Park et al. (2004) propose an algorithm for outlier handéng noise reduction of non-
linear manifold data, mainly by projecting each data pomban affine subspace com-
puted from a local neighborhood by weighted PCA. A number @jimgors around each
point are chosen to fit a local linear space. The weights ohéghbors and a weighted
center of the neighborhood are computed iteratively to cedbe effect of outliers. A
Minimum Spanning Tree can be further computed within thgimieorhood to identify
the outlier, according to the criteria that distance betwa® outlier and the nearest re-
gion of data is much larger than the average distance witlaitregion. After projecting
data points onto each local linear space, a bias betweendfexpon and the true non-
noisy data is estimated and corrected. This projectionddtéps algorithm is similar to
one special case of the algorithm presented in Section 2@iekker, we argue that the
heuristics for choosing weights and detecting outlierscaraplicated (parameters are
hard to set in practice). In contrast, our algorithm perfomell even with the existence
of heavy outliers.

Gong et al. (2010) propose an algorithm for manifold demgisiased on locally linear
reconstructions. The algorithm first runs local PCA withie tieighborhood of each
data point and obtains a denoised version—the PCA recotistigfor each point in that

neighborhood. As a result, each point has multiple locadigaised versions (it lies in
the K-nearest neighborhood for multiple points). Then tlge@thm optimizes over a

globally denoised version for the entire dataset by miningzhe sum of squared error
between the global version and the local versions for eatft,gogether with a smooth

penalty term. This process may be repeated by replacingripmal dataset with the

globally denoised version. The authors show with experisidrat their algorithm could

achieve smaller reconstruction error for images with ¢ertypes of noise for image

manifolds such as digits and faces, and the denoised imag&simprove classification

rate. However, in the experiment, the algorithm needs te éskinput a training set that
contains both clean (noise free) images and noisy imageshie\ee good performance.
The other disadvantage is that the algorithm needs to saNexaN linear systems in

each iteration to compute the globally denoised versiandimension of which equals
the number of points in the dataset.
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2.2.2 Computer Graphics algorithms

There is a branch of denoising algorithms from the comput@plgcs field, which aims
at smoothing mesh surfaces obtained by range sensing geasniTaubin et al. (1996)
consider the 3-D surface coordinates as signals, and thasteimg of polyhedral sur-
faces is equivalent to designing low-pass filters on thene duthors define thieapla-
cian of a discrete graph signal by the formula (umbrella opejator

L(x;) = Z wi; (x5 — %;), (2.1)
JEN(P)

where)N; (i) denotes the set of first order neighborhood of veitér., the set of vertices
that share edges (or faces) with vertexand weightsw;; are positive numbers adding
up to 1 for each vertex. L&V be the matrix of weights. Defininil = I — W, the
Laplacian operator has a simple matrix foix) = —Kx, andK has eigenvalues
(frequencies) < k; < --- < k, < 2. Thenf(K), an analytic function oK, is applied
to the original signal to get a filtered version. Sirf¢&) has the same eigenvectordéas
and has eigenvalugik,), ..., f(k,), it changes the frequency distribution of the signal
and could be designed to approximate an ideal low-pass fiRepeatedly using the
linear operatorf (K) can therefore tailor the frequency content of the originesm The
authors also point out the transfer function of Gaussianoshiiag f (k) = (1 — \k)Y
with 0 < A < 1 produces shrinkage. Hence, they suggest usjpgalgorithm where
fn(k) = (1 — Mk)(1 — pk))N/? with 0 < A < —pu to solve this problem. In this
algorithm, the pass-band frequency:jsz = % + i where) andy are set by the user.

Later on, Desbrun et al. (1999) further formalize the abgwer@ach in itsdiffusion

processframework and propose a new class of denoising algorithresing defined

a discrete Laplacian operatdr on the mesh, attenuating noise is obtained through a

diffusion process: 9%
B = AL. (2.2)

Higher power ofLL, or combination of different powers @f could also be used in the

equation instead okL. For example\|u algorithm by Taubin et al. (1996) could be
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regarded as using\ + p)L — A\uL? within this framework wherd. is just the umbrella
operator in equation (2.1). By integrating the above equahimh frequency component
of the mesh are smoothed, while the shape of the mesh areyrkegtl. The authors
show that Taubin et al. (1996) is actually solving the diffuisequation iteratively with
an explicit Euler scheme

X = (I+ AdtL)X", T=0,1..., (2.3)

where X? is the initial noisy mesh. Each integration here is lineabath time and
memory. However, for this scheme to wopkdt < 1 has to be met to assure numerical
stability. As a result, the explicit method of Taubin et 4996) needs a large number of
iterations to obtain a noticeable denoising effect and tleeadl cost makes it inefficient.
To address this issue, the authors propose to use the itiplier scheme

I-\tL)XM=X", r=01..., (2.4)

where in each iteration the new mesh is obtained throughrgpévlinear system. Since
(I—-\dtL) is sparse, efficient numerical method (preconditionediifjiegate gradient)

can be applied. With the implicit scheme providing uncaondél stability, much fewer

iterations are needed to get a desirable smoothing effectrenoverall cost is much
less than explicit method.

The authors also suggest a different way of preventing kage which can be easily
implemented for triangulated meshes. This is due to thetfadtthe volume of the

triangulated mesh can be computed efficiently with a closech fformula. After each

integration, volume of the new mesh is computed, and thethalVertex positions are
scaled simultaneously to achieve the volume of originallmes

More importantly, the authors propose a noise removal pghaeecalled curvature flow
that preserves the shape better than previous algorithnssing a different differen-

tial equation:
8Xl‘

ot

wherer; andn; denote the mean curvature and surface normal at pgirgspectively.
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Intuitively, by solving this equation, each vertex is onjowed to move along the
surface normal while not allowed to drift tangentially, ahéd magnitude of the motion
depends on how curvy the surface is at the vertex. The autlewesdop a closed formula-
tion for estimating mean curvature from triangulated mesta,dand solve the diffusion
equation within the implicit manner as well. Since the ctuva flow here uses only the
intrinsic property of the surface, it achieves the best dimog effect while maintaining

the overall shape.

As the use of points sets instead of meshes are becoming opuéap, new algorithms
are proposed for smoothing point set representations ofoBjBcts. A big difference
between point sets and meshes is that, connectivity infooméetween vertices are
no long available for point sets. As a result, algorithmg thesal with point sets need
to establish the neighborhood relation between verticethegnselves, usually using
k-nearest neighbor arball criteria or a combination of both. This problem sedtis
closer to the ones we have in machine learning.

Lange and Polthier (2005) then denoise the point basedcsurfeth an anisotropic
Laplacian defined on point sets which reflects more detailledature properties than
the isotropic Laplacian used by previous papers. The adganof this approach is
that it can detect and enhance sharp geometric featuree futtiace such as edges
and corners, while these features are not preserved indtrepsc fairing scheme. The
algorithm first approximates a tangent space for each poaihtthe local neighborhood,
by solving a least squares minimization or equivalentlyigemvalue problem. With the
normal vector at each point, the directional curvaturesoheoint in the direction of its
neighbors and then a discrete version of Weingarten mapcat\eatex are estimated.
The eigenvalues and eigenvectors of the Weingarten shagatop correspond to the
principal curvatures and principal curvature directioh®ach vertex. So an typical
edge can be detected if at some vertex one principal cuevgwimost zero while the
other one is larger than some threshold (provided by the.uBerally, the anisotropic
Laplacian used in the diffusion process scheme is definegicht gointx; as

Aﬁ(z - dl'"U|xl, © (AZ ) v)lxia (2.6)
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whereV denotes the gradient operator ai@ denotes the divergence operatot;
plays a crucial role in this setting because it provides titeoff effect: a samplex; in
the neighborhood af; is not considered foﬁg‘(i if the curvature ak; in directionx; is
larger than some threshold. This is the key to preservingpdieatures. IfA = 1, then
the above definition reduces to isotropic Laplacian. It isriesting to see that, the idea
of anisotropic diffusion is readily used in image procegsmimprove the performance
of Gaussian filtering at the singular parts of a image and baek to Perona and Malik
(1990). Furthermore, Clarenz et al. (2004) combine anipatrourvature evolution on
noisy triangulated meshes and anisotropic diffusion ogy¢exture on fixed surface,
and solve the coupled problem for textured surfaces, enmgboth geometric features
and texture features at the same time.

Other than the Laplacian operator, an alternative smogtbperator is suggested by
Pauly et al. (2006) for point-based surfaces based on théciingurface definition.
Given a set of unstructured sample poifts, ..., xy), @ smooth surface is defined as
the zero level set of a function

Z(x) = n(x) - (x — a(x)), (2.7)

wheren(x) is the surface normal at given coordinatanda(x) is the weighted average
of sample points

() = S Xl = xl) 28)

2 im Px(lIxi = x]])
The weighting functionp, is used to restrict the influence of faraway data points and
is chosen to be the Gaussian kernel function, ig(r) = e(~""/"%) where the kernel
width i, should be set according to local feature size. Then it israbta estimate the
surface normal (of unit length) atby solving the following minimization problem

min > (m(x) - (x; — a(x))) ox(|x; — x])). (2.9)

RD
n(x)e 1

st |n(x)] = 1.

the solution of which is the eigenvector corresponding ®gmallest eigenvalue of a
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weighted covariance matrix. After that, each data pinear the surface can be used
as initial value to solve the implicit function iterativelgnd a projection operator could
thus be derived and applied repeatedly until convergenbe. iffiplicit surface here is
called theweighted least squaregpproximation.

Note that, there is a similar yet different method caliedving least squaresised by
Levin (2003) for approximation and interpolation of scegtedata. This method gen-
erally provides smooth approximation f — 1)-dimensional manifold iRR?, d > 2

. A projection operator is obtained in two steps. For any poinear the surface, first
compute a local hyperplang : n - (x — q) = 0 whereq is a point on the hyperplane
andn is the surface normalH is used to approximate the tangent hyperplane of the
underlying surface near. And it is designed to have several properties, one of which
is thatq is the projection ot onto H. Meanwhile, an orthonormal coordinate system
originated af is established of/. The second step is to compute a polynomial) in
R~ with some total degree:, through minimizing the weighted sum of squared errors

N

> (p(yi) = f)*éxllxi — all). (2.10)
=1
wherey;’s are the coordinates of the projectionsxps onto H under the predefined
orthonormal coordinate system,afi¢s are the heights ok;’s over H. Therefore, the
projection ofx on the smooth manifold i&,,(x) = q + p(0)n.

In conclusion, the computer graphics papers focus on srimgpttiosed surfaces (they
may give special treatment for non-closed surfaces or sesfavith holes, for example
by Desbrun et al. (1999)) in 3D space. Many of them approxendéterential operators
on the surface and implement smoothing by solving somegbalifferential equation.
Their techniques may not necessarily extend to the macéareihg field since datasets
in machine learning usually dwell in very high dimensionadese (for example, an im-
age could have tens of thousands of pixels), and many nati@mputer graphic may
not have correspondence there (for example, volume prs@mand edge). However,
the use of differential operators and diffusion procespraamation of tangent space,
and the idea of preventing tangential drift are useful argliegble to high dimensional
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data.

2.2.3 Computational Geometry algorithms

There are also research work trying to smooth point-baséadcaifrom a computational
geometry point of view. Dey (2007) describes a suit of akpons for reconstructing
closed 1-D curve or 2-D surface from dense samples, fromeimaately dense sample
and from noisy samples. And the author provides mathentgticafs and guarantees
for his method. The algorithms are mainly based on Voronagidims and their dual
Delaunay triangulations. For example, in essence, thasainiormal is estimated by
the direction in which a Voronoi cell elongates. Howeveis tind of algorithms may
not carry over well to machine learning for two reasons. tfFitse Voronoi diagram
and its dual work well only in low dimensions, and become cotaponally infeasible
for high dimensions. Second, certain sampling conditieedrto be satisfied for these
computational geometry algorithms to work well. For exagphe typicale-uniform
sampling condition requires that, for each point on theasigf there is a sample point
within a small factor of its local feature size which is defined as the distance fifzen
point to the medial axis. Under such conditions, the errawben the estimate from
Voronoi diagram and the true surface normal is guarantedzetemaller than some
bound depending oa We note that the concepts of medial axis and local feataee si
are often not applicable to problem settings in machineniagr

2.3 The Manifold Blurring Mean-shift (MBMS) Algo-

rithm

Our manifold denoising algorithm is based on the followidgas:

e Local clustering with Gaussian blurring mean-shift (GBM§)gure 2.1): the
blurring mean-shift update (Fukunaga and Hostetler, 19vif) unit step size
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moves data points to the kernel average of their neighbors:

) (6 = xm)/0l) 2.11
' <—m§fn Zm/GNnG(H(Xn_Xm’)/U”2) " ( | )

The averageis oveY,, = {1,..., N} (full graph) or thek nearest neighbors af,
(k-nn graph), and:(t) = e~*/2. A single mean-shift step locally climbs up the kde
defined by the data points, and after one step all points atateg so the dataset
shrinks over iterations. As discussed previously, thegss@ventually converges
to a state where all points coincide (Cheng, 1995) when usihgfaph, but it
can be reliably stopped to produce good clusterings thatmtepno (Carreira-
Perpiian, 2006b, 2008).

e Local tangent space estimation with PClacal PCA gives the best linedr-
dimensional manifold in terms of reconstruction error.(ic@thogonal projection
on the manifold):

mm Z |%m — (UUT (x, — ) + u)||2 (2.12)
mEN’

s.t. UTU = I with Upyy, pp,,, whose solution ige = Ey {x} andU = the
leadingL eigenvectors ofov,, {x}. In general N need not equal/,,.

Although GBMS by itself has strong denoising power (con&dlbyos and the number

of iterations), this denoising is directed not only orthoglly to the manifold but also
tangentially. This causes motion along the manifold, whibhnges important proper-
ties of the data that are not noise (for example, for a harthardigit, it may change its
style). It also causes strong shrinkage, first at the mahlioundaries but also within
the manifold (see the example of Figure 2.2). Thus, whilg wseful for clustering, its

applicability to manifold denoising is limited.

Our Manifold Blurring Mean-shift (MBMS) algorithm combines these two steps. At
each iteration and for every data poxjt, apredictor averaging stefs computed using
one step of GBMS with widtlr. We can use the full grapb\(, = {1,..., N}), or the
k-nn graph {V,, = k nearest neighbors af,) which has a similar effect as using a finite
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support kernel (e.g. Epanechnikov kernel). This step igaesible for local denoising.
Then, acorrector projective steps computed using the local PCA of dimensionality
L on thek nearest neighbors of,. This is responsible for local manifold structure,
and removes the tangential component of the motion. The temssare iterated until
sufficient denoising is achieved while avoiding shrinkage distortions of the manifold
(see later). The complete algorithm is in Figure 2.1. We weifer to the algorithm as
MBMST if using the full graph for the GBMS step, MBMSK if using thkenn graph
(samek for the GBMS and PCA steps), or simply as MBMS when the differescmt
relevant.

Besides GBMS (MBMS for, = 0), another particular case of MBMS is of special
interest, which we calLocal Tangent Projection (LTP) algorithm (Figure 2.1): it is
MBMSk with ¢ = oo, or equivalently it replaces the GBMS step with the mean of
the k£ nearest neighbors. Thus, each point projects onto its tacglent space, and the
process is iterated. It is simpler (one parameter less) lnolsa as effective as MBMS.
Finally, two other particular cases are PCA, o= co andk = N, and no denoising
(the dataset will not change), fér= D or o = 0.

Note the following remarks. First, for given, all versions of MBMS move points
along the same direction (orthogonally) and only diffetha tength of the motion. This
length decreases monotonically wittbecause it is an orthogonal projection of the full-
length motion (GBMS). The length increases witimitially (more denoising) but may
decrease for larger (as farther neighbors weigh in). Second, the GBMS coeffisient
in (2.11) are updated at each iteration; not doing so is fabté gives worse results.
Third, all the algorithms admit online versions by movingme asynchronously, i.e.,
by placing the stepx,, + x,, + 0x,,” inside thefor loop.
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MBMS (L, k, o) with full or k£-nn graph: giverX p. x
repeat
forn=1,...,N
N, < {1,..., N} (full graph) ork nearest neighbors &f, (k-nn graph)
G(l|(xn=%m)/a]?)

00X, < —X, + EmeNn S ren, G(||(xn—xm/)/JH2))Xm mean-shift step
X, < k nearest neighbors &f,
(m,, Uy) < PCAL(X,) estimate L-dim tangent space at x,,
aXn — (I — UnUg)ﬁxn subtract parallel motion
end
X+ X+ 0X move points
until stop
return X
LTP (L, k) with k-nn graph: giverX pyx
repeat
forn=1,...,N
X, < k nearest neighbors af,
(p,n, Un) — PCAL(.)(}L) estimate L-dim tangent space at x,,
8xn — (I — UnUZ)OJJn — Xn) project point onto tangent space
end
X+ X+ 0X move points
until stop
return X

GBMS (k, o) with full or £-nn graph: giverX pyn
repeat
forn=1,...,N
N, < {1,..., N} (full graph) ork nearest neighbors &f, (k-nn graph)
Gl Gtn=xm)/a %)

ox, +— —X, + EmeNn S Gl n—x /el Xm mean-shift step
end
X+ X+ 90X move points
until stop
return X

Figure 2.1 Manifold blurring mean-shift algorithm (MBMS) and its paxlar cases
Local Tangent Projection (LTR-nn graphs = o) and Gaussian Blurring Mean-shift
(GBMS, L = 0). N, contains allN points (full graph, MBMSH) or onlyx,'s nearest
neighbors k-nn graph, MBMSK).
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2.3.1 Practicalities

How to set the parameters?

If MBMS is embedded into another algorithm (e.g. classifma)j the most effective
way to set the parameters is to cross-validate them withtasé&tsalthough this does
add significant computation if other classifier parameteedto be cross-validated too;
we do this in our MNIST experiments. Otherwise, the paramset@ve an intuitive
meaning, and based on our experience it seems easy to findegiods for them:

e o is related to the level of local noise outside the manifolche Targero is,
the stronger the denoising effect; but too largean distort the manifold shape
over iterations because of the effect of curvature and émdint branches of the
manifold. Using a smalles is safer but will need more iterations. Using:-an
graph is even safer, as the motion is limited to nearktmearest neighbors and
allows largeto, in factoc = oo yields the LTP method.

e k is the number of nearest neighbors that estimates the laogent space; this
is the easiest to set and we find MBMS quite robust to it. It tgibycgrows
sublinearly with/V.

e [ isthe local intrinsic dimension; it could be estimated (egjng the correlation
dimension) but here we fix it. IE. is too small, it produces more local clustering
and can distort the manifold; still, it can achieve prettypdaesults for goodr
(L = 0is GBMS, which can achieve some reasonable denoising, #ijtelfa is
too large, points will move little { = D: no motion).

o Number of iterations: in our experiencefew (1-3) iterations (with suitable)
achieve most of the denoising; more iterations can refirgeathd achieve a better
result, but eventually shrinkage arises.

We find MBMSf and MBMSK/LTP with a few iterations give the bestuéts in low and
high dimensions, respectively, but using-&an graph (in particular LTP) is generally a
safer and faster option that achieves very similar resoligBMSH.
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Stopping criterion

Because the denoising effect is strong, a practical indicdtewhether we have achieved
significant denoising while preventing shrinkage is thédgsam over all data points of
the orthogonal varianck, (the sum of the trailing: — L eigenvalues ok,,’s local co-
variance). Its mean decreases drastically in the first fexatitons (and would converge
cubically to zero in the Gaussian case), while the mean difigtegram of the tangential
variance)\| decreases only slightly and stabilizes; see Figure 2.4ctimed manifolds,
A, tends to a positive value dependent on the local curvature.

Computational complexity

Per iteration, this i€)(N2D+ N (D + k) min(D, k)?), where the first term is for finding
nearest neighbors and for the mean-shift step, and the déaothe local PCAs. If one
uses the:-nn graph and does not update the neighbors at each ite(atioch affects
the result little) then the first term is negligible and thetgoer iteration is linear oV,
the one-off cost of computing the nearest neighbors is apearif MBMS is followed
by a spectral method for dimensionality reduction.

2.4 Experimental results

We demonstrate our MBMS algorithms on synthetic and realdadaitasets in this sec-
tion. We emphasize that although the algorithms proposezidean be applied to many
areas as computer graphics and robotics, our focus heredeatiowith general high

dimensional manifold data of possibly unknown intrinsisménsionality, and without

ground truth neighborhood information.
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Figure 2.2 Denoising a spiral with outliers over iterations & 0 is the original
dataset). Each box is the square30, 30]%, where100 outliers were uniformly added
to an existingl 000-point noisy spiral. AlgorithmsZ, k,o): (1,10,1.5) and full graph
(MBMSf), (1,10, 1.5) andk-nn graph (MBMSK)(1, 10, co) andk-nn graph (LTP), and
(0,-,1.5) and full graph (GBMST).

2.4.1 Noisy spiral with outliers

Figure 2.2 shows four versions of MBMS with a noisy spiral datgV = 1000 points
with Gaussian noise) with0% outliers added uniformly. GBMS(= 0) clusters points
locally and, while it denoises the manifold, it also visilslgrinks it tangentially, so al-
ready from the first iterations the boundaries shrink anagdiorm multiple clusters
along the manifold. When usinf = 1 in MBMS to account for a curve, in-manifold
movement is prevented and so these undesirable effectedueed. The three ver-
sions withL = 1 behave very similarly for the first 5-10 iterations, achigvexcel-
lent denoising while being remarkably unaffected by otslieVisually, the full graph
(MBMSf) looks best, although it begins to be affected by skirig much earlier than
the k-nn graph versions (MBMSk and LTP); the inside of the spiralwy winds in,
and also the whole spiral shrinks radially. MBMSk and LTP pres the spiral shape
and size for far longer: after 200 iterations only a smaliakshrinkage occurs. The
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reason is that the-nn graph limits the influence on the mean-shift step of &rgoints
(in regions with different curvature or even different brhas); strong denoising (large
o) still occurs but is locally restricted. We have observedhalar behavior with other
datasets.

After denoising for a few steps, outliers can be easily detke-the distance to their
nearest neighbors is far larger than for non-outliers—atiekeremoved, or projected
on the tangent space of tihenearest neighbors on the manifold. The reason why they
remain almost stationary and do not affect denoising of tagmstream points is simple.
Points near the manifold (non-outliers) have no outlieragghbors because the con-
tinuity of the manifold means all their neighbors will be néae manifold; neither the
mean-shift step nor the tangent space estimation areeffeand these points move as if
there were no outliers. Outliers have most neighbors soraewiear the manifold, and
their tangent space is estimated as nearly orthogonal tmémgfold at that point; they
barely move, and remain isolated for many iterations (exadht they are denoised too,
depending on how far they are from the manifold wendo). By this same reasoning,
if MBMS is applied to disconnected manifolds, each will be @iead in isolation.

2.4.2 More complex shapes

Figure 2.3 shows a 1D manifold (two tangent ellipses) witleliigtersection, a gap,
noise that varies depending on the manifold location, artthgpsdensity discontinuity.
In spite of these varying conditions, MBMSf achieves verydidenoising with a single
(L, k, o) value (row 1). Using the diffusion-map affinity normalizatiD~“WD~* of
Coifman et al. (2005) witla = 1 slightly improves the result (row 2), but with constant
noise it has only negligible differences with our usual case- 0).

2.4.3 Dimensionality reduction

Figure 2.4 shows thé-nn-graph version (MBMSK) with a noisy Swiss roll in 100 di-
mensions (97 of which are noise). Isomap (Tenenbaum etG00)2and particularly
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constant

constant

local scaling
Approach 1

Approach 2

local scaling

Figure 2.3 Denoising a complex shape with nonuniform density and eneigth
MBMSf (L = 1,k = 35) using the usual affinityd = 0.2, « = 0, row 1), the
diffusion-map affinity normalizationo( = 0.2, « = 1, row 2), the local scaling ap-
proach 1 = 35, v = 1.4, row 3), and local scaling approach & 70, row 4). The
upper partial ellipse has Gaussian noise of stdévand the lower ellipse of stdev vary-
ing betweer) and to0.2, with a sharp density discontinuity. The first column=£ 0)
shows the original noisy dataset and the kernel widths @te of the red circles) used
by different approaches at several points (centers of theireles) in different density
regions.
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Figure 2.4 Dimensionality reduction with Isomap and LTSA for diffetaterations of
MBMSk denoising (10—nearest-neighbor graph= 2, k = 30,0 = 5). 7 = 0is

the original Swiss roll datasefM = 4 000 points) lifted to100 dimensions with addi-
tive Gaussian noise of stdéw in each dimension. Isomap/LTSA used@&nn graph.
Isomap’s residual variances (Tenenbaum et al., 2008) (, 1, 2, 3, 5): 0.3128, 0.0030,
0.0002, 0.0002, 0.0003. View 0 shows dimensions 1-3; view 1 shows dimensions 1, 2
(left subplot) and 2, 4 (right subplot). Right column: histags over all data points
of the normal, tangential, and normal/tangential ratichef¥ariances; the curves corre-
spond to the iterations = 0, 1, 3,5, 7,9, and the insets fok, and\, /A, blow up the
bins near zero (which contain all points for> 2).

LTSA (Zhang and Zha, 2004) are sensitive to noise and toalsrin the neighborhood
graph, but these are eliminated by MBMS. Excellent embeddiesult for a wide range
of iterations, and one can trade off a little more denoisiril & little more shrinkage.

In general, and depending on the level of noise, 2-3 itaratare often enough. The
histograms show that the tangent space eigenvaluebange little over iterations, i.e.,
there is little in-manifold motion. However, the normal spaigenvalues; drop dras-

tically in the first 3 iterations (the histogram is a spike Eh@st zero) and then stay
roughly constant (they do not become exactly zero becausdeaghanifold curvature),

indicating strong denoising orthogonal to the manifold] aignaling a good stopping
point. We repeated the experiment by adding 10% outliersimvé box bounding the
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Figure 2.5 Left 3 plots 5—fold cross-validation error (%) curves with a nearest-
neighbor classifier on the entire MNIST training datag®k(points, thus each fold
trains ord8k and tests on2k) using MBMSK; we selected = 9, k = 140, 0 = 695 as
final values Right plot denoising and classification of the MNIST test Sélk(points),

by training on the entire training set (rightmost value) ahgb on smaller subsets of
it (errorbars over 10 random subsets). Algorithfisk, o), all using ak-nn graph:
MBMSK (9, 140, 695), LTP (9, 140, o0), GBMS (0, 140, 600), and PCA (. = 41).

Swiss roll with essentially identical results (points nttee manifold are denoised, out-
liers remain stationary), demonstrating the robustne$48i1S.

2.4.4 Classification of MNIST digits

It is reasonable to assume that much of the essential cbakattle, thickness, etc.) of
a handwritten digit can be explained by a small number of ekegof freedom, so that
MBMS denoising might preserve such a manifold while remoatiger types of noise;
and that this may improve classification accuracy. Our s&wgs follows. We use a
nearest-neighbor classifier (like MBMS, a nonparametrichod}, which allows us to
focus on the performance of MBMS without classifier-specifieas due to local op-
tima, model selection, etc. As denoising methods we use PEA grojecting the data
onto theL principal components’ manifold) and 3 versions of MBMS usthg k-nn
graph and a single iteration: MBMSK, LTP and GBMS. We estimafgfoximately)
optimal parameters by 5—fold cross-validation by seaglowver a grid, denoising sep-
arately each class of the training fold/ (= 48 000 grayscale images of dimension
D = 784, or 28 x 28 pixels) and measuring the classification error on the tdst fo
(12000 digits). For classification, the test points are fed digeftlithout denoising) to
the nearest-neighbor classifier. Figure 2.5 (left 3 pldies the MBMSKk error curves
over L, k ando; notice how MBMSk improves the baseline error (no denoisaigo
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Figure 2.6. Sample pairs of (original,denoised) images from the ingirset. A few
(2.62%) grayscale values outside th@ 255] training range have been clipped for
visualization.

achieved byL. = D = 784 or o = 0) of 3.06% over a very wide range df_, k, o).

We chose(9, 140, 695) and trained the models on the entire training $6k (points);
Figure 2.5 (right plot) shows the test set classificationreiviBMSk achieved .97% (a

36% relative decrease over the baseling.00%); LTP (9, 140, co) achieves a slightly
larger error 0f2.15% (30% relative decrease). GBMS and PCA also improve over the
baseline but far les2(59%, 14% decrease). These results are consistently confirmed
over smaller training sets, even up 46 = 4000 (right panel); we used the same pa-
rameters as for the entire set. The methods combining bagtering and manifold
structure at the local level (MBMSk and LTP) are the clear wnsn Judging from the
trend of the curves, the relative error decrease wouldgstillv with the training set size.

Other options also reduced the error, but less so (howevet] these cases we used
the same parameters as ab@9¢el40, 695), which are not optimal anymore). Denois-
ing each test point (with one MBMSK iteration using the entiemoised training set):
2.23%. Denoising each test point but with the original trainimg: 2.42%. Denois-
ing the entire training set without class informatidh89%. The beneficial effect of
MBMSKk denoising in one way or another is clear.

Figure 2.6 shows training images before and after denaigihg most obvious change
is that the digits look smoother (as if they had been antisall to reduce pixelation)
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Figure 2.7 Some misclassified images. Each triplet is (test,orignearest-

neighbor,denoised-nearest-neighbor) and the corregmprabel is above each image,

with errors underlined. After denoising there are feweoesrsome of which are ar-
guably wrong ground-truth labels.

and easier to read; comparing the origi® | 23 4 s & 7z 8 ¢ vs the denoised
O 2349567 8¢, o0ne sees this would help classification. While this smooth-
ing homogenizes the digits somewhat, it preserves distestyle aspects of each; ex-
cessive smoothing would turn each class into a single pro¢oimage, and result in a
Euclidean distance classifier (the method of Hein and Mai&72hows oversmooth-
ing). MBMSk performs a sophisticated denoising (very défgrfrom simple averaging
or filtering) by intelligently closing loops, removing oraftening spurious strokes, en-
larging holes, removing speckle noise and, in general)\sudghaping the digits while
respecting their orientation, slant and thickness. We easigh that we did not do any
preprocessing of the data, and in particular no image-bpissaiocessing such as tan-
gent distance, deskewing, or centering the images by bogratix (known to improve
the nearest-neighbor classifier LeCun et al., 1998). MBMS doé&now that the data
are images, and would give the same result if the pixels weshuffled. Figure 2.7
shows misclassified images.
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2.5 Discussion

In previous sections, we have sticked to the simple alguoritth Figure 2.1 which in-
volves three parameters (k, o), each playing different role in denoising. We now
discuss some extensions which may improve the performanderwcertain circum-
stances.

2.5.1 Different operators

At each iteration, the GBMS predictor step builds tNex N affinity matrix W =
(exp(— ||%X — Xm]|* /202))nm, @nd the degree matri® = diag (Zj:’:l wnm>, which
define a random-walk matri? = D~!'W. The GBMS update can thus be written
concisely asX = PX. Note thatP is closely related with the well-known graph
LaplacianL. = D — W (or its normalized versiod — D~/?WD~'/?), which has
been used extensively for denoising (e.g. Desbrun et &#9;119ein and Maier, 2007;
Taubin, 1995), spectral clustering (Shi and Malik, 200@pehsion reduction (Belkin
and Niyogi, 2003), and manifold regularization (Belkin et @006). In summary, all
these algorithms make essential use of the eigenspaeenoi..

The denoising effect of GBMS can be considered as applyingveplss filter to the
datasefX. It is therefore straightforward to use a different operat@) in place of
P, such thatp(P) has the same eigenvectorsRswhile tailoring the frequency dis-
tribution of X in a desirable way (e.g., to approximate an ideal low-pat&s,fifaubin,
1995). This approach has already been investigated by @afPerpihan (2008) in the
context of clustering. Carreira-Pefiain (2008) has explored different forms @f in-
cluding explicit, implicit, rational and exponential fuens, and noticed that while the
different forms achieve approximately the same clustem@sglt, their convergence rate
and runtime differ significantly.

Under the same framework of Carreira-Pégn (2008), we investigate the following
different operators(P) in the predictor step of MBMS (the corrector step is carried ou
as before):
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Table 2.1 Summary of operators’ properties and graph of their degdifiimction(r),
€ (0,1). This table is taken from Carreira-Pdian (2008).

Method o(r) parameter range convergence ordercost per iteration
explicit-n L—n+nr| ne(0,2\{1} 1 1
GBMS (h =1) r n=1 3 1
explicit-n r" n=1223... 2n + 1 n
implicit-n SE— n € (0,00) 1 5
exponentialy | e 717 n € (0, 00) 1 28
explicit— explicit—n implicit—n exponentials

—n=05 —n=05

—n=1 —n=1

——n=10 —n=10

P H ——n=100 ——n=100
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y — =
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// —n=1 /

/ —n=1.25 /
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/ —n=1.75 e

7
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Explicit-n: ¢(P) = (1 —n)I + nP forn € (0, 2].

Explicit-n: ¢(P) =P"forn =1,2,3,....

Implicit-n: ¢(P) = ((1 +n)I—nP)~! forn > 0.

Exponentialy: ¢(P) = e "I~P) for > 0, where the matrix exponential is
defined ag® = >, A’/i! if the series converges.

We list their corresponding convergence order and costg@etion (proportional to that
of usual GBMS, assuming full graph is used) in Table 2.1.

We demonstrate the above four different operators on theyrepiral dataset in Fig-
ure 2.2, and use parameters such that their clustering loeldeviate from the usual
GBMS. Namely, we use explicif-with n=1.8 (over-relaxation), explicit-with n = 10,
implicit-n with n = 10, exponentialy with » = 10. All operators are run with MBMS
(L = 1) and GBMSk = 0) with other parameters fixed &t = 10,0 = 1.5), and the
denoising results over iterations are shown in Figure & @utingP with full graph)
and Figure 2.9 (computing with £-nn graph). We make a few observations from the
results.

e In terms of clustering behavior, different operators letmsimilar final result.
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MBMSf

Explicit-n (n = 1.8)

GBMSf

MBMSf

Explicit-n (n = 10)
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Implicit-n (n = 10)

GBMSf

MBMSf

GBMSf

Exponentialy (n = 10)

Figure 2.8 Denoising a spiral with outliers (same dataset as in Figu2eusing differ-
ent operators. All operators are run with MBMSf (odd roWiss= 1) and GBMSf (even
rows, L = 0) with other parameters fixed &t = 10,0 = 1.5).
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Figure 2.9 Denoising a spiral with outliers (same dataset as in Figu2eusing differ-
ent operators. All operators are run with MBMSk (odd rowss 1) and GBMSK (even
rows, L = 0) with other parameters fixed &t = 10,0 = 1.5).
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Comparing the strength of denoising per iteration, the ramkif operators is ex-
ponential> implicit > explicit, which can be seen from the iterations used by
GBMSf or GBMSKk to converge. And this is to be expected becausexipo-
nential and implicit operator actually apply higher ordeirexplicit operators im-
plicitly through their Taylor expansions. But the strongendising effect comes
at the price of much higher computational cost. We also adhat, when using
full graph in the predictor step, the implicit and exponahtiperator produce too
strong denoising effect to be corrected by local PCA. OvelMBMSKk leads to
smaller shrinkage and preserves the manifold shape bletieMBMSf.

Generally speaking, with thie-nn graph restricting clustering to be local, and the
following corrector step further limiting the motion, théfdrence between dif-
ferent operators of MBMSk are relatively small (much smatemn the difference
between MBMS and GBMS). The explicit operators, whose resalvary sim-
ilar to that of MBMSK in Figure 2.2, preserve the shape best@moduce little
shrinkage on this dataset. The implicit operator and expiisleoperator have
stronger denoising power, clearly seen in early iterat{ens 1 and2), but cause
more shrinkage in later iterations. And since they are milmves to compute,
we conclude that explicit operators are practically moefgnable.

It is interesting to note that using the explieitoperator is equivalent as running
the GBMS predictor step with fixel for n times. Its good performance indicates
that we can run the predictor step with fixed operator for dveerations before
switching to the corrector step. In this way we reduce thgueacy of updating
pairwise affinities and computing local PCAs, both of whicl enstly compared
to the predictor step, especially when the predictor steg asparse graph.

2.5.2 Local scaling

We have so far used a commenvalue for the entire dataset in MBMS. When the

dataset has different sampling density in different regiasing an individual, localized

o for each data point places more emphasis on the geometrg afidherlying manifold.
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The same idea is used by Zelnik-Manor and Perona (2005) istieaning the pairwise
affinities between data points for spectral clustering,n&hds simply set at each point
to be the distance to its 7th nearest neighbor, as an easgfrilemb. In the following,
we investigate the local scaling issue based on the moratrecek of Vladymyrov and
Carreira-Perpian (2013), which extends previous work by Hinton and Rowel982.

In the proposed entropic affinity algorithm,is chosen for each point such that it has
a distribution over neighbors with a desired perplexity i, or effective number of
neighborsk (to be distinguished from the local neighborhood sizie the corrector
step). Formally, we can define a discrete distributiér; o) at any locationx € R”
over theN data points

G(ll(x = xa) /o)

pn(x; U) = N

>t G(Ilx = xm) /0]*)

Notice these probabilities have exactly the same form asidnmalized affinity used

(2.13)

in mean-shift update (1.2). The intuition behind entrogiiindy is to havep(x; o)
“provide the same surprise as if we were to choose aniomgjuiprobable neighbors”.
As a result, the entropy qf(x; o), which is a nonlinear function of, should match
the entropy of theK” equiprobable neighbors case, whichlég K. Given the user
parametel, it reduces to a root finding problem to computgor which Vladymyrov
and Carreira-Perpan (2013) have developed efficient derivative-based proeedt is
shown that the entropic affinity algorithm finds better logzdles than the rule of thumb
approach, while still being computationally efficient.

In this section, we investigate two different approachestoeve local scaling in MBMS.

e Approach 1:we first obtain an individuad; for x;, i = 1,..., N using the en-
tropic affinity algorithm with certaink’, and then plug inS; = (v0,)*I as the
covariance matrix at each in the kde. Therefore, there are two user parameters
in this approachX is used to estimate the “magnitude” of the local scale, while
the extra factory > 0 is used to control the scale globally for smoothing.

e Approach 2:we useK as a tuning parameter insteadcofn the predictor step,
i.e., we simply use the; returned by entropic affinity as the kernel widthxaf
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and varyK globally to achieve optimal denoising. Notice thdtcan take any
continuous value inl, N] in entropic affinity, and a largek implies a largew
value, which in turn implies a stronger denoising effect afam-shift. Ther;
returned by entropic affinity using the samivevalue will be different for different
point, which reflect exactly the variation in local samplohgnsity.

In this section, we sek’ = k, the neighborhood size used in corrector step in Approach
1 for simplicity. Intuitively, the value: reflects our belief on the local geometry of each
point to be al. dimensional subspace approximately. But we emphasizeitheatd £
have different meanings and they do not need to be the sameressilt of this setting,
we have one parametey {s. K) to be tuned for each approach in the experiments
below. The corresponding mean-shift update is derivedgusia new kde and applied

in the MBMS predictor step.

We demonstrate them on the complex shaped dataset in FigyrevlZich has nonuni-
form density and noise in different regions. We have shovavipusly that, using un-
normalized affinities, a commanvalue that is appropriate for the highly noisy region
will be too large for the less noisy region and cause sigmfishrinkage there. In ap-
proach 1, we use the entropic affinity algorithm to find thevittial o value that gives

k = 35 effective neighbors for each point and rescale them with 1.4; in approach
2, we useK = 70 effective neighborsy and K are tuned in each approach to achieve
good denoising and small shrinkage. Other than that, we rBMBI algorithm using
the same parameters as befote=f 35, L = 1), without any affinity normalization
(o = 0). The denoised dataset at different iterations are showigure 2.3 (row 3 and
row 4). The two approaches produce very similar results. riGletae manifold shape
is well-preserved, as in MBMSTf with the diffusion-map affinitormalization { = 1),
and shrinkage is even less noticeable than before, thantke tmdividual scales that

adapt to local density.

Our results essentially show that better density estimsee in the predictor step gives
better denoising. With the above approaches, we have usalizied spherical (isotropic)
covariance matrix:; = (o;)%I in the kde instead of the homoscedastic formulation
(1.2). Potentially, further improvement can be obtainethwion-spherical or full co-
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variance matrix. Before finishing this section, we discussittieresting connection
between MBMS and the Manifold Parzen Windows by Vincent andgige(2003). The
authors propose to use manifold aligned kernel for denstynation and classifica-
tion, where the important observation is that spherical$Saun density spread equally
along all directions in the input space, and that it wastest @fl probability mass in
irrelevant region when the true data density is close to dimear lower dimensional
manifold. Their solution is to estimate for each point anivitthal covariance matrix
or a “pancake”-shaped Gaussian that spreads mostly alengahifold. The manifold
structure in this work is estimated by first computing a lamalariance matrix and then
extracting the leading eigenvalues/eigenvectors—ex#uotl same way as we do in the
corrector step. It is easy to see that the resulting densttgnate will concentrate near
the manifold. A disadvantage of this approach is that it megustoring the individual
covariance matrices for all data points (or at least thadileg eigenvalues/eigenvectors)

to just evaluate the density at a test point.

2.5.3 Estimation of intrinsic dimensionality

Estimation of intrinsic dimensionalit§; of a data manifold is a long standing problem in
manifold learning. It also plays a central role in MBMS—it itigjuishes the manifold
structure from noise in the corrector step. We have obsezugulrically that the value
of L can influence the performance of MBMS significantly (e.g., panre MBMS with
GBMS). Underestimatind. leads to shrinkage of true signal, while overestimating it
results in inadequate denoising. In this section, we inyatt several approaches for
estimatingL in MBMS.

Existing methods of estimating intrinsic dimensionalignde roughly categorized into
geometric methods and eigenvalue methods. The commonaptaken by geomet-
ric methods is to design quantities that vary according &oititrinsic dimensionality

L rather than the input dimensionalify. Example quantities of this kind include: the
fraction of pairs of points that are within certain distarfien each other (correlation
dimension, Camastra and Vinciarelli, 2002; GrassbergePaodaccia, 1983), the mini-
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mum number of balls of certain radius that cover the datasgiacity dimension, &gl,
2003), Euclidean distance from a data point tokitth nearest neighbor (Pettis et al.,
1979), and length of the minimal spanning tree on the geodesarest-neighbor dis-
tance (Costa and Hero, 2004). In these methbdsyecovered by estimating the growth
of the designed quantities over their arguments from firatees. Levina and Bickel
(2005) propose to model the number of data points withiragedistance from a point
in space as a Poisson process, and develop a maximum ligélgsiimator for the rate
parameter which is a function @f.

Eigenvalue methods estimate intrinsic dimensionalityaiddet by looking for clear-cut
boundary in the spectrum computed by PCA (Bruske and Somme8,; Fakunaga and
Olsen, 1971). Global PCA tends to overestimatdue to the curvature of nonlinear
manifold, and is thus not suitable here. And since we aradi{reomputing local PCAs
in the MBMS corrector step, eigen-analysis on the local danae becomes an natural
choice for us. Notice the size of the local neighborh@od an important parameter
here, which should be chosen such that the neighborhoodchfpant approximately
lie on L-dimensional subspace. Using a too snkalthe neighborhood may appe&r
dimensional due to the noise; using a too lakg¢éhe neighborhood is no longer local,
and curvature may obscure the structure (Brand, 2003).

In this section, we investigate experimentally two methimisautomatic estimation of
L. The first one is the maximum likelihood method (denoted byEylby Levina and
Bickel (2005), which is a geometric method and is shown toeehigood bias and
variance balance. This method has one user parametidre size of neighborhood
within which the Poisson process model is employed. Therskorethod is a simple
eigenvalue method through local PCA (denoted by EIG). Supfius local covariance
matrix computed on thg nearest neighbors of a data point has eigenvalyes - - - >
Ap. Then our EIG estimate at this point looks for the largesteigap:

L =arg max Al — At (2.14)

-----

This is essentially assuming that the smallest variancér@tiibn parallel to the man-
ifold is much larger than the largest variance in directiothe@gonal to the manifold
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Figure 2.1Q Estimation of intrinsic dimensionality. of the 100D swissroll dataset,
both in the noiseless case (left) and noisy case (right). Mtelpe mean of estimated

at all data points vs. the parameteused by each method. The black line denotes the
ground-truth dimensionality, = 2.

within the neighborhood.

We first demonstrate MLE and EIG on the 100D swissroll examgésl in Section 2.4.3,
where N = 4000 and L = 2. The first3 dimensions of the dataset is sampled from a
swissroll while the rest dimensions are pure random noiséth Wed parameter,

we can use each method to obtain an estimaté af each point. The mean of the
pointwise estimate on the noisy and noiseless dataset w@nshoFigure 2.10 for a
range ofk values. It is clear that, both methods work well with noissldataset (left
plot). But with the existence of noise, MLE significantly ogstimated. for all values

of k, whereas the EIG estimate is much more accurate and stable.

We also vary the input dimensionalify by using the firstD dimensions of the 100D
swissroll dataset, which effectively change the noiselléMae estimated dimensionality
on the dataset for both methodskat= 150 are shown in Figure 2.11. We observe that
the MLE estimate deteriorates quickly as the noise leveakiases, while EIG always
gives an estimate close fo= 2 regardless of the input dimensionality. This is because
the gap (2.14) remains the same no matter how many dimensi¢gnederate) noise is
added.

Next, we use the intrinsic dimensionality estimated by eaethod in our MBMS cor-
rector step, where each point is allowed to have a differstirnate. We do not directly
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Figure 2.11 Estimation of intrinsic dimensionalitf on the swissroll dataset for differ-

ent input dimensionalitie®. We show the mean and standard deviation of estimated
at all data points obtained by MLE and EIG usihg= 150. The black line denotes the

ground-truth dimensionality, = 2.

use the pointwise estimate from each method. Instead, aityajote of L among the
the k-nearest-neighbors of each point is used as a smootheoneafkihe estimate. We
find this helps improve the estimate in practice. This comaffefrees the user from
setting a global. parameter. We also update the estimate at each iteratidh.ayypro-
priatec parameter, and as the noise level get reduced over itesatisshould become
easier to estimate the intrinsic dimensionality. In theald=ase where both and the
tangent space are correctly estimated, the largest eilgengap in (2.14) will be always
found atL over iterations, since orthogonal variance decreaseklguidhile parallel
variance do not change much under MBMS.

Figure 2.12 and Figure 2.13 show the denoising and dimemsaurction results on the
100D swissroll dataset, where parameteendk are tuned for each method to achieve
good estimation of. and embedding. Apparently, MLE leads to insufficient deingis
in the beginning and many dimensions of noise are regardethagold structure mis-
takenly due to the overestimation 6f Even though the estimation of MLE becomes
better at later iterations(= 3 and5), the manifold structure is not well maintained
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because not all points are denoised at the same pace andttapgee estimation be-
comes unreliable. On the other hand, EIG gives much moreaiecestimation of. in
the beginning. Then it tends to underestimatas noise level decreases, because the
local neighborhood at certain points approximately lie aulaspace of dimensionality
lower than the trud.. MLE and patrticularly EIG have a noticeable effect on the man
ifold boundary, where points accumulate and produce a Ignhadent (see Figure 2.14
for a comparison). From the Isomap embedding, it is alsor dleat there are local
groups of latent representations (especially around thedery) that approximately lie
on a 1D line because the estimateds 1 within those groups. Overall, MLE produces
stronger distortion of the manifold, and EIG results in mbeltter denoising effect in
this example.

In this section, we have investigated different approadfesstimating the intrinsic

dimensionality of dataset with manifold structure. We fihdttthe geometric method
MLE is more sensitive to noise, and the simple eigenvaluedateEIG performs well

with MBMS for denoising. Potentially they can be applied tted&ts involving multiple

manifolds where each manifold may even have a different dgiomality.

2.6 Conclusion

With adequate parameter values, the proposed MBMS algoigivery effective at de-
noising in a handful of iterations a dataset with low-dinmenal structure, even with
extreme outliers, and causing very small shrinkage or rolthdistortion. It is non-
parametric and deterministic (no local optima); its onlgmuparametersi(, k, o) are
intuitive and good regions for them seem easy to find. We aispgsed LTP (local tan-
gent projection), a particular, simple case of MBMS that hassgoptimal performance
and only need# andk. We showed how preprocessing with MBMS improves the qual-
ity of algorithms for manifold learning and classificatidrat are sensitive to noise or
outliers, and expect this would apply to other settings wibthsy data of intrinsic low
dimensionality, such as density estimation, regressi@eori-supervised learning.
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Figure 2.12 Dimensionality reduction with Isomap and LTSA for diffetdterations
of MBMSk denoising £ = 50, ¢ = 3) on the 100D swissroll dataset. Intrinsic dimen-
sionality at each data point is estimated by MLE at eachtitaralsomap/LTSA used a
10-nn graph. We show the colored histogram (frequency) ofreggd dimensionalities
L on the dataset over iterations in row 3 and the denoisedetateslored according to
their estimated. in row 4.
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Figure 2.13 Dimensionality reduction with Isomap and LTSA for diffetaterations
of MBMSk denoising £ = 50, o = 3) on the 100D swissroll dataset. Intrinsic dimen-
sionality at each data point is estimated by EIG at eachtiteralsomap/LTSA used a
10-nn graph. We show the colored histogram (frequency) ofreggd dimensionalities
L on the dataset over iterations in row 3 and the denoisedetateslored according to
their estimated. in row 4.
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Figure 2.14 Boundary effect of MBMSk denoising:(= 50, ¢ = 3) on the 100D swis-
sroll dataset, with MLE (first row) and EIG (second row) estted intrinsic dimension-
alities. MLE and particularly EIG have a noticeable effenttbe manifold boundary,
where points accumulate and produce a 1D alignment. We siew & (dimensions

1-3) of the dataset before and after denoising.



Chapter 3

A denoising view of matrix completion

In matrix completion, we are given a matrix where the valuesnty some of the en-
tries are present, and we want to reconstruct the missing; &ech work has focused
on the assumption that the data matrix has low rank. We peopanore general as-
sumption based on denoising, so that we expect that the gdienissing entry can be
predicted from the values of neighboring points. We proppsenparametric version
of denoising using the MBMS algorithm developed in Chapterlacivis based on lo-
cal, iterated averaging with mean-shift, possibly comséa to preserve local low-rank
manifold structure. The few user parameters required (Emoiding scale, number of
neighbors and local dimensionality) and the number of tik@ena can be estimated by
cross-validating the reconstruction error. Using our athms as a postprocessing step
on an initial reconstruction (provided by e.g. a low-ranktheel), we show consistent
improvements with synthetic, image and motion-captura ¢dfang et al., 2011).

3.1 Introduction

Completing a matrix from a few given entries is a fundamentablgm with many ap-
plications in machine learning, computer vision, netwangiaeering, and data mining.
Much interest in matrix completion has been caused by rehentetical breakthroughs
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in compressed sensing (Casdand Recht, 2009; Cagsland Tao, 2010) as well as by
the now celebrated Netflix challenge on practical predicpooblems (Bell and Koren,
2007; Koren, 2008). Since completion of arbitrary matritsesot a well-posed prob-
lem, it is often assumed that the underlying matrix comesfaaestricted class. Matrix
completion models almost always assume a low-rank streictfithe matrix, which is
partially justified through factor models (Bell and Koren0Zp and fast convex relax-
ation (Canés and Tao, 2010), and often works quite well when the obtsensare
sparse and/or noisy. The low-rank structure of the matreeersally asserts that all
the column vectors (or the row vectors) live on a low-dimenal subspace. This as-
sumption is arguably too restrictive for problems with Bclstructure, e.g. when each
column of the matrix represents a snapshot of a serioustyptad motion capture se-
guence (see section 3.4), for which a more flexible model ghamcurved manifold, is
more appropriate.

In this chapter, we present a novel view of matrix completiased on manifold de-
noising, which conceptually generalizes the low-rank ag#ton to curved manifolds.
Traditional manifold denoising is performed on fully obgsa data (Hein and Maier,
2007), aiming to send the data corrupted by noise back todheat surface (defined
in some way). However, with a large proportion of missingriest we may not have
a good estimate of the manifold. Instead, we start with a pstimate and improve it
iteratively. Therefore the “noise” may be due not just taiimgic noise, but mostly to
inaccurately estimated missing entries. We show that agoréhm can be motivated
from an objective purely based on denoising, and prove itv@gence under some
conditions. We then consider a more general case with amearilow-dimensional
manifold and use a stopping criterion that works succelgsimlpractice. Our model
reduces to a low-rank model when we require the manifold titelbheshowing a relation
with a recent thread of matrix completion models (Jain e28l10). In our experiments,
we show that our denoising-based matrix completion modeheake better use of the
latent manifold structure on both artificial and real-wodlatasets, and yields superior
recovery of the missing entries.



49

Notation In this chapter, we use the subindex notat®g, andX, to indicate selec-
tion of the missing or present values of the maiy, y, whereP Cc U, M =U \ P
andi/ = {(d,n): d=1,...,D, n=1,...,N}. The indicesP and valuesXy of the
present matrix entries are the data of the problem.

3.2 A brief review of related work

Matrix completion is widely studied in theoretical commed sensing community (Caesl
and Recht, 2009; Card and Tao, 2010). The minimum rank matrix completion prob-
lem is formulated as

m)én rank (X), st Xp=Xp, (3.1)

which is know to be NP-hard and difficult to solve in both theand practice (Chistov
and Grigoriev, 1984; Meka et al., 2008). Casdnd Recht (2009) propose to solve the
matrix completion problem using the following convex oltjee function

rn)%n HXH* st. Xp = X’p, (32)

where||X||, (callednuclear norn) is the sum of singular values ®, and used as con-
vex surrogate for minimizing the rank &. The authors show that for matrices that
satisfy certain conditions and have small number of presetites sampled randomly,
the unique solution of problem (3.2) actually recovers thtgre matrix exactly (in which
cases, (3.1) and (3.2) beconexsuivalen} with high probability. Notice that (3.2) can
be transformed into a semidefinite program and solved witrior point method (Liu
and Vandenberghe, 2009). In order to solve large instancemtyix completion, Cai
et al. (2010) propose a dual subgradient ascent algorittiedcangular value thresh-
oldingfor (3.2), which iteratively shrinks the singular valuesceftain estimate towards
zero, similar to the shrinkage operations used’fgrenalty optimization in compressed
sensing (Beck and Teboulle, 2009).
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Keshavan et al. (2010) propose to optimize the followingeotiye function for comple-
tion of a ranks matrix with decompositioX = USV”

. o . ~ T 2
B L F(U,V)= min Z (X;; — (USVT),)) (3.3)
(4,7)EP
UvTu=DI1, VIV =NI, (3.4)

where the rank and initial (U, V') are obtained through the SVD of ttremmedversion
of X» (by setting to zero over-represented rows and columns). kEgeobservation
here is that functior¥’(U, V) depends on the (scaled) orthonormal matridgsV)
only through their column spaces, and rotations in the colgpaces do not change
its value. Thus the objective function can be consideredptisning £'(U, V) over
the Cartesian product of two Grassmannian manifolds, andubti®rs apply gradient
descent technique on this Riemannian manifold.

Jain et al. (2010) approach the matrix completion probleraddying the problem
o1 = |2
min o HXp — X7>||Fr0 s.t. rank(X) <r, (3.5)

and design a efficient gradient projection algorithm for itere each iteration involve
projecting certain estimate to the (non-convex) set of ramlatrix using singular value
decomposition. In arelated problem setting, Ji and Ye (2p88o0se to use the gradient
projection algorithm and Nesterov’'s accelerated schemarfoonstrained, trace-norm
regularized learning tasks.

Matrix completion is also well studied in practical recommder systems, where it is
commonly believed that there are only latent few factorg dwatribute to the user
ratings (Koren, 2008). Assuming a low-rank factorizatioodal X = LR” with RP*"
andR € RY*" (r < min(D, N)), a straightforward objective function would be

min (Xij — LRT)? + ML 120 + IR [I), (3.6)

whereL; denotes the-th row of L (andR; likewise), which can be solved wital-
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ternating least squarealgorithm. Optimization of this objective function can alse
done without alternation and higher order method, e.g. #mped Newton algorithm
(Buchanan and Fitzgibbon, 2005). Different matrix normsemdr measure (e.g. hinge
loss for discrete observations) have also been used bydssehlt. (2005). A probabilis-
tic extension of this matrix factorization approach hashe®posed by Salakhutdinov
and Mnih (2008a) and later a Bayesian approach by Salaklowt@ind Mnih (2008b).
An online version of this matrix factorization model is demed to handle one column
of X at a time by Balzano et al. (2010) for matrix completion andergeneral subspace
tracking, where stochastic gradient descent techniqguaetassmannian manifold is
used for optimization.

As we can see, most matrix completion models rely on a low-@ssumption, and

cannot fully exploit a more complex structure of the probleoch as curved manifolds.
Related work is on multi-task learning in a broad sense, weidthacts the common
structure shared by multiple related objects and achigwagdtsaneous learning on them.
This includes applications such as alignment of noiseugbed images (Peng et al.,
2010), recovery of images with occlusion (Buchanan and Hibag, 2005), and even
learning of multiple related regressors or classifiers YAy et al., 2007). Again, all

these works are essentially based on a subspace assungpitbdp not generalize to

more complex situations.

A line of work based on a nonlinear low-rank assumption (vaitlatent variablez of
dimensionalityL, < D) involves setting up a least-squares error function

N
B2 = el = 3 K= fuwn)” (3.7)
where one ignores the terms for whiel, is missing, and estimates the functiband
the low-dimensional data projectiosby alternating optimization. Linear functiofis
have been used in the homogeneity analysis literature (G#0), where this approach
is called “missing data deleted” and is equivalent to (3M@nlinear functiond have
been used recently (neural nets (Scholz et al., 2005); @aupsocesses for collab-
orative filtering (Lawrence and Urtasun, 2009)). Better itssare obtained if adding
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a projection termy."_ ||z, — F(x,)||” and optimizing over the missing data as well
(Carreira-Perian and Lu, 2011).

There is also rich literature on the problem of missing valineomplete data in the
research field of statistics. One principled way of modelmgpmplete data is based
on mixture modeling where the missing values can be coresites “hidden” variables,
similar to those indicator variables that already exist irtore models. By marginaliz-
ing out all hidden variables and maximizing the likelihodebserved data, parameters
of the mixture models can be learnt by tBepectation Maximizatioalgorithm (Demp-
ster et al., 1977; Ghahramani and Jordan, 1994). For a eetditcussion of this ap-
proach and its relationship with various other statistaggiroaches, we refer the readers
to Ghahramani and Jordan (1994).

Prior to our denoising-based work there have been efforextiend the low-rank mod-
els to smooth manifolds, mostly in the context of compressstsing. Baraniuk and
Wakin (2009) show that certain random measurements, engorma projection to a
low-dimensional subspace, can preserve the metric of thefohé fairly well, if the
intrinsic dimension and the curvature of the manifold arthismall enough. However,
these observations are not suitable for matrix completi@hreo algorithm is given for
recovering the signal. Chen et al. (2010) explicitly modelanifold with a nonparamet-
ric mixture of factor analyzers where each mixing comporest low-rank covariance
structure (this model is analogous to the multiple subspatedel discussed below).
The authors also propose an algorithm for recovering theasiffom random linear
measurements. Notice they estimate the manifold given Eedata, while no com-
plete data is assumed in our matrix completion setting.

Another relevant research area is subspace clusteringl(\@11), where the dataset is
assumed to lie on the union of multiple affine subspaces whigy intersect with each

other. This assumption generalizes the single subspacediok assumption and has
important applications in computer vision (e.g., motiogreentation, face clustering)
and other areas. Under this assumption, Elhamifar and Ya{49) propose to model
each data point as a sparse linear combination of the reasatatand show that by
solving a sparse regression problem one can find neighbdrfaoeach point from
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the same subspace it is sampled from. The authors use theetkteeighborhood of
each point to build a graph on the dataset and use it as thetmgpectral clustering
algorithms to separate and recover the underlying subspadgs approach is shown
to be robust to noise and outliers (Soltanolkotabi et alL3}@&nd is also extended to
clustering of nonlinear manifolds (Elhamifar and Vidal 120.

3.3 Blurring mean-shift denoising algorithms for ma-

trix completion

3.3.1 GBMS/MBMS revisited

In this section, we derive a objective function for the Gausdblurring mean-shift
(GBMS) algorithm, which will be used later for matrix comptet. In GBMS, de-
noising is performed in a nonparametric way by local avergigeach data point moves
to the average of its neighbors (to a certain scale), andrteeps is repeated. Consider
adataseX = {xi,...,xy} C R? and define a Gaussian kernel density estimate (up to
some normalization constant)

X — X,

) (3.8)

with bandwidtho > 0 and kernelG(t) = e~'/2 (other kernels may be used, such as the

p(X)Z%nﬁ;G(

o

Epanechnikov kernel, which results in sparse affinitie$)e {non-blurring)mean-shift
algorithmrearranges the stationary point equatigp(x) = 0 into the iterative scheme
x(™) = £(x(7) with

G| —x0)/o|)

x(M) = = 3.9
PR = S G — ) ol) (599
N
xTH = £(x) =" p(n[xT)x,. (3.9b)

n=1
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This converges to a mode pffrom almost every initiakk € R”, and can be seen as
taking self-adapting step sizes along the gradisitice the mean shift vectf(x) — x
is parallel toVp(x)).

The blurring mean-shift algorithmapplies one step of the previous scheme, initialized
from every point, in parallel for all points. That is, givéretdataseX = {x;,...,xy},

for eachx,, € X we obtain a new poink,, = f(x,,) by applying one step of the mean-
shift algorithm, and then we repladé with the new dataseX, which is a blurred
(shrunk) version ofX. By iterating this process we obtain a sequence of datasets
X©, X® . (and acorresponding sequence of kernel density estimpétés), pV (x),

...) whereX(© is the original dataset ar¥(™ is obtained by blurring< ("~ with one
mean-shift step. We can see this process as maximizing ltbesiiog objective function
(Cheng, 1995) by taking parallel steps of the form (3.9) fahgaoint:

N N N
1 1| xn—xm 2
EX) =Y pxa) =+ > Gl(xa =xn)/o]*) oc D e2l5 1 @.10)
n=1 n,m=1 n,m=1

This process eventually converges to a dat&set where all points are coincident: a
completely denoised dataset where all structure has basadrAs shown by Carreira-
Perpfian (2006b), this process can be stopped early to returrectust locally denoised
subsets of points); the number of clusters obtained is obedr by the bandwidtl.
However, here we are interested in the denoising behaviGBMS.

The GBMS step can be formulated in a matrix form reminiscergpafctral clustering
(Carreira-Periian, 2006b) aX = X P whereX = (xy,...,xy)isaD x N matrix of
data pointsW is the N x N matrix of Gaussian affinities,,,, = G (||(x, — x)/|%);

D = diag (25:1 Wnm) IS the degree matrix; anet = WD~ ! is anN x N stochastic
matrix: pn,, = p(n|x,,) € (0,1) andzilvzlpnm = 1. P (or rather its transpose) is the
stochastic matrix of the random walk in a graph (Chung, 198f)ch in GBMS repre-
sents the posterior probabilities of each point under thedtelensity estimate (1.1P

is similar to the matri@N = D~ WD~ derived from the normalized graph Laplacian
commonly used in spectral clustering, e.g. in the normdlaé (Shi and Malik, 2000).
Since, by the Perron-Frobenius theorem (Horn and John€&®, Chapter 8), all left
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eigenvalues oP(X) have magnitude less than 1 except for one that equals 1 and is
associated with an eigenvector of constant entries, ity = X P(X) converges to
the stationary distribution of ead(X), where all points coincide.

From this point of view, the produé = X P(X) can be seen as filtering the dataXet
with a data-dependent low-pass fille(X), which makes clear the denoising behavior.
This also suggests using other filters (Carreira-P@mi2008)X = X ¢(P (X)) as long
as¢(1) = 1and|¢(r)| < 1forr € [0, 1), such as explicit schemegP) = (1—n)I+nP

for n € (0,2], power schemes(P) = P™ for n = 1,2,3... or implicit schemes
&(P) = ((1+n)I—nP)*forn > 0.

One important problem with GBMS is that it denoises equallglirdirections. When
the data lies on a low-dimensional manifold, denoisingagtmally to it removes out-
of-manifold noise, but denoising tangentially to it pebsiintrinsic degrees of freedom
of the data and causes shrinkage of the entire manifold (stomtgly near its bound-
ary). To prevent this, thenanifold blurring mean-shift algorithm (MBM$Chapter 2)
first computes a predictor averaging step with GBMS, and tberdch poink,, a cor-
rector projective step removes the step direction thatridse local tangent space =f,
(obtained from local PCA run on its nearest neighbors). In practice, both GBMS and
MBMS must be stopped early to prevent excessive denoisingremifold distortions.

3.3.2 GBMS/MBMS for matrix completion

We consider the natural extension of GBMS to the matrix cotigriecase by adding
the constraints given by the present values. Then we havéollogying constrained
optimization problem:
N
J— _ 2 J— X
max B(X) = > G(llxn —xm)/al®) st Xp=Xp. (3.11)
n,m=1

This is similar to low-rank formulation (3.6) for matrix cqietion that have the same
constraints but use as objective function the reconstmatiror with a low-rank as-
sumption.
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We initialize X, to the output of some other method for matrix completion hsas
singular value projection (SVP; Jain et al., 2010). For sengonstraints such as ours,
gradient projection algorithms are attractive. The gmnada £ wrt X is a matrix of
D x N whosenth column is:

2 o
Vo B0 = 2 5 e , — x,)
m=1
2
X ;p(xn) —Xp + mzlp(mb(n)xm (312)

and its projection on the constraint space is given by zgragentries having indices
in P; call I, this projection operator. Then, we have the following stElpiogtha > 0
along the projected gradient:

X+ — x (1) 4 Osz(VXE(X(T)))
= X=X +a(Ip(VxEX™)),, (3.13)

which updates only the missing entriXs,,. Since our search direction is ascent and
makes an angle with the gradient that is bounded away frg®) and £ is upper
bounded, continuously differentiable and has bounded ibde@gthus a Lipschitz con-
tinuous gradient) iRZ, by carrying out a line search that satisfies the Wolfe condi-
tions, we are guaranteed convergence to a local statiomany, pypically a maximizer
(Nocedal and Wright, 2006, Theorem 3.2). However, as reaslater, we do not per-
form a line search at all, instead we fix the step size to the GBBIBadapting step
size, which results in a simple and faster algorithm comgjsaf carrying out a GBMS
step onX (i.e., XUtV = X P(X)) and then refillingX, to the present values.
While we describe the algorithm in this way for ease of expianain practice we do
not actually compute the GBMS step for al, values, but only for the missing ones,
which is all we need. Thus, our algorithm carries out GBMS @&ng stepswithin the
missing-data subspacé/Ne can derive this result in a different way by starting from
the unconstrained optimization problemxx, F(X) = Zfzm:l G(||(xn — xm) /")
(equivalentto (3.11)), computing its gradient M, equating it to zero and rearranging
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(in the same way the mean-shift algorithm is derived) to iobdafixed-point iteration
identical to our update above.

Figure 3.1 shows the pseudocode for our denoising-basetkroatpletion algorithms
(using three nonparametric denoising algorithms: GBMS, MBi8 LTP).

Convergence and stopping criterion As noted above, we have guaranteed conver-
gence by simply satisfying standard line search conditibos a line search is costly.
At present we do not have a proof that the GBMS step size satisfieh conditions,

or indeed that the new iteraﬁé(jjl) increases or leaves unchanged the objective, al-
though we have never encountered a counterexample. Intfaatns out that none of
the work about GBMS that we know about proves that either: Cli#®@5) proves that
g(X+)) < g(XM) for 0 < p < 1, wherea(-) is the set diameter, while Carreira-
Perpiian (2006b, 2008) notes thB{ X ) has a single eigenvalue of value 1 and all others
of magnitued less than 1. While this shows that all points eaye to the same location,
which indeed is the global maximum of (3.10), it does not seaely follow that each

step decreases.

However, the question of convergenceras> oo has no practical interest in a denoising
setting, because achieving a total denoising almost negklsya good matrix comple-
tion. What we want is to achieyast enoughdenoising and stop the algorithm, as was
the case with GBMS clustering, and as is the case in algorifomisnage denoising.
We propose to determine the optimal number of iterationsyedsas the bandwidtlr
and any other parameters, by cross-validation. Specifjcaél select a held-out set by
picking a random subset of the present entries and consglétem as missing; this
allows us to evaluate an error between our completion fantaad the ground truth.
We stop iterating when this error increases.

This argument justifies an algorithmic, as opposed to amopdition, view of denoising-
based matrix completiorapply a denoising step, refill the present values, iteratid un
the validation error increasesThis allows very general definitions of denoising, and
indeed a low-rank projection is a form of denoising wheranpoare not allowed outside
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GBMS (k, o) with full or k-nn graph: giverX py v, M
repeat
forn=1,...,N
N, + {1,..., N} (full graph) or
k nearest neighbors &f, (k-nn graph)
Gl kn—x%m) /o)

8Xn — =X, + Zme/\/'n S e G(||(xn—xm/)/UH2)Xm mean-shift step
end
XM < XM + (8X)M move points’ missing entries
until validation error increases
return X

MBMS (L, k, o) with full or k-nn graph: giverX . n, M
repeat
forn=1,....N
N, < {1,..., N} (full graph) or
k nearest neighbors &f, (k-nn graph)

_ G(H(X"—Xm)/O'H2)
OXp ¢ =X, + ZmENn S mrens, GUlGn—x,,1) /(%)

X, < k nearest neighbors af,
([.Ln, Un) — PCA(Xn, L) estimate L-dim tangent space at x,,
8xn — (I — UnUg)ﬁxn subtract parallel motion
end
XM < XM + (8X)M move points’ missing entries
until validation error increases
return X

Xm mean-shift step

LTP (L, k) with k-nn graph: giverX py y, M
repeat
forn=1,...,N
X, + k nearest neighbors of,
(p,n, Un) < PCA(Xn, L) estimate L-dim tangent space at x,,
8Xn — (I — UnUg)(Hn — Xn) project point onto tangent space
end
XM — XM + (8X)M move points’ missing entries
until validation error increases
return X

Figure 3.1 Our denoising matrix completion algorithms, based on N&ddiBlurring
Mean Shift (MBMS) and its particular cases Local Tangenté&utopn (LTP,.-nn graph,
o = oo0) and Gaussian Blurring Mean Shift (GBM§5,= 0); see Section 2.3 for details.
N,, contains allN points (full graph) or onlyk,,’s nearest neighborg{nn graph). The
index M selects the components of its input corresponding to ngsgitues. Parame-
ters: denoising scalke, number of neighbors, local dimensionalityl..
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the linear manifold. Our formulation using the objectivadtion (3.11) is still useful
in that it connects our denoising assumption with the motal®w-rank assumption
that has been used in much matrix completion work, and jasttfie refilling step as
resulting from the present-data constraints under a gnagie@jection optimization.

MBMS denoising for matrix completion Following our algorithmic-based approach
to denoising, we could consider generalized GBMS steps dbtine X = X ¢(P(X)).
For clustering, Carreira-Pefj@n Carreira-Perfian (2008) found an overrelaxed ex-
plicit stepo(P) = (1 —n)I+nP with n ~ 1.25 to achieve similar clusterings but faster.
Here, we focus instead on the MBMS variant of GBMS that allowy @r orthogonal,
not tangential, point motions (defined wrt their local tamggpace as estimated by local
PCA), with the goal of preserving low-dimensional manifotdusture. MBMS has 3
user parameters: the bandwidtt{for denoising), and the latent dimensionalityand
the number of neighbots (for the local tangent space and the neighborhood graph). A
special case of MBMS callddcal tangent projection (LTP)esults by using a neighbor-
hood graph and setting = oo (so only two user parameters are neededndk). LTP
can be seen as doing a low-rank matrix completion locallyp lsfas found in Chapter 2
to have nearly as good performance as the bastseveral problems. MBMS also in-
cludes as patrticular cases GBM5S € 0), PCA (k = N, o = o0), and no denoising
(c=00rL=D).

Note that if we apply MBMS to a dataset that lies on a linear ficdshdf dimensionality

d usingL > d then no denoising occurs whatsoever because the GBMS upigates
the d-dimensional manifold and are removed by the corrector. steppractice, even

if the data are assumed noiseless, the reconstruction friav-sank method will lie
close to but not exactly on thédimensional manifold. However, this suggests using
largish ranks for the low-rank method used to reconstXiend lowerLZ values in the
subsequent MBMS run.

In summary, this yields a matrix completion algorithm whexeapply an MBMS step,
refill the present values, and iterate until the validatiomreincreases. Again, in an
actual implementation we compute the MBMS step only for thesing entries oX.
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The shrinking problem of GBMS is less pronounced in our matampletion setting,
because we constrain some values not to change. Still, @eaggnt with Chapter 2, we
find MBMS to be generally superior to GBMS.

A special case of our algorithm is directly related to lowkanatrix completion al-
gorithms. If we takek = N neighbors andr = oo then MBMS becomes PCA i
dimensions, and our algorithm iterates between projeciranto the PCA subspace it
defines (equivalent to the SVD & if it has zero mean) and resetting the present en-
tries. This is a method of alternating projections (Lewid &malick, 2008), similar to
previous SVD-based work such as SVP (Jain et al., 2010), atitetlinear version of
the method of (Carreira-Pefj@En and Lu, 2011). Finally, our expectation that the value
of a missing entry can be predicted from the values of neighggoints is similar to
one category of collaborative filtering methods that esaliytuse similar users/items
to predict missing values (Bell and Koren, 2007).

Computational cost With a full graph, the cost per iteration of GBMS and MBMS
is O(N2D) andO(N?D + N(D + k) min(D, k)?), respectively. In practice with high-
dimensional data, best denoising results are obtained asireighborhood graph (see
Section 2.3), so that the sums over points in eqgs. (3.10) .ad)3xtend only to the
neighbors. With &-nearest-neighbor graph and if we do not update the neighditor
each iteration (which affects the result little), the retjve cost per iteration i® (N kD)
andO(NkD+ N(D+k)min(D, k)?), thus linear inV. The graph is constructed on the
initial X we use, consisting of the present values and an imputatidhdanissing ones
achieved with a standard matrix completion method, and leagaff cost ofO(N?D).
The cost when we have a fractipn= % € [0, 1] of missing data is simply the above
timesy. Hence the run time of our mean-shift-based matrix comgegilgorithms is
faster the more present data we have, and thus faster thaistlaé GBMS or MBMS

case, where all data are effectively missing.
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Table 3.1 Swissroll dataset: reconstruction errors obtained bfeht algorithms
along with their optimal parameters,(k, L, no. iterations’). The three columns show
the root sum of squared errors on missing entries, the meartha standard deviation
of the pointwise reconstruction error, resp.
Methods RSSE| mean| stdev
Gaussian 168.1| 2.63 | 1.59
+ GBMS (>, 10,0,1)| 165.8| 2.57 | 1.61
+ MBMS (1, 20, 2, 25) 157.2| 2.36 | 1.63
SVP 156.8| 1.94 | 2.10
+ GBMS (3,50,0,1) | 151.4| 1.89 | 2.02
+ MBMS (3,50, 2,2) | 151.8| 1.87 | 2.05

3.4 Experimental results

We compare with representative methods of several appesaalow-rank matrix com-
pletion method, singular value projection (SVP Jain et2010, whose performance
we found similar to that of alternating least squares, ALSréf, 2008)); fitting aD-
dimensional Gaussian model with EM and imputing the misgaiges of eack,, as the
conditional mearkl {x,, u1, |x..p,} (We use the implementation of (Schneider, 2001));
and the nonlinear method of (Scholz et al., 2005) (nIPCA). Waiize GBMS and
MBMS from some or all of these algorithms. For methods withr ygggameters, we set

them by cross-validation in the following way: we randoméfext 10% of the present
entries and pretend they are missing as well, we run the idigoion the remaining
90% of the present values, and we evaluate the reconsinuatithe 10% entries we
kept earlier. We repeat this over different parametersiesland pick the one with
lowest reconstruction error. We then run the algorithm hise parameters values on
the entire present data and report the (test) error with thengl truth for the missing

values.

100D Swissroll We created a 3D swissroll dataset with00 points and lifted it to
100D with a random orthonormal mapping, and added a littlsen(spherical Gaussian
with stdev0.1). We selected uniformly at random 6.76% of the entries torbsgnt. We
use the Gaussian model and SVP (fixed rank) as initialization for our algorithm. We
typically find that these initiaK are very noisy (Figure 3.3), with some reconstructed
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Figure 3.2 Reconstruction error of GBMS/MBMS over iterations on 100D ssnoll
(each curve is a different value).

SVP SVP + GBMS SVP + MBMS Gaussian Gaussian + GBMS Gaussian + MBMS
7=0 T=1 T =2 7=0 T=1 T=25

Figure 3.3 Denoising effect of the different algorithms on 100D swadls For visual-
ization, we project the 100D data to 3D with the projectiortnraised for creating the
data. Present values are refilled for all plots.

points lying between different branches of the manifold eawlsing a big reconstruction
error. We fixedL = 2 (the known dimensionality) for MBMS and cross-validated the
other parameterss and £ for MBMS and GBMS (both using:-nn graph), and the
number of iterationg to be used. Table 3.1 gives the performance of MBMS and
GBMS for testing, along with their optimal parameters. Fe8t3 shows the results
of different methods at a few iterations. MBMS initializediin the Gaussian model
gives the most remarkable denoising effect. To show thaketiea wide range of
and number of iterations that give good performance with GBMS and MBMS, we fix
k = 50 and run the algorithm with varying values and plot the reconstruction error for
missing entries over iterations in Figure 3.2. Both GBMS cdniea® good denoising
(and reconstruction), but MBMS is more robust, with good Itsseccurring for a wide
range of iterations, indicating it is able to preserve thaifioéd structure better.

Mocap data We use the running-motion sequence@®from the CMU mocap database
with 148 samples~ 1.7 cycles) with 150 sensor readings (3D positions of 5Ggoom
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Figure 3.4 Results on Mocap dataset. Mean of errors (RSSE) of 5 runsnatotday
different algorithms for varying percentage of missingues. Errorbars shown only for
Gaussian + MBMS to avoid clutter.

frame 2 (leg distance) frame 10 (foot pose) frame 147 (leg pose)
Figure 3.5 Results on Mocap dataset. Sample reconstructions when 88€éri data
is missing. Row 1 initialization. Row 2 init+GBMS. Row 3 init+MBMS. Color

indicates different initialization: black, original dateed, nIPCA; blue, SVP; green,
Gaussian.
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Table 3.2 MNIST-7 dataset: errors of the different algorithms anditioptimal pa-
rameters 4, k, L, no. iterationsr). The three columns show the root sum of squared
errors on missing entries<(t0~%), the mean, and the standard deviation of pixel errors,
respectively.

Methods RSSE| mean| stdev
nIPCA 777 | 26.1 | 42.6
SVP 6.99 | 21.8 | 39.3

+ GBMS (400,140,0,1) 6.54 | 18.8 | 37.7
+ MBMS (500,140,9,5) 6.03 | 17.0 | 34.9

a human body). The motion is intrinsically 1D, tracing a land50D. We compare
nIPCA, SVP, the Gaussian model, and MBMS initialized from tret three algorithms.
For nIPCA, we do a grid search for the weight decay coefficidnltanixing its structure
to be2 x 10 x 150 units, and use an early stopping criterion. For SVP, we dbggarch
on{1,2,3,5,7,10} for the rank. For MBMS [ = 1) and GBMS ( = 0), we do grid
search fow andk.

We report the reconstruction error as a function of the pribcgoof missing entries from
50% to 95%. For each missing-data proportion, we randonmécsé different sets of
present values and run all algorithms for them. Figure 3rdggthe mean errors of all
algorithms. All methods perform well when missing-datagmxion is small. nIPCA,
being prone to local optima, is less stable than SVP and thsgsan model, especially
when the missing-data proportion is large. The Gaussiarehgides the best and most
stable initialization. At 95%, all methods fail to give arcaptable reconstruction, but up
to 90% missing entries, MBMS and GBMS always beat the otherigthgos. Figure 3.5
shows selected reconstructions from all algorithms.

MNIST digit ‘77 The MNIST digit ‘7’ dataset contain6265 greyscale (0-255) im-
ages of siz@8 x 28. We create missing entries in a way reminiscent of run-leegtors
in transmission. We generate 16 to 26 rectangular boxes afeaapproximately 25
pixels at random locations in each image and use them to blaickixels. In this way,
we create a high dimensional dataset (784 dimensions) Wihteb0% entries missing
on average. Because of the loss of spatial correlationsmwili@ blocks, this missing
data pattern is harder than random.
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Figure 3.6. Selected reconstructions of MNIST block-occluded digitsvith different
methods.

The Gaussian model cannot handle such a big dataset betawsdvies inverting large
covariance matrices. nIPCA is also very slow and we cannotaffross-validating its
structure or the weight decay coefficient, so we picked aorese structurel() x 30 x
784 units), used the default weight decay parameter in the ct@ie’), and allowed
up to 500 iterations. We only use SVP as initialization for algorithm. Since the
intrinsic dimension of MNIST is suspected to be not very higle used rank 10 for
SVP andL = 9 for MBMS. We also use the samie= 140 as in Section 2.4. So we
only had to choose and the number of iterations via cross-validation.

Table 3.2 shows the methods and their corresponding erngurd-3.6 shows some
representative reconstructions from different algorghmith present values refilled.
The mean-shift averaging among closeby neighbors (a soft ff majority voting)

helps to eliminate noise, unusual strokes and other adifaeated by SVP, which by
their nature tend to occur in different image locations dlierneighborhood of images.

Random initialization In previous examples, we have mainly used the reconstruc-
tions from other models as the initializations for our alfon. While these initial-
izations do seem very noisy, they have basically captureaterall shape of the data
manifold. A natural question to ask is whether MBMS is robostitistructured initial-
izations. We investigate this problem empirically on th@DGwissroll dataset, using
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Figure 3.7 Root mean squared error (RMSE) per entry obtained by SVP and $1BM
with different initializations on the 100D swissroll dagast different missing propor-

tions. We show the mean and standard deviation of RMSE awérawggr 5 different
missing/present partitions of the the data matrix.

random initial values for the missing entries. We now ranyoselectp - D dimen-
sions for each sample to be missing, whens the missing proportion ranging from
10% to 95%. Furthermore, we generate random values from #susstn distribution

N (m, s) for missing entries where: ands are the empirical mean and standard devia-
tion of the present entries respectively. We then apply MBM &is initialization, and
cross-validater for best reconstruction error on the missing entries by d gearch,
while fixing £ = 100 and L = 2. In Figure 3.7, we show the root mean squared er-
ror (RMSE) per entry of the random initialization, MBMS withndom initialization,
SVP (fixed rank=3), and MBMS with SVP initialization, each eaged oveb different
missing/present partitions of the the data matrix, at ckifé missing proportions. We
also show the sample initialization and reconstructiordifegrent missing proportions

in Figure 3.8.

In general, the performance of MBMS with random initialipatidegrades ag in-
creases. This to be expected since the initial pairwiseuwlists and local neighbor-
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Figure 3.8 Sample reconstructions of the 100D swissroll datasetgusiBMS with
random initializations or SVP initialization for differemissing proportions. For visu-
alization, we project the 100D data to 3D with the projectioatrix used for creating
the data.

hoods also become more and more corruptediasreases, and it is then more difficult
to estimate the tangent space and manifold structure. Hmsatso be seen from the
sample random initialization (Figure 3.8, row 1) and MBMSamstruction (row 2) at

p > 90%, where the basic shape of swissroll is completely lost. Fesnoptimiza-

tion point of view, initialization is important to our noreavex objective function and
gradient-based approach. On the other hand, the low rankIrgaP (row 3) has supe-
rior and more robust performance (the reconstruction etidnot increase much until
95% of the entries are missing), and MBMS (row 4) could alwayther improve over

SVP when it performs poorly. As a result, it is practically@od idea to apply a sim-
pler and robust model first to obtain a reasonable initiabmstruction and then apply

MBMS to refine the details for matrix completion.
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3.5 Conclusion

We have proposed a new paradigm for matrix completion, eé&mmiwhich generalizes
the commonly used assumption of low rank. Assuming low-ramidies a restrictive

form of denoising where the data is forced to have zero vaeaway from a linear
manifold. More general definitions of denoising can potdhtihandle data that lives in
a low-dimensional manifold that is nonlinear, or whose disienality varies (e.g. a set
of manifolds), or that does not have low rank at all, and radlyithey handle noise in
the data. Denoising works because of the fundamental fatatimissing value can be
predicted by averaging nearby present values.

Although we motivate our framework from a constrained optation point of view
(denoise subject to respecting the present fatge argue for an algorithmic view of
denoising-based matrix completioapply a denoising step, refill the present values,
iterate until the validation error increasedn turn, this allows different forms of de-
noising, such as based on low-rank projection (earlier yvorkiocal averaging with
blurring mean-shift (this chapter). Our nonparametricich@f mean-shift averaging
further relaxes assumptions about the data and resultsimpdesalgorithm with very
few user parameters that afford user control (denoisinkg steecal dimensionality) but
can be set automatically by cross-validation. Our algorglare intended to be used as
a postprocessing step over a user-provided initializatfoihe missing values, and we
show they consistently improve upon existing algorithms.

The MBMS-based algorithm bridges the gap between pure dagdiSBMS) and local
low rank. Other definitions of denoising should be possitleexample using temporal
as well as spatial neighborhoods, and even applicable toatésdata if we consider de-
noising as a majority voting among the neighbours of a vggtdh suitable definitions
of votes and neighborhood).



Chapter 4

The K-modes algorithm for clustering

Many clustering algorithms exist that estimate a clustetrogd, such ag(-means K -
medoids or mean-shift, but no algorithm seems to exist thsters data by returning
exactly K meaningful modes. We propose a natural definition éf-anodes objective
function by combining the notions of density and clusteiigassent. The algorithm
becomesk'-means andk-medoids in the limit of very large and very small scales.
Computationally, it is slightly slower thaR’-means but much faster than mean-shift or
K-medoids. UnlikeK-means, it is able to find centroids that are valid pattemsy t
representative of a cluster, even with nonconvex clusterd, appears robust to outliers
and misspecification of the scale and number of clusters ¢€arPerpian and Wang,
2013a).

4.1 Introduction

Given adataset;, ..., xy € R?, we consider clustering algorithms based on centroids,
i.e., that estimate a representatiyec R” of each clustek in addition to assigning data
points to clusters. Two of the most widely used algorithmshis type are/-means
and mean-shiftK-means has the number of clustéfsas a user parameter and tries to

69
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minimize the objective function

N
. B 2
1%11(131 E(Z,C) = Z g Znk ||Xn — k| (4.1)

k=1 n=1

s.t.z, € {0,1}, zK:znk =1,n=1,...,N, k=1,....K
k=1
whereZ are binary assignment variables (of painto clusterk) andC = (cy, ..., ck)
are centroids, free to move &”. At an optimum, centroid; is the mean of the points
in its cluster. Gaussian mean-shift (Carreira-Fapj 2000; Cheng, 1995; Comaniciu
and Meer, 2002; Fukunaga and Hostetler, 1975) assumes weaharnel density esti-
mate (kde) with bandwidth > 0 and kernelG(t) = e~*/? (up to some normalization

constant)
N

p(x) ==Y G(lx=xi)/0")  xeR” (4.2)

and applies the iteration (started from each data point):

nlx) = G(”(X_Xn)/auz) x <+ f(x) = - nlx)x 4.3
) = T X = sl (43)

which converges to a mode (local maximum)pofrom nearly any initiakx (Carreira-
Perpiian, 2007). Each mode is the centroid for one cluster, whictedos all the points
that converge to its mode. The user parameter is the barfuwidind the resulting
number of clusters depends on it implicitly.

The pros and cons of both algorithms are well knowiiitrmeans tends to define round
clusters; mean-shift can obtain clusters of arbitrary ekagnd has been very popu-
lar in low-dimensional clustering applications such asgmaegmentation (Comaniciu
and Meer, 2002), but does not work well in high dimension. Bmh be seen as spe-
cial EM algorithms (Bishop, 2006; Carreira-Pdign, 2007). Both suffer from outliers,
which can move centroids outside their cluste’dameans or create singleton modes
in mean-shift. Computationallys-means is much faster than mean-shiftOat< N D)
andO(N?2D) per iteration, respectively, particularly with large dsts. In fact, accel-



71

7 T LAV
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1

Figure 4.1 A cluster of 7 rotated-1 USPS digit images and the centrodsid by
K-means K -modes (both with' = 1) and mean-shift (witlr so there is one mode).

erating mean-shift has been a topic of active research (iGafPerpiian, 2006a; Yuan
et al., 2010). Mean-shift does not require a valué&ofwhich is sometimes convenient,
although many users often find it desirable to force an dlgorito produce exactly

clusters (e.qg. if prior information is available).

One important aspect in many applications concerns thdiyabf the centroids as pat-
terns in the input space, as well as how representative tieeyf #heir cluster. Figure 4.1
illustrates this with a single cluster consisting of conbnsly rotated digit-1 images.
Since these images represent a nonconvex cluster in thedimggnsional pixel space,
their mean (which averages all orientations) is not a vaigt-d image, which makes
the centroid not interpretable and hardly representative digit 1. Mean-shift does

not work well either: to produce a single mode, a large badtwis required, which

makes the mode lie far from the manifold; a smaller bandwdldigss produce valid digit-
1 images, but then multiple modes arise for the same clwstdrunder mean-shift they
define each a cluster. Clustering applications that requailid geentroids for nonconvex

or manifold data abound (e.g. images, shapes or proteins).

A third type of centroid-based algorithms are exemplaedas K-medoid clustering
(Bishop, 2006; Hastie et al., 2009; Kaufman and Rousseeuvl))19hese constrain
the centroids to be points from the dataset (“exemplarsfhssk -medians, and often
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minimize aK-means objective function (4.1) with a non-Euclidean dista They are
slow, since updating centroigl, requires testing all pairs of points in clusterForcing
the centroids to be exemplars is often regarded as a way toeetise centroids are
valid patterns. However, the exemplars themselves ar@ oitésy and thus not that
representative of their neighborhood. Not constrainingrgroid to be an exemplar can
remove such noise and produce a more typical representative

Given that most location statistics have been used forerungt (mean, mode, median),
it is remarkable that nd(-modes formulation for clustering seems to exist, thatrs, a
algorithm that will find exactlyx" modes that correspond to meaningful clusters. An
obvious way to define & -modes algorithm is to pickl modes from a kde, but it is
not clear what modes to pick (assuming it has at Iéashodes, which will require a
sufficiently small bandwidth). Picking the modes with highéensity need not correlate
well with clusters that have an irregular density, or an agnately uniform density
with close but distinct high-density modes.

We define ak-modes objective as a natural combination of two ideas: hirtar as-
signment idea fron-means and the density maximization idea of mean-shift. The
algorithm has two interesting special case&smeans and a version éf-medoids, in

the limits of large and small bandwidth, respectively. Foraf enough bandwidth,
the centroids are denoised, valid patterns and typicakssmtatives of their cluster.
Computationally, it is slightly slower thaR-means but much faster than mean-shift or
K-medoids.
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4.2 A K-modes Objective Function

We maximize the objective function

K N
n%aXL (Z,C) ZZznkG (1(xn — ck)/0||2) (4.4)
k=1 n=1
K
stz €{0,1}, Y zmw=1n=1,... N k=1, K
k=1

For a given assignmer#, this can be seen as (proportional to) the sum of a kde as
in (4.2) but separately for each cluster. Thus, a good almgfenust move centroids

to local modes, but also defin€ separate kdes. This naturally combines the idea of
clustering through binary assignment variables with theaithat high-density points
are representative of a cluster (for suitable bandwidthaes)l.

As a function of the bandwidth, the K-modes objective function has two interesting
limit cases. Whelr — oo, it becomed{-means. This can be seen from the centroid up-
date (which becomes the mean), or from the objective fundicectly. Indeed, approx-
imating it with Taylor’s theorem for very large and using the fact th@j,f:1 Znk = 1
gives

L(Z,C) ~ Y ) zkal(l = [x0 — il /207)

k=1 n=1

= N - E(Z,C)/20?

where E(Z, C) is the same as in (4.1) and is subject to the same constraiimss,
maximizing L becomes minimizing”, exactly the/-means problem. When — 0,

it becomes @ ’-medoids algorithm, since the centroids are driven towdeda points.
Thus, K-modes interpolates smoothly between these two algorijthreating a contin-
uous path that links &-mean to a-medoid. However, its most interesting behavior
is for intermediater.
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4.3 Two K-modes Algorithms

As is the case fof{-means and{-medoids, minimizing theé<{-modes objective func-

tion is NP-hard. We focus on iterative algorithms that find@ally optimum clustering

in the sense that no improvement is possible on the centgbids the current assign-
ments, and vice versa. We give first an algorithm for fixemhd then use it to construct
a homotopy algorithm that sweeps over aterval.

4.3.1 For Fixedo

It is convenient to use alternating optimization:

e Assignment stepOver assignment® for fixed C, the constrained problem sepa-
rates into a constrained problem for each paipntof the form

K K
H%ixzznkgnk s.t. Zznk =1, z, € {0,1},
k=1 k=1
with g, = G(||(x» — cx)/c||*). The solution is given by assigning poixt to
its closest centroid in Euclidean distance (assuming theeké; is a decreasing
function of the Euclidean distance).

e Mode-finding step Over centroidsC for fixed Z, we have a separate uncon-
strained maximization for each centroid, of the form

L(er) = > zuG(Il(xn — i) /o),

which is proportional to the cluster kde, and can be done migan-shift. Note
the step ovelC need not be exact, i.e., the centroids need not convergesio th
corresponding modes. We exit when a tolerance is métroean-shift iterations
have been run.
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Thus, the algorithm operates similarly &6-means but finding modes instead of means:
it interleaves a hard assignment step of data points toadstwith a mode-finding step
that moves each centroid to a mode of the kde defined by théspminrently assigned
to it.

Convergence of this algorithm (in value) follows from thet&aithat each step (ov&ror
over C) is strictly feasible and decreases the objective or ledavaschanged, and that
the objective function is lower bounded by 0 within the féésset. Besides, since there
is a finite number of assignments, convergence occurs inta finimber of outer-loop
steps (as happens wifki-means) if the step over is exact and deterministic. By this
we mean that for eaat), we find deterministically a maximum of its objective functio
(i.e., the mode fot, is a deterministic function d£). This prevents the possibility that
for the same assignme#twe find different modes for a givet),, which could lead the
algorithm to cycle. This condition can be simply achievedubing an optimization al-
gorithm that either has no user parameters (such as steyp gizan-shift is an example),
or has user parameters set to fixed values, and running intceogence. ThéZ*, C*)
convergence point is a local maximum in the sense it , C) has a local maximum
atC = C*andL(Z, C*) has a global maximum & = Z*.

The computational cost per outer-loop iteration of thisoathm (setting/ = 1 for
simplicity in the mean-shift step) is identical to that 8kmeans: the step oveéf is
O(KND) and the step ovel is O(N1D + - -- + NgD) = O(ND) (whereNy is the
number of points currently assigned ¢g), for a total of O(K'ND). And also as in
K-means, the steps parallelize: o&rthe mean-shift iteration proceeds independently
in each cluster; oveZ,, each data point can be processed independently.

4.3.2 Homotopy Algorithm

We start withc = oo (i.e., run K-means, possibly several times and picking the best
optimum). Then, we gradually decreasenhile running.J iterations of the fixedr
K-modes algorithm for each value ef until we reach a target valug'. This follows

an optimum pathZ(c), C(o)) for o € [0*,00). In practice, as is well known with
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homotopy techniques, this tends to find better optima themiisg) directly at the target
values*. We use this homotopy algorithm in our experiments. Giverhaee to run

K-means multiple times to find a good initial optimum (as comip@one in practice),
the homotopy does not add much computation. Note that thetopy makes<-modes

a deterministic algorithm given the local optimum found&ymeans.

4.3.3 User Parameters

The basic user parameter &-modes is the desired number of clustéfs The target
bandwidtho* in the homotopy is simply used as a scaling device to refine¢hé&oids.
We find that representative, valid centroids are obtained f@ide range of intermediate
o values. A good target* can be obtained with a classical bandwidth selection aoiter
for kernel density estimates (Wand and Jones, 1994), sutle average distance to the
kth nearest neighbor.

Practically, a user will typically be interested in thecentroids and clusters resulting
for the target bandwidth. However, examining the centrathpc, (o) can also be
interesting for exploratory analysis of a dataset, astiléied in our experiments with
handwritten digit images.

4.4 Relation with Other Algorithms

K-modes is most closely related £6-means and to Gaussian mean-shift (GMS), since
it essentially introduces the kernel density estimatetimd<-means objective function.
This allowsK -modes to find exactlyk true modes in the data (in its mathematical sense,
i.e., maxima of the kde for each cluster), while achievinggigrtgments as if-means,
and with a fast runtime, thus enjoying some of the best ptegseirom bothK-means
and GMS.

K-means and{-modes have the same update step for the assignments, mpgdate
step for the centroids is given by setting each centroid tdfardnt location statistic
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of the points assigned to it: the mean firmeans, a mode foK-modes. K-means
and K-modes also define the same class of clusters (a Voronolleggsg thus convex
clusters), while GMS can produce possibly nonconvex, diseoted clusters.

In GMS, the number of clusters equals the number of modes;hnhepends on the
bandwidtho. If one wants to obtain exactlif modes, there are two problems. The first
one is computational: sincE is an implicit, nonlinear function of, finding ac value
that produced< modes requires inverting this function. This can be aclieuameri-
cally by running mean-shift iterations while trackihg o) as in scale-space approaches
(Collins, 2003), but this is very slow. Besides, particulddy high-dimensional data,
the kde only achieveE” modes for a very narrow (even empty) intervabofThe second
problem is that even with an optimally tuned bandwidth, awdeusually create unde-
sirable, spurious modes where data points are sparse @digr®or cluster boundaries),
again particularly with high-dimensional data. We avoit {problem in the homotopy
version of K-modes by starting with large, which tracks important modes. The dif-
ference betweek-modes and GMS is clearly seen in the particular case wheetve
K =1 (asin Figure 4.1))k-modes runs the mean-shift update initialized from the data
mean, so as decreases, this will tend to find a single, major mode of tree ktbwever,
the kde itself will have many modes, all of which would becarhesters under GMS.

The fundamental problem in GMS is equating modes with ctasfehe true density of
a cluster may well be multimodal to start with. Besides, incfice a kde will tend to

be bumpy unless the bandwidth is unreasonably large, bedtissby nature a sum of
bumpy kernels centered at the data points. This is partiguda with outliers (which

create small modes) or in high dimensions. There is no eagytavemooth out a kde
(increasing the bandwidth does smooth it, but at the cosstdiding the overall density)
or to postprocess the modes to select “good” ones. One hagtwith the fact that a
good kde will often have multiple modes per cluster.

K-modes provides one approach to this problem, by separtiegples of cluster as-
signment and of density. Each cluster has its own kde, wtaatbe multimodal, and the
homotopy algorithm tends to select an important mode amoegetwithin each cluster.
This allowsK -modes to achieve good results even in high-dimensional@nus, where
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GMS falils.

Computationally K -modes and{-means ar€) (K N D) per iteration for a dataset of
points inD dimensions. Whilg{-modes in its homotopy version will usually take more
iterations, this extra runtime is small because in praatice runsik’-means multiple
times from different initializations to achieve a bettetiopum. GMS isO(N?D) per
iteration, which is far slower, particularly with large daets. The reason is that in
GMS the kde involves alN points and one must run mean-shift iterations started from
each of theN points. However, ink-modes the kde for clustér involves only the
Ny, points assigned to it and one must run mean-shift iteratoorhg for the centroid
c,. Much work has addressed approximating GMS so that it rusterfaand some of

it could be applied to the mean-shift stepAirmodes, such as using Newton or sparse
EM iterations (Carreira-Perfin, 2006a).

In addition to these advantages, our experiments showsihabdes can be more robust
than K-means and GMS with outliers and with misspecification dieif< or o.

There are two variations of mean-shift that replace thel loean step of (4.3) with a
different statistic: the local (Tukey) median (Shapiraletz009) and a medoid defined

as any dataset point which minimizes a weighted sum of squdistances (Sheikh

et al., 2007). Both are really medoid algorithms, since thaystrain the centroids to be
data points, and do not find true modes (maxima of the densityyeneral K-medoid
algorithms such a&’-centers or-medians are combinatorial problems, typically NP-
hard (Hochbaum and Shmoys, 1985; Kaufman and Rousseeuw, l1@9@rson et al.,
2004). In the limitc — 0, K-modes can be seen as a deterministic annealing approach
to a K-medoids objective (just as the elastic net (Durbin anddhdiv, 1987) is for the
traveling salesman problem).

There exists another algorithm called“modes” (Chaturvedi et al., 2001; Huang, 1998).
This is defined for categorical data and uggsrror in its K-means type objective func-
tion. The “centroids” step boils down to finding for each dma®n the most frequent
value (thus the term “mode”, but mode is not well defined fghhdimensional categor-
ical data). It is quite different from our algorithm, whichdefined for continuous data



79

A
/[ 4 "4‘* /
1 7
[+ + i F /+++ 4&/
+ o/t /
T4

Figure 4.2 K-modes results for two bandwidth values usiig= 2. We show the
meansx, their within-cluster nearest neighboy the modes, the paths followed by
each mode as decreases, and the contours of each kde. E&echodes cluster uses a
different color.

and uses “mode” in its mathematical sense of density maximum

4.5 Experimental results

We compare with-means and Gaussian mean-shift (GMS) clustering./~oneans,
we run it 20 times with different initializations and pickettone with minimum value
of £ in (4.1). ForK-modes, we use its homotopy version initialized from the Bés
means result and finishing at a target bandwidth (whose valset either by using a
kde bandwidth estimation rule or by hand, depending on tperxent).

45.1 Toy Examples

Figures 4.2 and 4.3 illustrate the three algorithms in 2Dmgdas. They show thé&’
modes and the kde contours for each cluster,ofoe= oo or equivalently K-means
(left panel) and for an intermediate (right panel). We runk-modes decreasing
geometrically irR0 steps fronB to 1 in Figure 4.2 and from to 0.1 in Figure 4.3.

In Figure. 4.2, which has 3 Gaussian clusters, we purpdgedat K = 2 (both K-
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o = o (K-means)

Figure 4.3 Like Figure 4.2 but for the two-moons dataset.

means and<-modes work well withK' = 3). This makeskK-means put one of the
centroids in a low-density area, where no input pattern$caned. K-modes moves the
centroid inside a cluster in a maximum-density area, whexreynmput patterns lie, and
is then more representative.

In Figure 4.3, the “two-moons” dataset has two nonconvegylieaved clusters and we
setK = 2. The “moons” cannot be perfectly separated by eitkiemeans ors-modes,
since both define Voronoi tessellations. Howeveérmodes does improve the clusters
over those of-means, and as before it moves the centroids from a regionewiee
patterns are found to a more typical location within eacltelu Note how, although the
bandwidth usedd = 0.1) yields a very good kde for each cluster and would also yield
a very good kde for the whole dataset, it results in multiptedes for each “moon”,
which means that GMS would return around 13 clusters. Indataset, no value of
results in two modes that separate the moons.

One might argue that, if & -means centroid is not a valid pattern, one could simply
replace it with the data point from its cluster that is clagest. While this sometimes
works, as would be the case in the rotated-digit-1 of Figule i often does not: the
same-cluster nearest neighbor could be a point on the clistmdary, therefore atyp-
ical (Figure 4.2) or even a point in the wrong cluster (Figdr®). K-modes will find
points interior to the clusters, with higher density andstmore typical.
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4.5.2 Degree Distribution of a Graph

We construct an undirected graph similar to many real-wgrlphs and estimate the
distribution of the degree of each vertex (Newman, 2010)cdiestruct the graph, we
generated a random (Eys-Renyi) graph (with1 000 vertices and) 918 edges), which
has a Gaussian degree distribution, and a graph with a dawgtong-tailed) distribu-
tion (with 3 000 vertices and06 489 edges), and then took the union of both graphs and
added a few edges at random connecting the two subgraphge3tieis a connected
graph with two types of vertices, reminiscent of real-warktworks such as the graph
of web pages and their links in the Internet. Thus, our dataseN = 4000 points
in 1D (the degree of each vertex). As shown in Figure 4.4, ggrek distribution is a
mixture of two distributions that are well-separated buteha very different character:
a Gaussian and a skewed, power-law distribution. The latwults in a few vertices
having a very large degree (e.g. Internet hubs), which @allt appear as outliers to
the far right (outside the plots).

We setK = 2. K-means obtains a wrong clustering. One centroid is far taigid,

in a low-density (thus unrepresentative) region, and dategs a cluster containing the
tail of the power-law distribution; this is caused by thelieus. The other centroid is on
the head of the power-law distribution and determines a@fu®ntaining the Gaussian
and the head of the power-law distribution.

We run K-modes decreasing from 200 to 1 geometrically in40 steps. K-modes
shifts the centroids to the two principal modes of the disttions and achieves a perfect
clustering. Note that the kde for the power-law cluster hasymrmodes, buf{-modes
correctly converges to the principal one.

GMS cannot separate the two distributions for any value.oBettingo small enough
that the kde has the two principal modes implies it also hasynsanall modes in the
tail because of the outliers (partly visible in the secondgba This is a well-known
problem with kernel density estimation.
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Figure 4.4 Degree distribution of a grapheft column a histogram of the distribution,
colored according to th&-modes clustering far = oo (K-means) tar = 1; the black
vertical bar indicates the cluster boundaiMiddle column the kde for each cluster
with K-modes.Right column the kde for the whole dataset with GMS. The X axis is
truncated to a degree of 800, so many outlying modes to théaig not shown.
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4.5.3 Handwritten Digit Images

We selected 100 random imagés (x 16 grayscale) from the USPS dataset for each
digit 0-9. This gives a dataset &f = 1000 points in[0, 1]*°. We ranK-means and
K-modes withK = 10, decreasing from 10 to 1 geometrically in100 steps.

Figure 4.5 shows that most of the centroids &oimeans are blurry images consisting of
an average of digits of different identity and style (sléinickness, etc.), as seen from the
20 nearest-neighbor images of each centroid (within itstel). Such centroids are hard
to interpret and are not valid digit images. This also shoow the nearest neighbor
to the centroid may be an unusual or noisy input pattern thabt representative of
anything except itself.

K-modes unblurs the centroids @slecreases. The class histograms for the 20 nearest-
neighbors show how the purity of each cluster improvesifemeans most histograms
are widely distributed, whilé{-modes concentrates the mass into mostly a single bin.
This meand{-modes moves the centroids onto typical regions that batk li&e valid
digits, and are representative of their neighborhood. Tarsbe seen not just from the
class labels, but also from the style of the digits, whichdmees more homogeneous
underKk-modes (e.g. see clustey, containing digit-6 images, ar, andcs, containing
digit-0 images of different style).

StoppingK -modes at an intermediatgpreventing it from becoming too small) achieves
just the right amount of smoothing. It allows the centromobk like valid digit images,
but at the same time to average out noise, unusual strokeébearidiosyncrasies of the
dataset images (while not averaging digits of differenntdis or different styles, as
K-means does). This yields centroids that are more repisenéven than individual
images of the dataset. In this sengeémodes achieves a form of intelligent denoising
similar to that of manifold denoising algorithms (Chapter 2)

Note that, forK-modes, centroides andcy look very similar, which suggests one of
them is redundant (while none of thié-means centroids looked very similar to each
other). Indeed, removings and rerunningk’-modes withK = 9 simply reassigns
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Figure 4.5 Clustering results on USPS data with-modes withK' = 10 for 0 = oo

(i.e., K-means, top panel) and = 1 (middle panel), and for GMS
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aclusterk = 1,..., K = 10. The leftmost image shows the centreidand the right
20 images are the 20 nearest neighbors to it within clust&ihe right panel shows the

histogram of class labels (color-coded) for the neighbors.
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nearly all data points in the cluster of to that of co and the centroid itself barely
changes. This is likely not a casuality. If we have a singlei$San cluster but use

K > 1, it will be split into sectors like a pie, but ik-means the centroids will be apart
from each other, while ik’-modes they will all end up near the Gaussian center, where
the mode of each kde will lie. This suggests that redundarey Ime easier to detect in
K-modes than inf{-means.

GMS with o = 1.8369 gives exactlyl0 modes, however of these one is a slanted-digit-
1 cluster likecy in K-modes and containg3.5% of the training set points, and the
remaining 9 modes are associated with clusters contairgtween 1 and 4 points only,
and their centroids look like digits with unusual shapes, putliers. As noted before,
GMS is sensitive to outliers, which create modes at nearcales. This is particularly
so with high-dimensional data, where data is always sparseith data lying on a low-
dimensional manifold (both of which occur here). In thiseabe kde changes from a
single mode for large to a multiplicity of modes over a very narrow interval of

4.5.4 Summary

The previous experiments suggest tRatnodes is more robust thdt-means and GMS
to outliers and parameter misspecificatidn ¢r o). Outliers shift centroids away from
the main mass of a cluster fii-means or create spurious modes in GMS, Kuinodes

is attracted to a major mode within each cluster. GMS is sigasio the choice of
bandwidth, which determines the number of modes in the kadeveder,X-modes will
return exactlyK’ modes (one per cluster) no matter the value of the bandwattt,
whether the kde of the whole dataset has more or fewer thanodes. K-means is
sensitive to the choice ok if it is smaller than the true number of clusters, it may
place centroids in low-density regions between clustetsdware invalid patterns); if
it is larger than the true number of clusters, multiple caidis will compete for a cluster
and partition it, yet the resulting centroids may show naddation that this happened.
With K-modes, ifK is too small the centroids will move inside the mass of eaahtel
and become valid patterns. K is too large, centroids from different portions of a
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cluster may look similar enough that their redundancy caddiected.

4.6 Discussion

While K-modes is a generic clustering algorithm, an important asa applications
where one desires representative centroids in the sensangf Balid patterns, typical
of their cluster, as described earlier. By makingmall enough/<-modes can always
force the centroids to look like actual patterns in the irgrset (thus, by definition,
valid patterns). However, an individual pattern is oftensgaor idiosyncratic, and a
more typical and still valid pattern should smooth out n@isd idiosyncrasies—just as
the idea of an “everyman” includes features common to most, ot does not coin-
cide with any actual man. Thus, best results are achievddimtigrmediate bandwidth
values: neither too large that they average widely diffepatterns, not too small that
they average a single pattern, but just small enough thgitetherage a local subset of
patterns—where the average is weighted, as given by (4t3)dg points from a sin-
gle cluster. Then, the bandwidth can be seen as a smoothragipter that controls
the representativeness of the centroids. Crucially, tHesisoseparate from that of,
which sets the number of clusters, while in mean-shift botésare conflated, since the
bandwidth determines both the smoothing and the numbeusefeats.

How to determine the best bandwidth value? Intuitively, ameilld expect that band-
width values that produce good densities should also giasamable results witlk -
modes. Indeed, this was the case in our experiments usimgpdesbandwidth estima-
tion rule (the average distance to thth nearest neighbor). In general, what “repre-
sentative” means depends on the application, Anchodes offers potential as an ex-
ploratory data analysis tool. By running the homotopy akionifrom large bandwidths
to small bandwidths (where “small” can be taken as, say, enthtof the result from
a bandwidth estimator), the algorithm conveniently présém the user a sequence of
centroids spanning the smoothing spectrum. As mention&mdyethe computational
cost of this is comparable to that of runnidgmeans multiple times to achieve a good
optimum in the first place. Finally, in other applicationeganay want to us&-modes
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as a post-processing of ti&-means centroids to make them more representative.

4.7 Conclusion and Future Work

Our K-modes algorithm allows the user to work with a kernel dgresstimate of band-
width o (like mean-shift clustering) but produce exacHyclusters (likekK-means). It
finds centroids that are valid patterns and lie in high-dgresieas (unlikei'-means),
are representative of their cluster and neighborhood,hgt &verage out noise or id-
iosyncrasies that exist in individual data points. Compaoitetly, it is slightly slower
than K-means but far faster than mean-shift. Theory and expetsrsiggest that it
may also be more robust to outliers and parameter misspmicthank’ -means and
mean-shift.

Our K-modes algorithm can use a local bandwidth at each poirgr#itan a global one,
and non-Gaussian kernels, in particular finite-suppordisr(such as the Epanechnikov
kernel) may lead to a faster algorithm.

A main application forK-modes is in clustering problems where the centroids must be
interpretable as valid patterns. Beyond clusterikgmodes may also find application

in problems where the data fall in a nonconvex low-dimeraionanifold, as in find-

ing landmarks for dimensionality reduction methods (des&sdnd Tenenbaum, 2003),
where the landmarks should lie on the data manifold; or ictspkclustering (Ng et al.,
2002), where the projection of the data on the eigenspadeafraph Laplacian defines

a hypersphere.



Chapter 5

The Laplacian K-modes algorithm for

clustering

Aside from the merits of thél-modes algorithm proposed in Chapter 4, its major dis-
advantage is its assignment rule, which is the sam& aseans and results in only
convex clusters. In this chapter, we introduce a new algoribased onk-modes,
which essentially relaxes the discrete cluster indicatatrixito continuous variables
and imposes a smoothness penalty on the assignments. WemarakgorithmLapla-
cian K-modes It naturally combines three powerful ideas in clusteriting: explicit use

of assignment variables (as ii-means); the estimation of cluster centroids which are
modes of each cluster’s density estimate (as in mean-shift) the regularizing effect
of the graph Laplacian, which encourages similar assigtsrfen nearby points (as in
spectral clustering). The optimization algorithm altéesaan assignment step, which
is a convex quadratic program, and a mean-shift step, wigiphrates for each cluster
centroid. The algorithm finds meaningful density estimé&es®ach cluster, even with
challenging problems where the clusters have manifolattira, are highly nonconvex
or in high dimension. It also provides centroids that ar@vadtterns, truly representa-
tive of their cluster (unlike/l-means), and an out-of-sample mapping that predicts soft
assignments for a new point.

88
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Table 5.1 Comparison of properties of different clustering algarith

K-means K-medoids Mean-shift Spectral K-modes Laplacian
clustering K-modes
Centroids invalid “valid” “valid” N/A valid valid
Nonconv. clust. no depends yes yes no yes
Density no no yes no yes yes
Assignment hard hard hard hard hard soft
Cost/iteration KND KN2D N2D N2~ N3 KND KND

5.1 Introduction

The K-modes algorithm (Chapter 4) combines the idea of clustehra@ugh binary as-
signment variables with the idea that high-density poingésrapresentative of a cluster.
Each centroid found by th&-modes algorithm is the mode of a kde defined by data
points in each cluster. As a result, the centroids averagease or idiosyncrasies that
exist in individual data points and are representative eirttluster and neighborhood.
This can be seen from th&-modes centroid for the rotated digit-1 problem in Fig-
ure 4.1. K-modes was also shown to have nice properties such as beisgrobust to
mis-specification of the bandwidth and to outliers, andgngan efficient optimization
procedure.

One important disadvantage Af-modes is that it uses the same assignment rul€-as
means (each pointis assigned to its closest centroid indaaci distance), so it can only
find convex clusters (a Voronoi tessellation). Therefoiles KK-means, it cannot han-
dle clusters with nonconvex shapes or manifold structunike mean-shift or spectral
clustering (Shi and Malik, 2000).

The main contribution of this chapter is to solve this isswhjle keeping the nice
properties thatk-modes does have. The key idea is to modify thenodes objec-
tive function such that the assignment rule becomes mucle ftexible. We then give

an alternating optimization procedure to find the assigrismand the modes. The re-
sulting Laplacian K-modesalgorithm is able to produce for each cluster a nonparamet-
ric density and a mode as valid representative (hkenodes), to separate nonconvex
shaped clusters (like mean-shift and spectral clusterarg) to give soft assignment of
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data points to each cluster. Yet, all of these merits areeaeldi at a reasonable com-
putational cost, and the algorithm works well with high-dmsional data. Table 5.1
compares Laplaciak’-modes with other popular clustering algorithms.

5.2 Algorithm

5.2.1 The LaplacianK-Modes Algorithm

We change the assignment rule i§fmodes to handle more complex shaped clusters
based on two ideas: (1) the observation thaarby data points should have similar
assignmentsand (2) the use a$oft assignmentsvhich allows more flexibility in the
clusters and simplifies the optimization. We first build apirée.g.k-nearest-neighbor
graph) on the dataset, and tet,,, be an affinity (e.g. binary, heat kernel) between
andx,. We then add to thé{-modes objective function a Laplacian smoothing term
gzzzl ij:l Wi, ||Zim, — an2 to be minimized, where,, = [z,1,. .., z.x]" is the
assignment vector at,, n = 1,..., N, to each of theK clusters, and\ > 0 is a
trade-off parameter. The assignments are now continuaiebles, but constrained to
be positive and sum tb. Thus,z,,;, can be considered as the probability of assigning

to clusterk (soft assignment). Thus, theplacian K-modesbjective function is:

PR N K < — e ll?
. 2 n — Lk
Iénél §Zzwmnuzm—zn” _ZzznkG( o ) (5.1)
m=1 n=1 n=1 k=1
K
s.t Zznkzl, n=1,...,N,
k=1
an>07 nzlv 7N7 k:]_, 7K
We can rewrite this objective in matrix form:
: T _ T
Iéllcn Atr (Z LZ) tr (B Z) (5.2)

S.t. Z]_K:]_N, ZZO
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whereL = D — W is the graph Laplacian for the affinity matrW = (w,,,) and
degree matriD = diag (fo:l Wmn), B = (by) IS @anN x K matrix containing data-
centroid affinitiesh,, = G(||(x, —ci)/o|*),n = 1,...,N, k =1,...,K, 1 is a

K dimensional vector ofs and> means elementwise comparison. Other variations of
the graph Laplacian can also be used (e.g. the normalizelddiap), see von Luxburg
(2007). The constraint o shows it is a stochastic matrix. We can obtain a hard
clustering if desired by assigning each point to the clustdr highest assignment value.

Special Cases of the Hyperparameter§\, o) In LaplaciankK-modes, in addition to
K there are two user parametepscontrols the smoothness of the assignment, and
controls the smoothness of the kde defined on each clustersidaorirst the case of
A = 0, where Laplaciany-modes becomes the original-modes algorithm. Carreira-
Perpifian and Wang (2013a) already noted thatAhenodes algorithm has two interest-
ing limit cases: it become&-means whew — oo, and a form of-medoids when
o — 0, since the centroids are driven towards data points. In tatks the assignments
are hard (1-out-ofs coding). The case wheh — oo makes the first term in (5.1)
dominant and forces all connected points to have identigsigaments, which is not
interesting for the purpose of clustering. Therefore, tlusinmteresting behavior of the
algorithm is for intermediate.. Finally, another interesting special case of Laplacian
K-modes corresponds to > 0 andoc — oo, which we callLaplacian K-means and
which seems to be new as well.

5.2.2 Optimization Procedure for Laplacian K-modes

To solve (5.1), we use alternating optimization oeandZ, which takes advantage of
the problem’s structure.

C-step For fixedZ, we are only concerned with the second term of (5.1) which is
the K-modes objective. Therefore, our step oGers identical to that ofk-modes: it
decouples over clusters and we apply mean-shift to solvedohc, separately. The
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cost of this step iI© (KN D).

Z-step Unlike in K-modes, ouZ-step no longer decouples, which means we have to
solve for N K variables all together. Since the graph Lapladiais positive semidefi-
nite, the problem oveX is a convex quadratic program (QP). While we could apply a
standard QP algorithm, such as an interior point method,naeigle here an algorithm
that is very simple (no parameters to set), efficient anddbales well to real problems
where the number of point§ or the number of cluster& is very large. The solution is
based on the gradient proximal algorithm used by Beck andul@009). Their gen-
eral framework solves convex problems of the fafrin, f(x) = g(x) + h(x), where

g is convex and has Lipschitz continuous gradient (with camtst), and’ is convex
but not necessarily differentiable. The gradient proxiadgbrithm iteratively updates
the variables by first taking a gradient step of the first fiomcand then projecting it
with the second function, i.ex,,; = argminy, £ |ly — (x, — 1Vg(x.))||” + h(y). It

can be proven that the algorithm converges in objectivetionwalue with rateD(1/7)
(whereT is the iteration counter) with eonstant stepsiz%, and using Nesterov’s ac-
celeration scheme improves the rat&x0l /T7?2) (see Appendix B for details).

To apply this framework to ouZ-step, we make the identification thats our smooth
guadratic objective function, which has continuous graiveith . = 2AM being the
(smallest) Lipschitz constant wheté is the largest eigenvalue f, andh is the indi-
cator function of the probability simplex. Consequently; ptoximal step is computing
the Euclidean projection of the gradient step onto the grbbasimplex. Note that
computing the Euclidean projection onto tRedimensional simplex is itself a quadratic
program. Fortunately, there exists an efficient algorithiniclw computes the exact pro-
jection withO(K log K') time complexity (Duchi et al., 2008, also see Appendix A for
details).

We provide the accelerated gradient projection algoritbnotir Z-step in Algorithm 1.

Notice the graph Laplacian is sparse and its largest eiigavd can be obtained effi-
ciently (e.g. by power iterations). Therefore the conss@psizes can be easily deter-
mined right after constructing graph Laplacian. Comparealpare gradient projection
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Algorithm 1 Accelerated gradient projection for tiestep.

Input: Initial Zg € RV*E, s = ﬁ where M is the largest eigenvalue of the graph
LaplacianL.
1. SetY, =2y, t1 =1, 7= 1.
2: repeat

3: Compute gradienta’,: G, =2\LY, — B
Z.. = simplex projection of each row & . — sG,
trp1 = (1+4/1+4t2)/2
Yo =Z + (5 )(Zr — Ziry)
7. t=71+4+1
8: until convergence
Output: Z. is the solution of theZ-step.

o 9k

algorithm, the additional computational effort of the decation scheme in maintaining
an auxiliary sequenc¥ (lines 5-6 of Algorithm 1) is minimal, and we clearly observe
an improved convergence behavior in practice. Each iwradf Algorithm 1 costs
O(NKp+ NK log K), wherep is the neighborhood size in constructihdor the num-
ber of nonzero entries in each row). The first term accoumtedmputing the gradient
and the second term accounts for projecting each rd&/@fito the probability simplex.
Notice that, although it is solving a large QP, the cost pation of ourZ-step is inde-
pendent of the input dimensionalify, and is even less costly than t@estep which has
time complexityO(K N D). Despite its sublinear convergence rate, the algorithm has
a clear advantage in its simplicity: it does not require ang kearch or costly matrix
operation, and is extremely easy to implement. We note thatlternative approach
for theZ-step is the Alternating Direction Method of Multipliers MM, Boyd et al.,
2011), which is applied in our recent work of an simple assignt model for the same
type of optimization problem (Carreira-Pdiigh and Wang, 2013b).

Convergence Properties In the C-step, each mean-shift update increases the density
of the cluster kde (or leaves it unchanged) and its convemeate to a mode is lin-
ear in general (Carreira-Peffin, 2007). Roughly speaking, achieving an approximate
solution of errore in this step take$og(1/¢) iterations. In theZ-step, the accelerated
gradient projection converges theoreticallystl /7?) rate wherel” is iteration counter.
Roughly speaking, achieving an approximate solution ofrerio this step take$/./e
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Figure 5.1 Learning curve of Laplaciax’-modes on the synthetic 2-moons problem
(N = 1000, D =2, K = 2). We show the relative errors in objective function value
(|Er — Eopt| / | Eope]) Over iterations £) of our alternating optimization scheme for user
parameterg\ = 1,0 = 0.2).

iterations, although gradient projection seems to perfonch better than its theoretical
guarantee in practice (Beck and Teboulle, 2009). We couttiéduimprove the conver-
gence rate of gradient projection to be linear, by addingaaoatic regularization o#

to the objective function such that it becomes strongly eanfgee Appendix B). We
alternate theC andZ steps until a convergence criterion is satisfied (e.g. tla@gé to
the variables is below some threshold). In an efficient irq@etation, both steps should
be inexact (e.g. each could run for a fixed, small number otiens). Note that the
Z-step algorithm is feasible, so exiting it early producdgivassignments.

It is to be understood that, even though the per iteratiohafdsaplaciani’-modes has
the same complexity a&-modes and<-means in terms of problem size (Table 5.1),
LaplacianK-modes may need many more iterations to converge to an aeaaiation
(in fact K-means is guaranteed to converge to an exact local minimdmite steps).
To illustrate this point, we show in Figure 5.1 the learniongve of Laplaciank-modes
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on the synthetic example of two moons (dataset is shown iar€ig§.3) for some fixed
user parameter.

Homotopy Algorithm  As with K-means and<{-modes, the Laplaciai’-modes ob-
jective function has local optima, which are caused by thelinear, kde term. One
strategy to find a good optimum consists of first finding a goptihaum for A-means
and then run a homotopy algorithm initialized there. We camstruct a homotopy by
varying continuoush from 0 ando from oo, which corresponds t&’-means, to their
target valueg\*, o). In practice, we follow this path approximately, by runnsgme
iterations of the fixed-(,c) Laplacian/K-modes algorithm for each value of,{). In
practice, as is well known with homotopy techniques, thiglteto find better optima
than starting directly at the target val(®*, c*). A good optimum forkK'-means can
be obtained by picking the best of several random restartsy asing the/-means++
initialization strategy, which has approximation guaesst (Arthur and Vassilvitskii,
2007).

5.2.3 Out-of-sample Problem

We now consider the out-of-sample problem, that is, givenra®een test point € R”,
we wish to find a meaningful assignmeriix) to the clusters found during training. A
natural and efficient way to do this is to solve a problem ofghme form as (5.1) with
a dataset consisting of the original training set augmewntiéd x, but keepingZ and
C fixed to the values obtained during training (this avoidsiingwto solve for all points
again). After dropping constant terms, this is equivalerthe following problem:

)

Xpn — Ck

g

N K
min /\anHz—anz—szG(
“ n=1

k=1
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wherew,, is the affinity between test poigtand training poink,,. After some algebra,
the above optimization problem further reduces to the Yalhg quadratic program:

1
min 5 lz—(Zz+~q)|* st zllx=1 z2>0 (5.3)

z

where the expressions farq = [qi, . . . , ¢x]* and~y are as follows:

N
_ W,
2=) v
n=1

Gl eo/ol)
S Gl — )/ lP)
SE Gl = ew)/ol)

K 2\ Zgzl W, '

qk

Thus, the out-of-sample solution is the projection of thalimensional vectoz + ~vq
onto the probability simplex. The computational cosPigV D), dominated by the cost
of z, since the simplex projection cost¥ K log K).

The solution has an intuitive interpretation, consistifighe linear combination of two
terms, each a valid assignment vector (having positive esthat sum td). The
Laplacian termz, is the weighted average of the neighboring training pobessign-
ments, and results in nonconvex clusters. The kde tqrrassigns a point based on its
distances (posterior probabilities) to the centroids, rasdlts in convex clusters. These
two distinct assignment rules are combined using a weijgtat give the final assign-
ment. Essentiallyx is assigned to clustérwith high probability if its nearby points are
assigned to itg, is large) or if it is close t&;, (¢ is large). Although the out-of-sample
mapping is defined variationally, it is just as useful as gaetbform expression: compu-
tationally it does not require an iterative procedure, dmedinterpretation above makes
its meaning clear. This interpretation also illuminates nireaning of the Laplacian in
the training objective (5.1). In fact, iterating the outsEfmple mapping sequentially
over the training points gives another (slower) way to stheZ-step, i.e., alternating
optimization ovelz,, ..., zy.
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5.3 A brief review of related work

We have discussed centroids-based algorithiisreans, K -modes, mean-shift) at
length in Chapter 4. Here we review other closely related vedikaplaciankK -modes
in the clustering context.

Obtaining hard assignments by optimizing over a discraistet indicator matrix is
usually difficult, because interesting objective funci@me typically NP-hard. Spectral
clustering algorithms (Shi and Malik, 2000; Yu and Shi, 208%oid this difficulty by
first approximating the solution using eigenvectors of tbhemalized graph Laplacian.
Formally, spectral clustering solves the following optiation problemD andW are
defined as in Section 5.2)

: T
min tr (Z WZ) (5.4)

st. Z'DZ =1

And the global optimum of this non-convex problem is obtdibg theK leading eigen-
vectors oD~ WD~ 3. However, since the eigenvectors do not readily providiel\zs-
signments, these algorithms need to run another clustalgagithm (usuallyx’-means)
on the eigenvectors to obtain actual partitions of the datgest-processing step that
may have multiple local optima. In Laplacidfi-modes, we rela¥ to be a stochastic
matrix, so ourZ-step results from a convex QP and provides soft assignmépnts

to clusters, which may also be used as posterior probaisiliti

Laplacian smoothing has also been used in combination witih@gative matrix factor-
ization (NMF) for clustering (Cai et al., 2011). NMF learnsecdmposition of the input
data matrix where both basis and coefficients are nonnegain tends to produce part-
based representation of the data (Lee and Seung, 1999). &4(2611) add to the NMF
objective function a Laplacian smoothing term regardirgabefficient matrix, so that
data points that are close in input space are encouragedecah&milar representation
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using the common basis set. Formally, it solves the follgvaptimization problem

min | X - UV|° + tr (VLV?) (5.5)
U, v

st. U>0, V>0,

whereU = [uy,...,ux] € RP*E are the basis/dictionary of the dataset &id=
[vi,...,vy] € REXN are the coefficients for each data point. Note the Laplacian
smoothing termtr (VTLV) imposes smoothness on the coefficients/codes. Similar to
spectral clustering, the coefficients provides the representation of the dataset using
learnt basis and does not give clustering assignment eiltiers K-means is then ap-
plied toV obtain a final partition of the data.

There has been recent work in clustering that directly oggsiover a stochastic assign-
ment matrix. Arora et al. (2011) optimize over a stochastitrir Z such thaZZ” best
approximates a rescaled similarity matrix. Formally, lvss the following optimization
problem

mizn HCW — ZZTH2 (5.6)

st. ¢>0, Zlgx=1y, Z > 0.

Itis easy to see that the optimization problem has multipleteons which are related by
rotations about the normal to the probability simplex (gogrmutations of the columns
of Z which change the cluster labels). The authors propose toiexphe geometry of
the problem using rotation-based algorithm, which is gtrtorward for up tok = 4
clusters and requires optimization procedure for comgupiojection onto probability
simplex for more clusters.

Yang and Oja (2012) use the idea of AnchorGraphs (Liu et 80 to approximate
the affinities between data points through a two-step Datst€i-Data (DCD) random
walk. Assume uniform prior distributiof?(:) = 1/N over the data points, the random
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walk probabilities from clustec;, to data point; can be written as

T 1P(/~f| )P(n) 0, Zuk

Then consider then the two-step random walks fesgrto x; via the augmented cluster
nodes{c; } X ,:

K
ZP ilk)P(k|j) = Z—szvkzjk

k=1 n=1 ~nk
The authors then minimize the generalized KL divergencerben a given sparse affin-
ity matrix W and the affinities resulted from DCD random walks over thelsietic
matrix Z:

( i) log T2 —P(z‘|j)+wij) (5.7)

=1 j=

S.t Z]-K:1N7 Z > 0.

It is obvious that the above approaches are related to LiaplaGmodes in that they all

optimize certain objective over the assignment probadslitLaplacian-modes has a
very simple quadratic problem over the assignméhtahereas the objective function
of Yang and Oja (2012) is heavily nonlinear. Thanks to the taden in the objective

function, Laplaciank-modes does not have the issue of rotational equivalencearbA
et al. (2011), and makes use of the efficient projection dméoprobability simplex to

deal with any number of clusters. Furthermore, Lapladidmodes provides density
estimate of the clusters and prototypical centroids wihiéeabove algorithms do not.



Figure 5.2 Synthetic dataset di-spirals. From left to right/A-modes clustering\( =

0, o = 0.2, the circle at the top right corner has a radiuss@f Laplacian K-modes
clustering f = 100, 0 = 0.2); LaplacianK-modes assignment probabilities; contours
of the kde of the “red” cluster.

5.4 Experimental results

5.4.1 lllustrative Synthetic Examples

Spirals We first demonstrate the power of Laplacian smoothing. Thed@@set in
Figure 5.2 consist 05 spirals where each spiral contaitd0 points (denoted by).
The natural way of partitioning this dataset im0 = 5 groups is to assign points of
each spiral into a separate cluster. Due to the nonconveesbfahe spirals, the ideal
result can not be possibly achieved Rymodes (plot 1, we color each point differently
according to the cluster it is assigned to)/6frmeans (achieves a similar result &G
modes which is not shown here), even though Ahenodes centroids (denoted )
are lying on each spiral and are valid representatives otittiaset. We then builg-
nearest neighbor graph on this dataset using heat kernghtireg, and run Laplacian
K-modes using<-means result as initialization. We achieve perfect sejmaraf the
spirals and one centroid for each spiral in few steps of otar@éting optimization
scheme, as shown in plot 2. We show the assignment proloebH#itin plot 3, where
each data point,, is colored using a mixture of the 5 clusters’ colors with gsignment
probabilityz,, being the mixing coefficient. We show the contours of the kefenéd on
the “red” cluster in plot 4, which is localized to the cluséerd represents its shape well.
It is obvious that running mean-shift on this dataset withghmer will result in a large
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Figure 5.3 Synthetic dataset af-moons. We denote data points byand centroids

by ». We run Laplaciank’-modes in homotopy and show results at final parameter
value A = 1 ando = 0.1). From left to right: K-modes clustering\(= 0, ¢ — o0);
Laplacianik’-modes clustering and contours of kde of each cluster; Icegold<-modes
assignment probabilities, using the same coloring schesmeiaspirals; out-of-sample
mapping in input space, colored in the same way as assigrpneldbilities of plot 3
(training points are now plotted in yellow).

number of modes and therefore clusters. In contrast, thébauwf modes is fixed in
Laplacian/K-modes and the algorithm will track one of the major modesrhecluster.

It is interesting to notice that because the kernel widttve use is quite small, only

a small proportion of data points are close enough to cetgrm have nonzero affin-
ity. This implies that théB matrix in (5.2) is quite sparse. Nonetheless, we achieve
good assignment probabilities using the graph Laplacidmclwpropagates the sparse
“label” information in B throughout the graph. This also partly explains the sucokss
Laplacian smoothing in spectral clustering (Shi and M&@00) and semi-supervised
learning algorithms (Belkin et al., 2006; Zhu et al., 2003).

Noisy Two Moons We demonstrate the out-of-sample mapping of Laplagiamodes
on the “two-moons” dataset in Figure 5.3. The dataset hasimzonvex, interleaved
clusters (each ha)0 points) and we set add massive outli&@@)points) around them.
The “moons” cannot be perfectly separated by eitiemeans (results shown in plot
1) or K-modes, since both define Voronoi tessellations. This praldk also difficult
for hierarchical clustering because, as is well known, itgganproblem is that it cre-
ates connections between different clusters as the meogiogrs. We buildb-nearest
neighbor graph on this dataset using heat kernel weighdimg) yun Laplaciar-modes
from K-means initialization. We run the homotopy version and cedufrom 5 to 0.1



102

in 10 steps while fixing\ = 1. The obtained hard partition, along with the two centroids
and kdes for each cluster at= 0.1 are given in plot 2. With the existence of heavy
noise/outliers, the “inliers” are still perfectly sepadt the modes lie in high density
area and we obtain good density estimate for each clustershde the assignment
probabilitiesZ in plot 3, colored using the same scheme as in the spiralsggaihe
assignment is certain near the centroids (purer color) &sdwe at the boundaries and
outliers (mixed color). Finally, the out-of-sample mappin input space is shown in
plot 4, where we compute out-of-sample assignment for a filseagnd color each grid
point using the same coloring scheme as in plot 3. We seelckbat the assignment
rule is very different from the hard assignment/6fmeans. The mapping at each point
combines the average assignment of nearby training pontdstee assignment from
centroids, and has complicated, flexible shape.

Figure-Ground Segmentation We consider the problem of segmenting an occluder
from a textured background in a grayscale image. This prolilas been shown to be
difficult for spectral clustering (Carreira-Pefign and Zemel, 2005; Chennubhotla and
Jepson, 2003), because of the intensity gradients betvineeaccluder and the back-
ground (and within the background itself), which cause mgmaph edges to connect
them, see the example in Figure 5.4. We formalize it as aatlnst problem and parti-
tion the pixels intoK’ = 5 clusters. We use for each pixel its 2D location and intensity
value as features, and build a graph where each pixel is cteuhéo the eight nearby
pixels, with edge weighted using a heat kernel of widtfsame value is used as Gaus-
sian kernel width for Laplaciak’-modes). The goal is to have one of the clusters extract
the occluder, which can then be separated from the backdrdanmeasure the perfor-
mance, we choose the cluster that overlap the most with dechs positive prediction
(the rest pixels are considered as background/negativictiom) and compute classi-
fication error rate. As we can see from Figure 5.4, normal@édYu and Shi, 2003)
performs well for a narrow range of, while Laplacian/k-modes (with fixed\ = 0.1)

has much more stable performance when using the same graghisue to the fact
that our algorithm has different, more flexible assignmemé compared to spectral
clustering.



103

Original image Error rates

— Normalized cut||

— Lap. K-modes

error rate
B RN
e o 9

a1

Q

10 10
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Figure 5.4 Occluder segmentation result. Top: original image andrenaites over
range ofr. Bottom: segmentation of normalized cut and Lapladiamodes at = 0.2.



104

0123456789

N
NS

NN
N
N0
R
N
§§
&S

NS
QO™
NS
WE O
N
S
\ g
~d
1
RO\

AU
AY
\
N\
N
S
N
R

QNQONN
ON\Q
N

W

NS

NONAONN

\

Lap K-modess = 1.4175

kﬂ.

R
F -

R

55455558555
R O R R RR

Figure 5.5 Clustering results on USPS data with Laplacidrmodes withK' = 10,

A = 0.12 and homotopy for. Each row corresponds to a clustee 1,..., K = 10.
The leftmost image shows the centraigland the right 20 images are the 20 nearest
neighbors to it within clustek. The right panel shows the histogram of class labels
(color-coded) for the neighbors.
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USPS Digits We now cluster the USPS digits subset used in Section 4.5tirf§ta
from the same-means result in Figure 4.5, we run the homotopy version pfd@an
K-modes and gradually decreasérom 10 to 1 in 100 steps (the same values used by
K-modes), while fixing\ = 0.12. A 5-nearest-neighbor graph is built on this dataset
to compute the Laplacian. We show the centroids and theghheirhood found by
LaplacianK-modes in Figure 5.5. We see that, similariemodes, the centroids are
valid patterns, and the neighborhood of each centroid ameoheneous. Notice these
centroids represent more classes than thog€-afiodes ¢ is a prototypicaR). But
still, the centroids can not uncover all the 10 classes. Aslamation is that the sample
size of this dataset is relatively small and the variationthiw each class is not very
smooth, and it is therefore hard to build a graph that moress tonnects images of the
same class and separate different classes. A potentiaiosoisi to use features that are
more invariant to within class variations rather than puales.

5.4.2 Clustering Analysis

We report clustering statistics in datasets with knowngpattlass labels (which the al-
gorithms did not use): (1) MNIST, which contaiR8 x 28 grayscale handwritten digit
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Table 5.2 Statistics (size, dimensionality, number of classeshefthree real world
datasets.

dataset N D K
MNIST | 2000| 784 | 10
COIL-20 | 1440| 1024 | 20
TDT2 9394 | 36771| 30

Table 5.3 Clustering accuracy (%) on three datasets. N/A means our Gdd8 ran
out of memory.

dataset || K-means| K-modes| GMS | NCut | GNMF | DCD Laplacian
K-modes
MNIST 58.2 59.2 159 | 655 | 66.2 | 69.4 70.5
COIL-20 66.5 67.2 27.2 | 79.0| 753 | 71.5|81.0(81.5)
TDT?2 68.9 70.0 N/A | 88.4 88.6 55.1 91.4

images (we randomly sample 200 of each digit); (2) COIL-20¢tvleontains32 x 32
grayscale images of 20 objects viewed from varying angl@sthe NIST Topic De-
tection and Tracking (TDT2) corpus, which contains on-togocuments of different
semantic categories (documents appearing in more thanategacy are removed and
only the largest 30 categories are kept). Statistics of #tasgéts are collected in ta-
ble 5.2. Datasets (2) and (3) are the same as used by Cai eédhl)(2and we also use
the same features: pixel values for (1) and (2), and TFIDK3r

We compare the following algorithm#™-means, initialized randomly§-modes, a spe-
cial case of Laplaciai-modes with\ = 0; Gaussian mean-shift (GMS), we search for
o that produces exactlif’ modes; Normalized cut (NCut), one typical spectral cluster-
ing algorithm, and we use the implementation of Yu and ShO80Graph regularized
NMF (GNMF) proposed by Cai et al. (2011); Data-Cluster-Datadam walk (DCD)
proposed by Yang and Oja (2012); and Lapladé&modes, initialized fron¥-means.

Several algorithms uses graph Laplacian: for NCut, GNMF, leaqglacian K-modes,
we build 5-nearest-neighbor graph and use binary weighgoigeme for computing
graph Laplacian (same as in Cai et al., 2011); for DCD, we finditrechieve better
performance using a graph built with larger neighborhoed,s0 we let DCD select op-
timal size in{5, 10, 20, 30}. We run each algorithm witk0 random restarts, letting them
use respective optimal hyper-parameter (if there is anggtban grid search, and report
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Table 5.4 Normalized Mutual Information (%) on three datasets.

dataset || K-means| K-modes| GMS | NCut | GNMF | DCD Laplacian
K-modes
MNIST 53.3 53.6 6.51| 66.9| 64.9 | 65.6 68.8
COIL-20 75.3 75.9 389 | 880 | 87.5 | 77.6 | 87.3(88.0)
TDT2 75.3 75.8 N/A | 83.7| 83.7 | 68.6 88.8

K-means

£747/06143
£947/06193

Lap. K-modes K-modes

£927/061493

Figure 5.6. Centroids found by different algorithms on MNIST. First ro-means
(A=0,0 — oo, ACC: 55.2%, NMI: 50.2%). Second rowk -modes § = 0, 0 = 0.35,
ACC: 56.0%, NMI: 50.6%). Third row: Laplaciafk-modes § = 0.07, ¢ = 0.35,
ACC: 70.5%, NMI: 68.8%).

the best performance from different random restarts. Redoce evaluations using two
criteria—accuracy (ACC) and normalized mutual informatibiM{)—are given in ta-
bles 5.3 and 5.4, respectively. It is clear that algorithisiagi Laplacian smoothing are
in general superior than algorithms not using it, demotisgahe importance of graph
Laplacian in separating nonconvex and manifold clusteMS@erforms poorly for the
reasons described earlier. On all datasets, Lapld€imodes achieves the best or close
to best performance under both criteria (we find in practmesd exist wide range of
hyper-parameters with which our algorithm gives very cotipe performance). We
are able to further improve our performance on COIL-20 ugiedgiomotopy technique
described earlier: we fix at0.01, and decrease from 0.45 to 0.1 gradually in7 steps,
initializing the algorithm for current value from solution for the previousvalue. This
improved result is shown in parenthesis in tables 5.3 and 5.4

Another key advantage of Laplaci&tmodes is that the centroids are interpretable pat-
terns of the dataset. We show the centroids (each as a in@ag®) by centroids-based
algorithms (using optimal hyper-parameter) on MNIST ind&g5.6 and COIL-20 in



K-

modes means

Lap.
k- K
modes

Lap
K-
modes

Figure 5.7: Centroids found by different algorithms on COIL-20. Firstrd<-means
(A =0,0 — oo, ACC: 64.8%, NMI: 73.5%). Second rows-modes § = 0, 0=0.3,

ACC: 65.5%, NMI: 73.0%). Third row: LaplaciaR’-modes § = 0.01, 0 = 0.1, ACC:

73.2%, NMI: 83.8%). Fourth row: Laplaciali-modes with homotopy ia (A = 0.01,

ACC: 81.5%, NMI: 88.0%, see text).

Figure 5.7, all using thé(-means initialization. For such high dimensional problems
with small K, GMS tends to have majority of the centroids associated wetly few
points that are outliers with unusual patterns, and we doshotv them here. Not
surprisingly, some-means centroids are blurry images consisting of an averhge
digits/objects of different identity and style. This imgsi some centroids lie between
different branches of data manifolds, thus in low densityaaand not prototypical.
K-modes centroids have cleaner shapes, but the identitidfeeafentroids somewhat
overlap. This is becaudé-modes concerns about kdes only, and multiple modes might
move to the same manifold which happen to have higher dersiiylaciank-modes
centroids not only have prototypical shapes, but also covere digit/object identities
(such centroids should help obtain better accuracy).

Applying our algorithm at an intermediateachieves just the right amount of smooth-
ing. This is clearly seen from the centroids obtained on MNISallows the centroids

to look like valid digitimages, but at the same time to averagt noise, unusual strokes
or other idiosyncrasies of the dataset images (while notagueg digits of different
identities or different styles, a&’-means does). This yields centroids that are more
representative even than individual images of the dataset.
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5.5 Conclusion

Our Laplacianik’-modes algorithm enjoys some of the best properties of aerafig
clustering algorithms. It is nonparametric and allows tlBeruo work with a kernel
density estimate that produces exadtlyclusters (as inf{-means and<-modes), even
in high dimension (unlike in mean-shift), and which can bacanvex (as in mean-shift
and spectral clustering). It also finds centroids that afiel ymatterns and lie in high-
density areas, are representative of their cluster anchberfood, yet they average
out noise or idiosyncrasies that exist in individual datantso Computationally, our
current alternating optimization scheme is simple, efficand scales well. Experiments
demonstrate the superior performance of Laplaéiamodes compared to well-known
clustering algorithms.

There are some obvious extensions to the algorithm thattimgirove the performance.
Our Laplacian smoothing term could use more carefully cogtd graphs (Zelnik-
Manor and Perona, 2005) or better normalized Laplacians(Zad Shashua, 2007) in
place of the usual Laplacian. We could also use localizedetevidth o (Vladymyrov
and Carreira-Perfan, 2013) for each data point to obtain better kde. Moreower,
would like to investigate about the automatic choice of myperameters and design
homotopy procedure in parameter



Chapter 6

Concluding remarks

We have shown in this thesis some successful examples oirgathe manifold struc-
ture of data using the mean-shift algorithms. Here we giveesconcluding remarks and
concerns for future research (or what is not fully invegegan this thesis regarding the
topic of manifold learning with mean-shift).

e Popular applications of mean-shift algorithms are usualhglatively low dimen-
sions (Carreira-Perpan, 2006a,b, 2008; Comaniciu and Meer, 2002; Comani-
ciu et al., 2003). This is because, in high dimensions, ong mead significant
amount of data to obtain a good kernel density estimate. Antive reasoning
is through the kernel bandwidth selection: since data paané sparse in high
dimensional Euclidean spaces, a small bandwidth at eaci ipciudes only the
point itself and cause the density to be a sunm d&iinctions, while a big band-
width includes all points and locality is lost, thus the raraf “good” bandwidth
may be very narrow. Exploiting the manifold structure caareeme the curse of
dimensionality to some extent, as we have shown empirigalthis thesis. Yet
one may still wonder what is the limit of this approach, evghat is the sample
complexity for the learning algorithms in this thesis to wavell, or when can
we even believe the local tangent space estimated in a raigbdd using PCA
is a good approximate of the manifold structure? Recent #tieal research may
shed some light on such problems (Canas et al., 2012).

109
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e There has been work on generalizing the mean-shift proegdumode finding in
Euclidean space to certain Riemannian manifolds (Céatiagd Vidal, 2009; Sub-
barao and Meer, 2006, 2009) (similar generalization eristsi-means, Banerjee
et al., 2005). Such algorithms involve procedures of mownghe tangent plane
and mapping the resulting vector back to the manifold, so gsi&rantee to oper-
ate “on” the manifold of interest, although clustering ofmifald can be achieved
via dimension reduction and clustering in the latent spaceal (Goh and Vidal,
2008). It would be interesting to establish a connectiowbeh these approaches
with the MBMS algorithms in this thesis, which also constrie mean-shift
motion with regard to the manifold structure.

e Random projection has become increasingly popular for madearning (Bara-
niuk and Wakin, 2009; Candes and Tao, 2006; Dasgupta and d;re009; Li
and Hastie, 2008; Wakin et al., 2006). The power of randonpeption can be
characterized by the famous Johnson-Lindenstrauss lemasg(pta and Gupta,
1999; Johnson and Lindenstrauss, 1984). Roughly speakiadeinma implies
that one can reduce the dimensionality of a datasé(log V) where N is the
dataset size with certain random projections, withoutodistg the distance be-
tween any pair of points too much. Baraniuk et al. (2006) sh@tthe same type
of random projections also satisfy thestricted isometry propertyequirement on
the sensing operator for compressed sensing (Donoho, 200é)efore, random
projection is a very efficient dimensionality reductionhiemue as it requires lit-
tle or no training, and it is effective as it maintains mostha useful information
within the dataset, e.qg., it approximately preserves thmsvse distances between
data points, and allows for exact recovery of sparse sigAalsve have seen, the
time complexity of mean-shiftis linear in the input dimemsality and thus mean-
shift is costly for very high dimensional dataset (e.g.,oents represented by
TFIDF features), exacerbating the slow speed due to itsergewnce rate. We
expect random projection to be useful for reducing the tioraglexity of mean-
shift, by first projecting very high dimensional datasebintoderate dimensions,
without sacrificing much the clustering accuracy.
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e The revived interest on mean-shift can be attributed toirtgkcity and wide
applications, mainly in computer vision. Therefore, amotfuture direction is
to apply the newly developed mean-shift algorithms to weatld applications,

while incorporating various domain knowledge.



Appendix A

Projection onto the probability simplex

We provide an elementary proof of a simple, efficient aldgwnittor computing the Eu-
clidean projection of a point onto the probability simplekhis algorithm is used in
LaplacianKk’-modes clustering in Chapter 5.

A.1 Problem

Consider the problem of computing the Euclidean projectf@minty = [y, ..., yp|" €
R onto the probability simplex, which is defined by the follogioptimization prob-

lem:
i [x—y|? (A1a)
min — ||IX — .
xeRD 2 y
st x1= (A.1b)

x > 0. (A.1lc)

This is a quadratic program and the objective function igthfrconvex, so there is a
unique solution which we denote by= [z, ..., xp]” with a slight abuse of notation.
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A.2 Algorithm

The following O (D log D) algorithm finds the solutior to the problem:

Algorithm 2 Euclidean projection of a vector onto the probability sienpl
Input: y € RP

Sorty intou: uy > us > --- > up ’

Findp = max{1 < j < D: u; + %(1 — >0 u;) >0}

DefineA = (1 - 327, w)
Output: x S.t.z; = max{y; + A\,0},i=1,...,D.

The complexity of the algorithm is dominated by the cost afiag the components of
y. The algorithm is not iterative and identifies the active esactly after at mosD
steps. It can be easily implemented (see section A.4).

The algorithm has the following geometric interpretatidie solution can be written
asz; = max{y; + \,0},7 = 1,..., D, where\ is chosen such thgL” , z;, = 1. Place
the valuesgy, ..., yp as points on the X axis. Then the solution is given by a rigiét sh
of the points such that the points to the right of the Y axis sam

The pseudocode above appears in Duchi et al. (2008), altheardjer papers (Brucker,
1984; Pardalos and Kovoor, 1990) solved the problem in gregnerality.

Other algorithms  The problem (A.1) can be solved in many other ways, for exampl
by particularizing QP algorithms such as active-set methgrhdient-projection meth-
ods or interior-point methods. It can also be solved by aéteng projection onto the
two constraints in a finite number of steps (Michelot, 198&hother way (Boyd and
Vandenberghe, 2004, Exercise 4.1, solution availablgtpt//see.stanford.
edu/materials/Isocoee364b/hw4sol.pdf ) is to construct a Lagrangian for-
mulation by dualizing the equality constraint and then s@\vlD nonsmooth optimiza-
tion over the Lagrange multiplier. Algorithm 2 has the adege of being very simple,

Lhttp://www.cs.berkeley.edu/ ~ jduchi/projects/DuchiShSiCh08.html
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not iterative, and identifying exactly the active set at sbéution after at mosbD steps

(each of cos©(1)) after sorting.

A.3 A simple proof

A proof of correctness of Algorithm 2 can be found in Shaléw~8rtz and Singer (2006)
and Chen and Ye (2011), but we offer a simpler proof which wmeslonly the KKT

theorem.

We apply the standard KKT conditions for the problem (Nod¢eated Wright, 2006).
The Lagrangian of the problem is

LA B) = 5 I~y = AL - 1)~ BT

where) andB3 = [B,...,8p]" are the Lagrange multipliers for the equality and in-
equality constraints, respectively. At the optimal sauotk the following KKT condi-

tions hold:
ri—yi—A—F3; =0, 1=1,...,D (A2a)
x; >0, 1=1,...,D (A.2b)
B; >0, 1=1,...,D (AZC)
ZL‘Zﬁ, 07 1 = 1, . D (A2d)
D
d =1 (A.2e)

From the complementarity condition (A.2d), it is clear tifat; > 0, we must have
B = 0andz; = y; + X > 0; if z; = 0, we must have; > 0 andxz; = y; + A+ 8; = 0,
whencey; + A = —; < 0. Obviously, the components of the optimal solutiothat are
zeros correspond to the smaller components. &Vithout loss of generality, we assume
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the components of are sorted and uses the same ordering , i.e.,

Y= 2 Yp 2 Yp+1 = -0 2 Yb,

xlz...2$p>l'p+1:...:ng7

and thatr; > --- >z, > 0, 2,41 = --- = zp = 0. In other wordsp is the number of
positive components in the solutien Now we apply the last condition and have

D P P

1= sz = sz = Z(yi+)\)
=1 =1 =1

which gives\ = %(1 — > y;). Hencep is the key to the solution. Once we know
p (there are onlyD possible values of it), we can computeand the optimal solution
is obtained by just adding to each component gf and thresholding as in the end of
Algorithm 2. (It is easy to check that this solution indeetifees all KKT conditions.)
In the algorithm, we carry outthe testsfoe=1,..., Dif t; = y; +%(1 — {:1 y;) > 0.
We now prove that the number of times this test turns out pesis exactlyp. The
following theorem is essentially Lemma 3 of Shalev-Shwartd Singer (2006).
Theoreml. Let p be the number of positive components in the solutipthen

p=max{l <j<D:y;+ %(1 — leyi) > 0}.

Proof. Recall from the KKT conditions (A.2) thatp = 1 — >7_ y;, y; + A > 0 for
t=1,...,pandy; + A < 0fori = p+1,...,D. Inthe sequel, we show that for
j=1,...,D,the testwill continue to be positive unjil= p and then stay non-positive
afterwards, i.e.y; + (1 — >0, y;) > 0for j < p, andy; + +(1 = >27_ ;) < 0 for
7> p.

(i) Forj = p, we have

1 p
yp_'_;(l_ yi)zyp+)\=xp>0.
i=1

1
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(i) Forj < p, we have

Sincey; + A > 0fori=j,...,p, we havey; + +(1 — 327 ;) > 0.

(i) For j > p, we have

w5 (1) = (- 3u) = 5 (w2 2 w)

=1 =1 =1 i=p+1
1 J 1 J

= —.(J’yﬁm— > y) = —.(p(yﬂrA) + )y —yi))
J i=p+1 J i=p+1

Noticey; + A < 0 for j > p, andy; < y; for j > i sincey is sorted, therefore

yi+ 1= u) <0

Remarks

1. We denote\; = %(1 —37_, 4i). Atthe j-th test,)\; can be considered as a guess
of the true\ (indeed A, = \). If we use this guess to compute a tentative solution
x wherez; = max{y; + \;,0}, then itis easy to see that > 0 fori = 1,...,,
ande:1 zZ; = 1. In other words, the first components ok are positive and sum
tol. If we findz,, = 0 (or y;41 + A; < 0), then we know we have found the

optimal solution ang = p because satisfies all KKT conditions.

2. To extend the algorithm to a simplex with a different scalke., x’1 = q for
a > 0, replace thd — > u,; terms witha — > u; in Algorithm 2.



A.4 Matlab code

The following Matlab code implements algorithm 2.

function X = SimplexProj(Y)

[N,D] = size(Y);

X = sort(Y,2,'descend’);

Xtmp = (cumsum(X,2)-1) +diag(sparse(1./(1:D)));

X = max(bsxfun(@minus,Y,Xtmp(sub2ind([N,D]....
(1:N)’,sum(X>Xtmp,2)))),0);

117



Appendix B

Convergence rates of the gradient
projection algorithms

In this appendix, we provide proofs of the convergence ptagseof the gradient projec-
tion algorithm. Namely, the convergence rate is sublineamieakly convex functions
and linear for strongly convex functions. Moreover, we shbat Nesterov’s accelera-
tion scheme can be used to improve the convergence speditsigthy in both cases.

B.1 Basic algorithm

There has been great recent interest in optimizing convestifion of the composite
form f(x) = g(x) + h(x) in the field of machine learning, wheges a (usually differ-
entiable) fitting term, and is a (usually non-smooth) regularization term which gives
inductive bias towards desirable models (e.g. sparseisoligt preferred when using a
¢4 regularization). Many algorithms (Becker et al., 2011; Calet2010; Duchi et al.,
2010; Ji and Ye, 2009; Lan, 2012; Nesterov, 2007) exploitftoe that several inter-
esting, commonly used regularizérdeads to simple and efficient projection step (see
Xiao, 2010, Section 2 for a short list of such regularizeas)d thus it is wise to treat

g andh separately instead of treating their sum as a single conuastibn. Beck and
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Algorithm 3 Gradient projection algorithm.
Input: L=Lipschitz constant oV g, some constant > 0 (inverse stepsize).
1: repeat
2 Xr41 = pV(XT)’
3 T=7+1,
4: until convergence.
Output: x. is the solution.

Teboulle (2009) took this approach and incorporated Negt®®acceleration scheme,
and demonstrated the superior performance of accelerateltegt projection (FISTA)

on large scalé, problem, which makes the algorithm very popular at the time.

The original gradient projection algorithm dates back to lRdellar (1976), hence the
proof for the convergence properties is certainly not neereH simply follow the steps
of Beck and Teboulle (2009) and fill in all the missing detadgyive a complete ele-
mentary proof and to make this note self-contained. Theignagrojection algorithm

for solving problems of the fornfi(x) = g(x) + h(x) is sketched in Algorithm 3, where
the step, is defined as

2

p,(Xx) = arg min g + h(y). (B.1)

y

y — (x— - Vg(x)))

B.2 Weakly convex functions

For now, the only assumptions about the convex funci@re that it is continuously
differentiable, and its gradient g is Lipschitz continuous with constait > 0. In this
section, we call such functiongeaklyconvex functions (to be differentiated from the
stronglyconvex functions introduced later). In order to prove thevesgence properties
of the algorithm, we first need several results about geremavex functions, which
appear in many papers and textbooks (e.g. Bertsekas, 199frNe 2004). The first
one concerns a quadratic upper bound of a smooth functiomedeirom its Lipschitz
constant.

Lemma B.2.1.Letg : R” — R be a continuous differentiable function afdy is
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Lipschitz continuous with constantg). Then, for anyl. > L(g), we have
L 9 "
9(x) = 9(y) +(Vg(y).x —y) + 5 [x —y|" foreveryx,y ¢ R". (B.2)

Proof. Consider first the case in whighis a function of single variable. According
to the assumption, we haye (1) — ¢’(0)| < L(g). Moreover,

— g(0) + / §(0)dx + / (¢/(2) — ¢(0))dz
< 9(0) + ¢'(0) + / 1¢/(2) — ¢/(0) da

< 9(0) + ¢/(0) + L(g) / rdz

= 4(0) + ¢(0) + 3L(9)

Now consider the case in whighis a multi-variate function. It is obvious thatt) =
g(x + t(y — x)) is a uni-variate function, and'(t) = (Vg(x + t(y — x)),y — x).
Additionally, ¢/(t) has a Lipschitz constant @f(¢) < L(g) ||y — x||*. This is because

for anyt; andt,, we have

¢'(t1) — ¢'(t2)| = (Vg(x + ti(y — X)) — g(x + L2y — %)),y — X)|
<|lgx+ti(y —x)) —g(x+t2(y —x))| ly — x|
< L(g) ly — x|” [t1 — t2] .

Thus we can apply the previous result for uni-variate cagg#p and obtain

o(y) = 6(1) < 9(0) +6/(0) + 3L(6)

< 9(x) + (Vg(x).y — ) + £ x— vl
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This lemma also leads to the following useful inequalities.
Corollary B.2.2. Letg and L satisfy the assumptions in Lemma B.2.1. Then the follow-
ing inequalities hold for anyk,y € R™:

oy) 2 90x) + (Vo(x).y =) + 52 Vo) - Vo), B3
(Vo(x) - Voly)x = ¥) 2 T V900 - V). @4)
Proof. Consider the functiom(y) = ¢(y) — (Vg(x),y). Then¢ also has Lipschitz

continuous gradient of constahtand its optimal point is* = x. Therefore, in view of
Lemma B.2.1, we have

60) = 61y") < 0ly — 1T9(1)) < 63) + (Vo(y), ~ Vo) + £ || 1761)
1 2
= 6(y) ~ 5 V()]

And we get (B.3) sinc&/¢(y) = Vg(y) — Vg(x). We invoke (B.3) again witlk andy
interchanged, and obtain

1
9(x) > 9(y) + (Vo(y). x = ¥) + 57 [Va(x) = Vo)l
Add this inequality and (B.3) gives (B.4). n

The next lemma concerns the optimality condition at theqmtipn

2

L + h(y). (B.5)

) =argmin % |y - (x— £ Va(x)

Lemma B.2.3. For anyx € R™ and L > 0, we havez = p(x) if and only if there exist
v(x) € Oh(z), the subdifferential ok at z, such that

Vg(x) + L(z — x) + v(x) = 0. (B.6)

Proof. First, notice that the projection step solves a strictlyveanobjective function
and hence the projection is unique. Siricis not necessarily differentiable, we have to
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invoke the (necessary and sufficient) optimality condifimnnon-differentiable convex
function. That is, vectod belongs to the subdifferential at the optimum, i.e.,

0 € L(z— (x— %Vg(x))) + Oh(z),

by the calculus of subdifferential. This means there exst) € 0h(z) (the choice of
particular subgradient dependsxnsuch that,

Vg(x) + L(z — x) + v(x) = 0.

RemarkB.2.4. The projection step (B.5) can be equivalently written as
: L 2
pr(x) = argmin g(x) +(Vg(x),y —x) + 5 |y —=x|"+ry).  (B.7)

In view of Lemma B.2.1 and (B.7), we can see that the gradienégtion algorithm is
in fact a majorization-minimization algorithm, since thght hand side of (B.7) is an
upper bound off.

RemarkB.2.5 Whenh is the indicator function of some convex géti.e.,

0 : xed,
h(X)_{oo : x ¢ C|

the subdifferential ak € C'is the normal cone of’ asx (the set of vectors such that
(t,y —x) < 0forally € C). In this case, the projection step is indeed computing the
Euclidean projection of the gradient step onto the convestaint set:

R e |

st. xeC.

With the previous two lemmas, we are now ready to prove thet ingsortant result,
which says essentially that every gradient projection stggroves the original objective
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function f(x) = g(x) + h(x) usually by a non-zero amount.
Lemma B.2.6. For anyx,y € R*andL > L(g), we have

£~ Fey) 2 ¢ o) =¥+ Lloay) ~ vy ). (B8)
Proof. Denotez = p,(y). By Lemma B.2.1, we have
olz) < oly) + (Voly).z—y) + = |z vl (8.9

It is noteworthy that we have used the second order upperdoatireference poing

instead ofx, because it will greatly simply the rest derivation.

By the convexity ofh, we have
h(z) < h(x) = (¥(y), x — z),

where we have chosen the specific subgradjéni defined in Lemma B.2.3. Summing
the above two inequalities and using (B.6) gives

ﬂ@zﬂ@%+M@SgW%HVﬂwJ—y%+§W—YW+h@%—W@%X—@,
ZgW%HVme—y%+gw—yw+h@%vaw+L&—y%X—@

L
=g@%+W@@Lx—w+h@%%§w—yW+L@—ym—z)
Therefore,

Fx) — £() > 9x) ~ 9(y) ~ (Voly).x—3) — & o~ yI* + Lz~ 3,7~ x)
20 Lyl + Lz —ya-y)+ Lz —yy—x)  (810)

L
ZEW—YW+L@—%y—@,

where we have used the convexityqgin (B.10). n
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RemarkB.2.7. Settingy = x in Lemma B.2.6 gives

fx) = flpe(x) = 5 llpe(x) — |7, (B.11)

meaning that each gradient projection step decreases pbetiob function by at least

5 llpc(x) —x|”.

We are now fully equipped to prove the convergence rate afignd projection algo-
rithm.

Theorem B.2.8(Sublinear convergence rate for weakly convex functiohX ¢ be
continuously differentiable ant ¢ is Lipschitz continuous with constahtg). For any

L > L(g),letx,y1 = pr(x,), 7=0,1,..., be the sequence generated by the gradient
projection algorithm, and* be a minimum of . Then for anyl" > 1, we have

L jxo —x||*

flxr) — f(xF) < 5T (B.12)

Proof. Invoking Lemma B.2.6 withxk = x* andy = x,, we obtain

2 () = Fo6r) 2 71— 367 4+ 205641 — 3,5, — )

=[x = x"|* = flx — x|

Note thatf (x*) — f(x.4+1) < 0 by definition ofx*, so the distance between the sequence
and a minimum|x, — x*|| is also non-increasing. Summing the above inequality over
7=0,...,7 —1gives

9 T-1
T (Tf(X*) - f(x7+1)> > [|x" — x| = [Ix* — xo]* (B.13)

7=0

In view of (B.11), we have

2 2
Z(f(XT) - f(XT+1>) > HXT - XT+1H :
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Multiplying this inequality byr and summing over = 0,...,7 — 1, we obtain

T-1

S
—

2SN 6) = (74 D) + Focrsn) 2 307 [ = 7
L
=0 7=0
which simplifies to
2 T—1 T—1
- (—Tf(xT) +> f<x7+1>> > 7l — x|l (B.14)
=0 7=0
Adding (B.13) and (B.14), we have
2T * * 2 — 2 * 2 * 2
— (f(x) = flxr)) 2 [Ix7 — x| +> Tl = X [P =X = %o > — X" = xo
7=0

and hence it follows that

L jxo —x||*

Flor) = ) < SR

B.3 Strongly convex functions

The sublinear rate from previous section can be greatly ongat if f has additional
structures. In this section, we consider the case in whithu-strongly convex with
some parameter > 0, i.e.,

9(y) = 9(x) + (Vg(x).y =x) + 5 |y =], for everyx,y e R".  (B.15)

In other words, functiory is greater than its linear approximation by a quadratic func
tion. Notice this assumption is stronger than the stricdpwex condition, because it

follows trivially that if x # y, we have

9(y) > g(x) + (Vg(x),y — x), (B.16)
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which defines strictly convexity. Weakly convex functiomdae considered as having
@ = 0. For a twice continuously differentiable function, we cat g and L to be
the smallest and largest eigenvalue of the Hessian ma#igpectively. An immediate
consequence of the above assumption is fhest alsou-strongly convex, and is thus
strictly convex and has an unique global optimum.

The next lemma shows an important property of the stronghwew function. Itis a
strengthened version of Corollary B.2.2.

Lemma B.3.1. Let g be a strongly convex function of parameteand Vg is Lipschitz
continuous with constart. Then for any, y € R”, we have

L 2 1 2
(Vg(x) = Vg(y),x—y) < L Ix —yll” + L Vg(x) = Vg(y)lI”. (B.17)

Proof. Considerg(x) = g(x) — iu|x||>. Note thatVe(x) = Vg(x) — ux. This
function is convex, because for aryy € R"” we have

P(y) — d(x) — (Vo(x),y —x) = g(y) — 9(x) — (Vg(x),y —x) — g ly —x|* >0,
by (B.15). Similarly, we can see that

(L —u) lIx =y

N | —

P(y) — d(x) — (Vo(x),y —x) <

Therefore we can apply Corollary B.2.24cand obtain

(Vo(x) = Vo(y),x —y) <

I—n IVo(x) = Vo(y)ll

and this inequality can be rewritten as (B.17). n

We will show that for strongly convex functions, the gradiprojection algorithm can

achieve linear convergence rate, which is theoreticallghmoetter than the sublinear
rate since it implies the error decreases at a geometriata&teery iteration. This result
is not given in Beck and Teboulle (2009) since they are not concewitdstrongly
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convex functions. The proof given below is based on an omlate of Benjamin Recht
which, however, places stronger assumptiorydit assumes thag has second order
derivatives which is not required here).

We will need the following lemma which concerns the nonexpanproperty of the
projection step.
Lemma B.3.2. (Nonexpansiveness of projection) For axyy € R” and L > 0, we

have

Ios) = )l < |6x = V000) ~ (v - Vo). @19

Proof. We apply Lemma B.2.3 t& andy, and obtain

1

x — 7 Vg(x) = pu(x) + 71(%),
y - %VQ(Y) =pu(y) + %7(.\/)-
As a result,
1 1 2 It ?
(x= 7900) ~ v = 1) = | 000 =15 + (260 = ()
= 23 1760 = AP + 2 (430) = 23,2l — pu(3)) + e 30) — P’

(B.19)

Noticev(x) and~(y) are subgradients df atp;(x) andp, (y) respectively. By defini-
tion of subgradient, we have

Adding these two inequalities gives

(v(x) =7(¥), pr(x) = pr(y)) = 0.
'http://pages.cs.wisc.edu/ brecht/cs726docs/Praj€stdientMethods. pdf
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In view of this inequality, it follows from (B.19) that

(x= £ V00) = (v = V90| > ()~ 3]

]

Theorem B.3.3(Linear convergence rate for strongly convex functioihgt g be strongly
convex with parameter and Vg is Lipschitz continuous with constant Letx,,; =
Priu (x,),7=0,1,..., bethe sequence generated by the gradient projection itgor
andx* is the minimum of. Then for anyl’ > 1, we have

. k—1\" .
e =< (557 o=, (8.20)
L (k—1\*"
o) - 10 < 5 (7)1 ®21)

wherex = L/ p.

Proof. The proof technique here is somewhat different from TheoBe#n8, and the
main reason is that we are now using< L and thus Lemma B.2.6 does not apply.

We first assume that the projection uses an arbitrary invaegesizes > 0. We assert
thatx* = p,(x*), i.e., the global optimum of is a fixed point under the projection.
This is because the optimality &f implies that

0 =Vg(x*) +7,
wherey is some subgradient éfatx*. This equality can be written as
0=Vg(x")+v(x" —x")+ .

In view of Lemma B.2.3, we see that = p,(x*).
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We now make use of the nonexpansive property of projectiot agdbtain

e =1 = utx) = o)l < e = 29006 - = 29900 |

2 1
= %, = x| ~ (% =X, Vg(xr) = Vg(x)) + 5 [IVa(xr) — V(x|

In view of Lemma B.3.1 and the Lipschitz continuity ¥y, it follows that

e — X I+ (2 — —2) V() — V()|

* (12
R
||X +1 XH —( I/(,U—FL) oy M+L

Itis easy to see that the second term vanishes-at=t* and we are left withx,; — x*|| <
(&) lIx, — x*||. We apply this relation recursively fer = 7' — 1,...,0 and obtain
(B.20).

To prove convergence in function value, we simply note that
* L * (12
fxr) < JO) + 5 lxr = 7|

(we have used Lemma B.2.1 and the fact théat in the subdifferential of (x*)). [

RemarkB.3.4 In the case of our LaplaciaR’-modes model (Chapter 5),and L are
relatively easy to set, since they correspond to the extrgreayenvalues of the sparse
Laplacian matrix. Whet is not known, we could apply backtracking line search to find
an estimate of it and still guarantee convergence of theidhgo (see Beck and Teboulle,
2009 for the procedure), and the proof of this approach ig glightly different from the
one presented here. On the other hand, it is straight-foresad natural to have strongly
convex objective function in machine learning problemsadbging regularizations.
RemarkB.3.5 Despite its theoretically better convergence rate in TéxeoB.3.3, the
practical performance of the algorithm may not be satigfyif x = ﬁ is large and
the geometric rat :—;})2 is close tol. In some sense; measures the difficulty of
the convex problem for first order methods, and thus is sonestireferred to as the
problem’scondition number



130

Algorithm 4 Accelerated gradient projection algorithm for weakly cexy.
Input: L=Lipschitz constant oV g.
1 Sety1 = Xq, t1 = 1.

2: repeat
3: Xr = pL(Y‘r>s
144/ 1442
R A
3: Yr+1 = X7 + (i::_ll)(x‘r - X.,-,l),
6: T=7+1,

7. until convergence.
Output: x. is the solution.

B.4 Acceleration scheme

The accelerated gradient projection algorithm is basethemvbrk of Nesterov in early
1980s, and has been a hot topic recently to speedup first orddrods (Beck and
Teboulle, 2009; Hu et al., 2009; Ji and Ye, 2009; Nestero052@007; Rakhlin et al.,
2012). The idea of the algorithm is to maintain an auxiliaeguence, taking into ac-
count the information from previous steps. The updatingnidea for this sequence is
somewhat similar to that of conjugate gradient (Nocedal\night, 2006) and the mo-
mentum technique (Bishop, 1995) typically used in neuralogk training.

B.4.1 Weakly convex function

Nesterov’s original proof for the acceleration scheme &eleon the notion aéstimate
sequencéNesterov, 2004). For weakly convex functions, we follow firoof of Beck
and Teboulle (2009) instead, which is formally simpler. B ease of discussion, we
abstract the accelerated gradient projection algorith&gorithm 4.

Note the difference between Algorithm 4 and Algorithm 3. téa&l of projecting the
previous estimate,, we are now projecting ., which is a specific combination of
previous two estimates, andx._;.

Analogous to Lemma B.2.6, we first derive an estimate of psxyfer the projection
step. The difference, however, is that we now have to conside consecutive steps
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together.
Lemma B.4.1. The sequencef, }>° , and{y, }>°, generated via Algorithm 4 satisfy
for everyr > 1

2
Z(ﬁ% - ti-«—lvﬂ-l) > HuT—i—l”2 - HuT”2 ) (B.22)

wherev, = f(x,) — f(x*), u, = t;x; — (t; — 1)x,—1 — x*.

Proof. We first apply Lemma B.2.6 ak(= x,, y = y,.1) and likewise ¢ = x*,
y = ¥-+1), and get
2 2
E(UT - UT+1) Z ||XT+1 - YT+1|| + 2<X7’+1 — Y+ Y+ — X7'>7

2 *
Z(O —r1) > [Xep1 = Y lI* + 201 = Yr1, Y1 — X7,

where we have used the fact that,; = p.(y-+1). Multiplying the first inequality
above by(¢,.; — 1) and adding it to the second inequality gives

E((tTJrl — Dv; —trp1vg1) 2t | X1 — y7+1||2

+ 2<XT+1 - y7'+17t7'+1y7'+1 - (tT—i-l - 1)XT - X*>'

Multiplying the last inequality by, and using the relatiot} = ¢2,, —¢,1, we obtain

2
E(tZUT - t72-+1v‘r+1) > |[trg1 (Xrg1 — YT+1)H2

+ 2t 1 (X1 — Yot 1s e Y1 — (Er1 — 1)xp — X5).
Applying the usual Pythagoras relation
Ib—al®+2(b-aa-c)=|b—c|’~a-c|’
to the right-hand side of the last inequality with

a=1t11yr41, b=111%X41, C= (tT-i-l - 1>XT + x5,
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we thus get

2 «
Z(ﬁ“f - t3+1UT+1) > ltr X1 — (B — )X, — X H2

- HtT—HYH—l - (tﬂ—l - 1)XT - X*||2'

Therefore, withy, . ; andu, defined by
lr1Yr41 = tr1 X + (tT - 1)<XT - XT—1)7 and u, =1;X; — (t’r - 1)XT—1 - X*7

it follows that

2
F (v = 243vr11) 2 [ura|* = [fuc .

]

RemarkB.4.2 The convergence of the algorithm now depends on the asyim et
havior of the{t, }°° , sequence. Using the recursive definition of the sequenisésy
to prove by induction that, > ~.

Theorem B.4.3(Improved sublinear convergence rate for weakly convextions)
Letg be continuously differentiable ardg is Lipschitz continuous with constant Let
{x,}>°, be generated via the accelerated gradient projection &dthar. Then for any

T > 1, we have )
2L [|xo — x*||

flxr) = f(x*) < (T+1)?

(B.23)

Proof. Lemma B.4.1 shows that the sequence{$tZv, + |u-||*} is non-increasing
over iterations. Now we consider the case6f 1. Sincet; = 1, we have

o = 2 (o)~ f(x) and mlP =[x - x P (8.24)

Moreover, in view of Lemma B.2.6, we have

FO) = Foun)) 2 & pnn) =31l + Ly % pily) = y)-
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Thus,

fX) = f(x1) = F(X7) = f(pr(yr))

L *
23 IpL(y1) — yill> + L{y1 — x*, pr(y1) — y1)

L

=3 1 — yilI” + L{y1 — x*, %1 — y1)
L *112 *112

= E(Hxl —x"|I" = flyr = x*%).

Consequently, combining this inequality with (B.24) gives

2 2 2 L *(12 *(12 %2 * (12
Zt§v1+\|u1|| < =7 U =X =y =77 + [y =77 = [lx0 —x7[".

(we have used the fact that = x, in the last step). Using the non-increasing property
of the{2¢2v, + |u.||*} sequence, we have

2 2 2 x
zt?va < Zt?va + Jur|® < ztfﬂl + [w]* = [[xo — x7||*.
Therefore, we obtain the desired inequality by noting that % O

RemarkB.4.4 The above sublinear convergence rate is considaepéchal for general
non-smooth convex functions in the sense of Nemirovski amdiry (1983) (consider
the case off = 0 and we are left with the non-smooth pajt

B.4.2 Strongly convex functions

This section concerns the convergence rate of accelereaddegt projection algorithm
for strongly convex functions. The procedure is given in&lthm 5. Notice it is
different from Algorithm 4 in providing the stepsize seqoef, }>° ,, and the update

formula for the auxiliary sequendg, }>° ;.

For strongly convex functions, Lemma B.2.6 can be strengitien
Lemma B.4.5. Letg bepu-strongly convex an¥ g is Lipschitz continuous with constant
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Algorithm 5 Accelerated gradient projection algorithm for stronglyneex g.
Input: L=Lipschitz constant o¥ g, u=strongly convex parameter gf

1. Sety; = x,.

2: repeat

3: Xr =DL (y7'>!

4:  Solvea? = (1 —a;)a?_ + £a, for ..

5 Yo =%, + 2l —x, ),

6: T=17+1, h

7: until convergence.
Output: x. is the solution.

L. Then for any,y € R", we have

fx) = flpely)) =

=

=3I+ 5 Ipa(y) — yIF + Lpn(y) — .y —%). (B.29)

Proof. We simply note that we can now replagéx) — g(y) — (Vg(y),x—y) > 0
with g(x) — g(y) — (Vg(y),x —y) > & |}x — y||* in (B.10). O

Theorem B.4.6(Improved linear convergence rate for strongly convex fioms). Let
g be p-strongly convex an¥ g is Lipschitz continuous with constaht Let {x,}>° , be
the solution estimated by Algorithm 5. Then for &y 1, we have

fxr) = f(x") <L (1 = \/%)T I — o[

Proof. We construct the following sequenceafadraticfunctions:

B0(x) = Fx0) + 2 fpx ol
Gr1(x) = (1 = a7)dr (%) + a-[f(pLlyr+1)) + % Ipr(yri1) = Yol

W
+ L{pr(¥r41) — Yr+1,Yr41 — X) + 5 Ix —yral?] for 7=0,1,...,

wherea, € (0,1) for 7 = 1,2,.... We can write these functions equivalently in the
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form of ¢, (x) = & ||x — v.||* + ¢* whereg? = miny ¢.(x) as:

& >0, vo=x0, &= f(Xo), (B.26)
g‘l‘-‘rl - (1 - aT)ST + Qrlt, (827)
Vil = (1 - OéT)gTVT + @T(L(pL(yT-H) - YT-H) + MYT—H)’ (828)

§T+1
L
s = (=i b o | foulyean) + 5 Iy = vl

L N &

2§T+1 Yr+1 — P \Yr+1

or (1 —ar)ér
+ (g—l)g [g 1yri1 = Vel + Lyri1 — pr(Yri1), Vi — y7+1>] (B.29)

T+

We now prove some properties of this sequence recursively.

Property 1. ForT =0,1,..., we havef(x,) < ¢*.

The case for- = 0 is trivial. Now assumef(x,) < ¢ holds. Invoking Lemma B.4.5
with (x = x,,y = y-4+1) gives

L 2 2
f(XT) > f(x7+1)+L<y7+l — Xr+1, Xr — y7+1>+§ ||y7+1 - XT—HH +5 ”XT - y7'+1|| :

Then in view of (B.29), we have

¢:+1 Z (1 - aT)f(XT+1) + (]— - aT)L<yT+1 —Xr41, Xy — YT+1>

1—a,)L (1—a,)p
+ ( 5 ) |yri1 — XT+1H2 + I l|x, — yf+1||2
L a?L?
ra, {f(xm T B R
2 2£T+1

ar(1—a )& T
+ ool = o)t [_ [¥ri1 = Voll” + L{Yri1 = Xrs1, Ve = Yri1)
£T+1 2
L O{2L2 2
> Z_ -
= f(x‘r+1) + (2 2€T+1) HyTJrl X‘r+1H

ArGr
+ (1 - aT>L<yT+1 — X1, X =Y + 5 gl (VT - YT+1)>> (BSO)
T+
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where we have dropped squared termdxof — y,.4|| and||v, — y..1|| to obtain the
last inequality. Thus, we can choose

b1 = (1 — )& + app = La?, (B.31)

1
= B.32
Yr+1 gT + L (OéTgTvT + §T+1XT)7 ( )

to ensure the second term and the third terms vanish in (Bi3®wae are left with

*

¥11 > f(x741). We can ensure (B.31) recursively as follows: we set
So>p, and & = (1 —ag)& + app = Lag,

and updatev, such that forr = 1,2, ...,

€= (1— )& +arp=(1—a,)La?_, +ayu = Lo,

or equivalently
o =(1-a;)a? |+ %aT.

By substituting (B.32) into (B.28), we get

1 1—a,
Vil = 5 ) o (_g’r—‘rlxr + (ST + aT,u)YT-‘rl) + aT(L(XT+1 - YT—}—l) + MyT+1)
T+ T
ar — 1 oL 1 oL
- X+ —X, +(— — T
(07 §T+1 i (aT 57’4—1 )y -

1
=X; + OJ_T(XT_H - X‘r)7

where we have usefl,; = La? in the last step. By substituting this relation into
(B.32), we have

05771(1 - 057'71>
ai o +a;

Yr+1 =X + (XT—XT—l)‘

So far, we have explained the construction of the sequércE> ; and{y.}>2, (the
sequencg¢; }2, and{v,}>, have been effectively eliminated) and established the
property thatf (x,) < ¢* for7 = 1,2,.... We now show the error bound provided by
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sequence(x).

Property 2. Define{\.}22, recursively as\, = 1, and\,;; = (1 — o)\, for 7 =
0,1,.... Then we have

6r(x) < (1= \)F(X) + Ado(x),  forr=0,1,....

To see this, we just need to notice the recursive definitiop.0t) satisfies

¢T+1(X) < (1 - O‘T)¢T(X) + an<X)
< (L= a)[(1 = A) [ (%) + Aro(X)] + a7 f(x)
=1 -1 —a)A)f(x)+ (1 —ar) A oo(x).

This property is the defining property estimate sequenceClearly, we have\; =

12, ar — 0asT — oc.

Property 3. ForT =0,1,...,we havef(x,) — f(x*) < A;[po(x*) — f(x*)] — 0.

This is a straight-forward consequence of Property 1 andd?ty 2:

F(3xe) < 62 = min6,(x) < min{(1-A) f()+Ard0()] < (1= A,) F() +Ar ().

With the above properties, we are able to estimate the cgeree speed of(x.) using
the convergence speed of the, } sequence.

Property 4. Forr =0,1,...,we have\, < (1 — \/%)T,

Notice we have sef, > p. Assumet, > u, then by induction

$ry1 = LO‘E = (1 - O-/T)fT +azp > p.

Therefore we havé, > p anda, > \/%for T=0,1,....
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We can now prove the desired convergence rate. Using Lemma & & = xo,y =

x*), we have
L
fxo) < f(x7) + 5 [Ix" — xo|*

Therefore,

* * L *
< PO+ o % = ol 5 1 =

= f(x) + LIx" =0l

or equivalentlypy(x*) — f(x*) < L ||x* — xOHQ. Using Property 3 and 4, we obtain
) =) < (1= /1) e =l

RemarkB.4.7. The above convergence rate has indeed improved over Thd®/&3

]

because the geometric rate in which the error decreasesigine 1//x), bounded
further away froml.
RemarkB.4.8 For weakly convex functions, i.eu,= 0, we can derive from (B.31) that

€T+1 = (1 - 057')57' = (1 - O‘T)LOQQ-—l = LOJ?,,

or equivalently

1.1 1

a—T(a—T —1)= (047_1)2'
In other words, we recover exactly the same update formula fon Algorithm 4 by
making the identificationt, = a% In this sense, the procedure of Beck and Teboulle
(2009) (Algorithm 4) is a simplification of Nesterov’s work @stimate sequence, their
theoretical contribution is in giving an elementary probftee algorithm.
RemarkB.4.9. A remarkably simple stepsize rule for Algorithm 5 is obtalriey choos-
ing & = panday = /% Itis easy to see that this leads to constant stepsize /%

forr=0,1,....
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