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ABSTRACT OF THE DISSERTATION

Mean-shift Algorithms for
Manifold Denoising, Matrix Completion and Clustering

by

Weiran Wang

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2013

Professor MigueĺA. Carreira-Perpĩnán, Chair

Modern high dimensional data poses serious difficulties forvarious learning tasks. How-

ever, most high dimensional problems exhibit manifold structure, i.e., there exist only a

few degrees of freedom that matter for the task at hand. Exploring such intrinsic struc-

ture is the key to designing accurate and efficient learning algorithms. In this thesis, we

demonstrate the use of mean-shift, a popular mode-finding and clustering algorithm, for

learning problems involving manifold structure. In particular, we propose several new

xiii



algorithms based on the mean-shift update for the tasks of manifold denoising, matrix

completion, and centroid-based clustering.

The first algorithm, manifold blurring mean-shift (MBMS), isan algorithm of the predictor-

corrector type. It alternates a predictor, blurring mean-shift step that acts as an isotropic

low-pass filter and a corrector, projection step that removes the shrinkage of data along

the manifold, where the manifold structure is estimated by local PCA. The algorithm

achieves anisotropic denoising, can be used as a pre-processing step for dimension re-

duction and classification, and significantly improves overprevious manifold denoising

algorithms. Furthermore, we apply MBMS to matrix completion/missing value prob-

lems by iteratively denoising the whole dataset and filling in the observed entries. In

contrast to the popular low-rank approaches based on a globally linear assumption, our

algorithm preserves locally linear structure instead whenthe data is globally nonlin-

ear. This simple approach provides a fresh view of the matrixcompletion problem, and

greatly improves over several previous approaches.

We also propose two new, mode-based algorithms for clustering. The first one, which we

call the K-modes algorithm, partitions a dataset into a pre-specified number of clusters,

and provides a representative centroid of each cluster. Each centroid is the mode of the

kernel density estimate defined by each cluster and is thus located in a high-density area.

The algorithm is computationally inexpensive and more robust than K-means and mean-

shift. We then provide a continuous relaxation for the hard partition rule of K-modes and

impose a Laplacian smoothing penalty so that similar input samples receive similar as-

signments. The new algorithm, which we call the Laplacian K-modes algorithm, is able

to handle non-convex, complex-shaped clusters, has an efficient optimization procedure,

and shares nice properties with many well-known clusteringalgorithms.

The proposed mean-shift algorithms are simple and very easyto implement, yet they

have superior performance on the tasks of consideration compared to previous approaches.

We demonstrate them on various high dimensional datasets from different domains.
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Chapter 1

Introduction

1.1 Manifold learning

In the field of machine learning, one often come across datasets with manifold structure.

In this thesis, we refer to “manifold structure” the following intuitive properties of the

dataset:

• Although the dataset may live in very high dimensional inputspace, there is in-

trinsically only a few degrees of freedom that control the generation of data points

or matter for the task at hand. These degrees of freedom expand a lower dimen-

sionallatent space, whose dimensionality is called theintrinsic dimensionalityof

the dataset.

• Small changes in the latent space corresponds to small changes of data in the input

space.

• In the input space, there exists a so-calledtangent spaceat each data point, which

is a linear subspace and has the same dimensionality as the intrinsic dimensional-

ity, and a local neighborhood of the point lies approximately on this space. As a

result, each point can be approximately reconstructed linearly by its local neigh-

borhood.

1
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Figure 1.1: Sample images from the MNIST benchmark.

In real-world applications, datasets with manifold structure abound. We give two exam-

ples below.

Figure 1.1 shows sample images of the well-known MNIST dataset (LeCun et al., 1998),

which is a widely used benchmark for handwritten digit recognition. The dataset con-

tains 28x28 grayscale images of digits 0-9 from multiple users. It is obvious that

small changes in translation, rotation, scaling, and different writing styles (e.g., self-

intersection of digit 2 and short bar for digit 7) will changethe appearance of image

(pixel values) slightly, and should not change the identityof the image. On the other

hand, a good digit recognition system shall take into account this structure and be in-

variant to these variations.

Another good example of manifold structure is the sensor readings from the motion-

capture problem: there might be multiple sensors attached to the joints of the human

subject, each recording the position of a joint, but the sensor readings are highly redun-

dant as the degrees of variations in a given motion sequence is typically quite lower.

Thus the motion sequence approximately lies in a nonlinear,low dimensional latent

space. Figure 1.2 shows the motion-capture data recorded from several cycles of a run-

ning sequence (217 points, each corresponds to 34 3D markers) and its 2D latent repre-
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Figure 1.2: Motion-capture data of a running sequence and its latent representation.
Left: the latent space, data points are connected in the sequential order of their corre-
sponding observations, some of which are plotted as a stick man; the loop is travelled
clockwise. Right: 3 trajectories in latent space (containing 30 equispaced samples) and
reconstruction of the corresponding trajectory in observed space (lower plot). This fig-
ure is taken from Carreira-Perpiñán and Lu (2007).

sentation obtained by Carreira-Perpiñán and Lu (2007). The latent representation of this

sequence is a loop, which characterizes the motions sequence very well, and sampling

in the latent space produces realistic motions. The redundancy in the high dimensional

observed space also gives a good chance for reconstructing the readings even when a

large proportion of them are missing.

As we can seen, exploring the manifold structure help us better understand the genera-

tion of data, and should be incorporated for particular learning tasks at hand. Manifold

learning, also called dimension reduction, has been a very active research area (Belkin

and Niyogi, 2003; Carreira-Perpiñán and Lu, 2007, 2008; Coifman et al., 2005; Donoho

and Grimes, 2003; Hinton and Salakhutdinov, 2006; Roweis andSaul, 2000; Tenenbaum

et al., 2000), and the abovementioned properties are the most important intuitions in this

field.

From a computational point of view, learning a full-fledged parametric model for high

dimensional data often leads to severe over-fitting (curse of dimensionality), thus di-
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Figure 1.3: Paths followed by the Gaussian mean shift algorithm for various starting
points, overlaid on a contour plot of the Gaussian kernel density estimate p(x) (in the
homoscedastic, isotropic case but with non-uniformπi). The data pointsxi are marked
“+”. A mode is located at the centre of each ellipse; the ellipse indicates the eigenvectors
(rescaled to improve visibility) of the Jacobian J(x) at that mode. The thick-line polygon
is the convex hull of the data points. This figure is taken fromCarreira-Perpĩnán (2007).

mension reduction techniques are also useful for model regularization. This accounts

for the success of the currently very popular lasso (Tibshirani, 1996), group-lasso (Yuan

and Lin, 2006), low-rank (Candès and Tao, 2010) regularization techniques, which can

also be considered as dimension reduction by introducing sparsity. Dimension reduction

may also significantly reduce the training and test time of a model.
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1.2 Mean-shift algorithms

The mean-shift algorithm originates in an idea of Fukunaga and Hostetler (1975) and

has been developed by Cheng (1995), Carreira-Perpiñán (2000), Comaniciu and Meer

(2002) and others. Given theN data points{x1, . . . ,xN} ⊂ RD, consider a kernel

density estimate (kde) with kernelK(t) for t ≥ 0:

p(x) =
N
∑

i=1

πi
1

Zi

K(d(x,xi;Σi)), (1.1)

whereπi ∈ (0, 1) is the mixing proportion of pointi (satisfying
∑N

i=1 πi = 1), Σi is its

covariance matrix (positive definite),Zi is a normalization constant that only depends on

Σi (e.g.,Zi = |2πΣi|1/2 for the Gaussian Kernel), andd(x,xi;Σi) = (x−xi)
TΣ−1

i (x−
xi) is the Mahalanobis distance. Most widely used are the Gaussian kernelG(t) = e−t/2

and the Epanechnikov kernel

K(t) =

{

1− t, if t ∈ [0, 1),

0, otherwise.

We can find modes (local maxima) ofp(x) by seek stationary points∂p(x)
∂x

= 0, and

solving for x suggests a fixed point iteration scheme called mean-shift update. We

mainly focus on the simple setting where the data points haveconstant weights (πi =
1
N

)

and the kde uses Gaussian kernel with isotropic covariance (Σi = σ2I). This setting

brings into bear an elegant mean-shift update rule

p(n|x) = exp
(

−1
2
‖(x− xn)/σ‖2

)

∑N
n′=1 exp

(

−1
2
‖(x− xn′)/σ‖2

) , x← f(x) =
N
∑

n=1

p(n|x)xn, (1.2)

mapping any pointx ∈ RD to a weighted mean of points in the dataset. The difference

f(x) − x is called themean-shiftvector and hence the name of the update. Since the

weightsp(n|x) are non-negative, each update lies in the convex hull of the dataset, see

Figure 1.3 for an illustration of mean-shift path. We refer to this setting asGaussian

Mean-shift (GMS).
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The mean-shift algorithm can then be applied to clustering by running mean-shift up-

dates from each data point, declaring each mode as representative of one cluster, and

assign data point to the mode it converges to. The algorithm is nonparametric and the

clustering is deterministic given the bandwidthσ. Mean-shift has proven particularly

successful in computer vision applications such as image segmentation (Comaniciu and

Meer, 2002) and tracking (Comaniciu et al., 2003). However, it is also well-known that

mean-shift suffers greatly from high computational complexity (O(N2D) per iteration)

and slow convergence speed. The Gaussian Mean-shift (GMS) algorithm is equivalent to

the EM algorithm and has in general linear convergence rate (Carreira-Perpĩnán, 2007).

In fact, accelerating mean-shift has been a topic of active research (Carreira-Perpiñán,

2006a; Yuan et al., 2010).

The Blurring Mean-shiftalgorithm is a different version of the usual mean-shift algo-

rithm. In blurring mean-shift, each point of the dataset actually moves to the weighted

mean of the previous dataset after each iteration, and thus the whole dataset get up-

dated. Focusing on the Epanechnikov kernel for computational efficiency, Fukunaga

and Hostetler (1975) already observe the potential of blurring mean-shift for clustering

and dimensionality reduction (denoising). Cheng (1995) later proves the convergence

of blurring mean-shift, an unusual one where the whole dataset converge to a point.

Carreira-Perpĩnán (2006b) further proves the convergence rate to be cubic for Gaussian

kernel (much faster than the GMS algorithm) and suggests robust stopping criteria to

obtain a partition of dataset in theGaussian Blurring Mean-shift (GBMS)clustering

algorithm.

1.3 Contributions

In this thesis, we apply the mean-shift algorithm to a range of learning tasks involving

manifold structure. The contributions and organization ofthis thesis are summarized as

below.

• In Chapter 2, we apply the mean-shift algorithms to the problem of manifold de-
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noising. We propose a predictor-corrector type of algorithm that alternates two

steps: a first (blurring) mean-shift step that acts as a low-pass filter and shrink

the noise in all directions in input space, and a second corrector step that removes

the shrinkage of data along manifold, with manifold structure estimated by local

PCAs. As a result, the noise orthogonal to the manifold has been removed while

signal along the manifold has been kept. We name this new algorithm Manifold

Blurring Mean-shift (MBMS). This simple algorithm has close relationship to the

research of anisotropic denoising in computer graphics andimage denoising com-

munities, and significantly improves previous manifold denoising algorithms in

the field of machine learning.

• In Chapter 3, we apply the MBMS algorithm to the matrix completion/missing

value problem. One basic idea of missing value reconstruction is to assume that

the data matrix has low-rank. While there exists nice optimization problems and

certain theoretical guarantees to this approach, theglobally low-rank assumption

is somewhat restrictive. When the data is globally nonlinear, we shall instead

make use of itslocally linear property. So we take the reconstruction of a low-

rank matrix completion algorithm as starting point, consider this reconstruction

to be noisy at missing entries, and apply our manifold denoising algorithm, with

values at known entries fixed. This simple approach providesa fresh view of the

matrix completion problem, and greatly improves the starting point.

• In Chapter 4, we propose a newK-modesalgorithm for clustering. As a popular

clustering algorithm, mean-shift model the data with non-parametric kernel den-

sity estimate (kde) and iteratively moves each data points towards the modes (lo-

cal maximum of kde). But it is difficult to find a pre-specified number of clusters

because the number of modes are implicitly determined by thekernel width pa-

rameter. We combine density and hard clustering assignmentand proposed a new

objective function calledK-modes, which can partition data into a pre-specified

number of cluster, while the centroid of each cluster is the mode of kde defined

by each cluster and can be found by mean-shift updates. TheK modes returned

by the algorithm live in high density area of the data space and are prototypical
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representatives of the dataset, and thus provides better understanding of the data

and clustering result.

• In Chapter 5, we improve theK-modes algorithm for datasets with manifold struc-

ture. The aboveK-modes algorithm has the drawback that it can only find convex

clusters. We combineK-modes with the Laplacian smoothing techniques (widely

used in spectral clustering, manifold regularization, semi-supervised learning),

and provide a new model that can handle non-convex, complicated shaped clus-

ters. Part of the model requires solving a convex quadratic program with simplex

constraints. We applied to this problem the gradient projection algorithm and its

Nesterov’s acceleration techniques, which leads to a very simple procedure that

facilitates efficient projections onto the probability simplex, has nice convergence

rate, and scales very well. We name this new algorithmLaplacianK-modes. It

shares nice properties with many well-known clustering algorithms.

• In Chapter 6, we give concluding remarks and discuss future research for manifold

learning with mean-shift.

• In Appendix A and Appendix B, we give self-contained proofs for an efficient

algorithm for computing the projection onto the probability simplex and the con-

vergence rate of gradient projection algorithms, respectively.



Chapter 2

Manifold Blurring Mean-shift

algorithms for manifold denoising

In this chapter, we propose a new family of algorithms for denoising data assumed to

lie on a low-dimensional manifold. The algorithms are basedon the blurring mean-shift

update, which moves each data point towards its neighbors, but constrain the motion to

be orthogonal to the manifold. The resulting algorithms arenonparametric, simple to

implement and very effective at removing noise while preserving the curvature of the

manifold and limiting shrinkage. They deal well with extreme outliers and with varia-

tions of density along the manifold. We apply them as preprocessing for dimensionality

reduction; and for nearest-neighbor classification of MNIST digits, with consistent im-

provements up to 36% over the original data (Wang and Carreira-Perpĩnán, 2010).

2.1 Introduction

Machine learning algorithms often take as starting point a high-dimensional dataset of

N pointsX = (x1, . . . ,xN) ∈ R
D×N , and then learn a model that is useful to infer

information from this data, or from unseen data. Most algorithms, however, are more or

less sensitive to the amount of noise and outliers in the data. For example, spectral di-

9
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mensionality reduction methods such as Isomap (Tenenbaum et al., 2000) first estimate

a neighborhood graph on the datasetX and then set up an eigenvalue problem to deter-

mine low-dimensional coordinates for each data point. Both steps are sensitive to noise

and outliers, in particular building the neighborhood graph: it may be hard to find a good

value (if it exists at all) for the number of neighborsk or the ball radiusǫ that will avoid

disconnections or shortcuts. Other dimensionality reduction algorithms, such as latent

variable models (e.g. mixtures of probabilistic PCAs (Tipping and Bishop, 1999)), try

to learn a parametric model of the manifold and noise by maximum likelihood. How-

ever, these models are prone to bad local optima partly caused by noise and outliers.

Although there are different ways of reducing the effects ofnoise and outliers, such as

learning a graph in a more robust way (Carreira-Perpiñán and Zemel, 2005) or using

robust error functions, in this paper we concern ourselves with a different approach: to

denoise the datasetX as a preprocessing step.

Data preprocessing is commonplace in machine learning. Consider, for example, the

many simple but useful operations of subtracting the mean (possibly as a running aver-

age), low-pass filtering, standardizing the covariance, orremoving outliers by trimming.

Other operations are specific to certain types of data: deskewing or blurring for images,

energy removal or cepstral normalization for speech. Theseoperations help to achieve

some invariance to unwanted transformations or to reduce noise and improve robust-

ness. Here, we are interested in more sophisticated denoising techniques that adapt to

the local manifold structure of high-dimensional data. We will assume that the dataset

X comes from a manifold of dimensionL < D to which noise has been added. We

will not make any assumptions about the nature of this noise—the form of its distri-

bution (e.g. whether long-tailed), or whether it varies along the manifold. Denoising a

manifold is also useful by itself, for example 3D mesh smoothing in computer graphics

(Taubin, 1995) or skeletonization of shapes such as digits.However, we will focus on

denoising as a preprocessing step for supervised or unsupervised learning.

A good denoising algorithm should make as few assumptions about the data as possi-

ble, so nonparametric methods are preferable; and produce the same result for a given

dataset, i.e., be deterministic. At the same time, it shouldhave a small number of user
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parameters to control the algorithm’s behavior (e.g. the amount of denoising). We pro-

pose an algorithm that fulfills these desiderata. It is basedon two powerful ideas: the

noise removal ability of locally averaging with a kernel of scaleσ (implemented with

the mean-shift algorithm); and the linear approximation oflocal manifold structure of

dimensionL (implemented with local PCA on thek nearest neighbors).

2.2 Review of related work

2.2.1 Machine Learning algorithms

In the machine learning field, one natural way of smoothing isto use dimensionality

reduction techniques. Given the problem setting defined in Section 2.1, for some point

p ∈ RD, one could achieve a denoised versionq ∈ RD in at least two possible manners:

1. First projectp to the latent space using adimension reduction/projection mapping

F, and project its latent representation back to data space using a reconstruction

mappingf , i.e.,q = f(F(p)).

2. Projectp onto the manifold by minimizingminy∈Y ‖p− f(y)‖. By finding the

optimizing parametery0, q is set to bef(y0).

Some dimensionality reduction techniques provide both mappings, such as autoencoder

(DeMers, 1993; Hinton and Salakhutdinov, 2006), latent variable models (Brand, 2003;

Tipping and Bishop, 1999), and some unsupervised regressionalgorithm (Carreira-

Perpĩnán and Lu, 2008). While some other techniques provide only thereconstruction

mapping, for instance most of the unsupervised regression algorithms (Lawrence, 2004;

Smola et al., 2001). Most spectral methods (Belkin and Niyogi, 2002; Coifman et al.,

2005; Roweis and Saul, 2000; Tenenbaum et al., 2000) provide only the latent represen-

tation of input data without giving any of the mappings. However, denoising can still be

achieved in this case, as by Etyngier et al. (2007).
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In spite of the fact that dimensionality reduction techniques can be used to achieve de-

noising, we argue that these methods (often sensitive to noise and/or local optima) may

learn a better manifold if the training set is preprocessed to remove noise and outliers.

Thus the aim of this research work is to propose a nonparametric denoising method that

imposes minimal model assumptions and acts as preprocessing steps for other purposes

(dimensionality reduction, supervised learning, etc).

Unnikrishnan and Hebert (2007) propose an algorithm to denoise point set that has man-

ifold structure in 2-D or 3-D space, if the noise model of the sampling sensor is known.

The algorithm models the neighborhood of each point with multiple linear subspaces

which may intersect with each other. And as a result, the neighborhood is described as

zero level set of some polynomial, the coefficients of which must satisfy certain con-

straints for it to degenerate as product of linear equations. A constrained weighted least

squares minimization is then formed, and solved with initialization from the uncon-

strained version of the problem. The problem with this approach is that it can not deal

with very high dimensional data, since the number of coefficients in the polynomial

will be
(

n+d
n

)

wheren is the dimension of input sampled data andd is the degree of

the polynomial, and the problem then becomes intractable for largen andd. Also, the

authors note that choosing the correct support region of theloss function is crucial to

the performance of the algorithm and it is still an open problem.

Hein and Maier (2007) extend the main idea of surface smoothing in the computer

graphics literature to arbitrary dimensions. The paper establishes a diffusion process us-

ing graph Laplacian for the input point set, and solves it with the implicit Euler scheme.

It also builds a noise model for the sampled manifold data, and derives large sample

limit and mathematical analysis based on theory of graph Laplacian. Experiments show

that the denoising algorithm could act as a preprocessing step for some semi-supervised

learning problem to get better performance. The problem with this approach is that it

produces obvious shrinking phenomenon and the dataset thenbecomes disconnected

and concentrates in local clusters. This effect is inherentdue to the usage of isotropic

graph Laplacian.
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Park et al. (2004) propose an algorithm for outlier handlingand noise reduction of non-

linear manifold data, mainly by projecting each data point onto an affine subspace com-

puted from a local neighborhood by weighted PCA. A number of neighbors around each

point are chosen to fit a local linear space. The weights of theneighbors and a weighted

center of the neighborhood are computed iteratively to reduce the effect of outliers. A

Minimum Spanning Tree can be further computed within the neighborhood to identify

the outlier, according to the criteria that distance between an outlier and the nearest re-

gion of data is much larger than the average distance within that region. After projecting

data points onto each local linear space, a bias between the projection and the true non-

noisy data is estimated and corrected. This projection stepof this algorithm is similar to

one special case of the algorithm presented in Section 2.3. However, we argue that the

heuristics for choosing weights and detecting outliers arecomplicated (parameters are

hard to set in practice). In contrast, our algorithm performs well even with the existence

of heavy outliers.

Gong et al. (2010) propose an algorithm for manifold denoising based on locally linear

reconstructions. The algorithm first runs local PCA within the neighborhood of each

data point and obtains a denoised version–the PCA reconstruction–for each point in that

neighborhood. As a result, each point has multiple locally denoised versions (it lies in

the K-nearest neighborhood for multiple points). Then the algorithm optimizes over a

globally denoised version for the entire dataset by minimizing the sum of squared error

between the global version and the local versions for each point, together with a smooth

penalty term. This process may be repeated by replacing the original dataset with the

globally denoised version. The authors show with experiments that their algorithm could

achieve smaller reconstruction error for images with certain types of noise for image

manifolds such as digits and faces, and the denoised images could improve classification

rate. However, in the experiment, the algorithm needs to take as input a training set that

contains both clean (noise free) images and noisy images to achieve good performance.

The other disadvantage is that the algorithm needs to solve aN × N linear systems in

each iteration to compute the globally denoised version, the dimension of which equals

the number of points in the dataset.
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2.2.2 Computer Graphics algorithms

There is a branch of denoising algorithms from the computer graphics field, which aims

at smoothing mesh surfaces obtained by range sensing techniques. Taubin et al. (1996)

consider the 3-D surface coordinates as signals, and thus smoothing of polyhedral sur-

faces is equivalent to designing low-pass filters on them. The authors define theLapla-

cianof a discrete graph signal by the formula (umbrella operator)

L(xi) =
∑

j∈N1(i)

wij(xj − xi), (2.1)

whereN1(i) denotes the set of first order neighborhood of vertexi, i.e., the set of vertices

that share edges (or faces) with vertexi, and weightswij are positive numbers adding

up to 1 for each vertex. LetW be the matrix of weights. DefiningK = I −W, the

Laplacian operator has a simple matrix formL(x) = −Kx, andK has eigenvalues

(frequencies)0 ≤ k1 ≤ · · · ≤ kn ≤ 2. Thenf(K), an analytic function ofK, is applied

to the original signal to get a filtered version. Sincef(K) has the same eigenvectors asK

and has eigenvaluesf(k1), . . . , f(kn), it changes the frequency distribution of the signal

and could be designed to approximate an ideal low-pass filter. Repeatedly using the

linear operatorf(K) can therefore tailor the frequency content of the original mesh. The

authors also point out the transfer function of Gaussian smoothingfN(k) = (1− λk)N

with 0 < λ < 1 produces shrinkage. Hence, they suggest usingλ|µ algorithm where

fN(k) = ((1 − λk)(1 − µk))N/2 with 0 < λ < −µ to solve this problem. In this

algorithm, the pass-band frequency iskPB = 1
λ
+ 1

µ
, whereλ andµ are set by the user.

Later on, Desbrun et al. (1999) further formalize the above approach in itsdiffusion

processframework and propose a new class of denoising algorithms. Having defined

a discrete Laplacian operatorL on the mesh, attenuating noise is obtained through a

diffusion process:
∂X

∂t
= λL. (2.2)

Higher power ofL, or combination of different powers ofL could also be used in the

equation instead ofL. For example,λ|µ algorithm by Taubin et al. (1996) could be
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regarded as using(λ+ µ)L− λµL2 within this framework whereL is just the umbrella

operator in equation (2.1). By integrating the above equation, high frequency component

of the mesh are smoothed, while the shape of the mesh are mostly kept. The authors

show that Taubin et al. (1996) is actually solving the diffusion equation iteratively with

an explicit Euler scheme

Xτ+1 = (I+ λ dtL)Xτ , τ = 0, 1 . . . , (2.3)

whereX0 is the initial noisy mesh. Each integration here is linear inboth time and

memory. However, for this scheme to work,λ dt < 1 has to be met to assure numerical

stability. As a result, the explicit method of Taubin et al. (1996) needs a large number of

iterations to obtain a noticeable denoising effect and the overall cost makes it inefficient.

To address this issue, the authors propose to use the implicit Euler scheme

(I− λ dtL)Xτ+1 = Xτ , τ = 0, 1 . . . , (2.4)

where in each iteration the new mesh is obtained through solving a linear system. Since

(I−λ dtL) is sparse, efficient numerical method (preconditioned bi-conjugate gradient)

can be applied. With the implicit scheme providing unconditional stability, much fewer

iterations are needed to get a desirable smoothing effect and the overall cost is much

less than explicit method.

The authors also suggest a different way of preventing shrinkage which can be easily

implemented for triangulated meshes. This is due to the factthat the volume of the

triangulated mesh can be computed efficiently with a closed form formula. After each

integration, volume of the new mesh is computed, and then allthe vertex positions are

scaled simultaneously to achieve the volume of original mesh.

More importantly, the authors propose a noise removal procedure called curvature flow

that preserves the shape better than previous algorithms, by solving a different differen-

tial equation:
∂xi

∂t
= −κ̄ini, (2.5)

whereκ̄i andni denote the mean curvature and surface normal at pointxi respectively.
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Intuitively, by solving this equation, each vertex is only allowed to move along the

surface normal while not allowed to drift tangentially, andthe magnitude of the motion

depends on how curvy the surface is at the vertex. The authorsdevelop a closed formula-

tion for estimating mean curvature from triangulated mesh data, and solve the diffusion

equation within the implicit manner as well. Since the curvature flow here uses only the

intrinsic property of the surface, it achieves the best smoothing effect while maintaining

the overall shape.

As the use of points sets instead of meshes are becoming more popular, new algorithms

are proposed for smoothing point set representations of 3-Dobjects. A big difference

between point sets and meshes is that, connectivity information between vertices are

no long available for point sets. As a result, algorithms that deal with point sets need

to establish the neighborhood relation between vertices bythemselves, usually using

k-nearest neighbor orǫ-ball criteria or a combination of both. This problem setting is

closer to the ones we have in machine learning.

Lange and Polthier (2005) then denoise the point based surface with an anisotropic

Laplacian defined on point sets which reflects more detailed curvature properties than

the isotropic Laplacian used by previous papers. The advantage of this approach is

that it can detect and enhance sharp geometric features of the surface such as edges

and corners, while these features are not preserved in the isotropic fairing scheme. The

algorithm first approximates a tangent space for each point with the local neighborhood,

by solving a least squares minimization or equivalently an eigenvalue problem. With the

normal vector at each point, the directional curvatures of each point in the direction of its

neighbors and then a discrete version of Weingarten map at each vertex are estimated.

The eigenvalues and eigenvectors of the Weingarten shape operator correspond to the

principal curvatures and principal curvature directions at each vertex. So an typical

edge can be detected if at some vertex one principal curvature is almost zero while the

other one is larger than some threshold (provided by the user). Finally, the anisotropic

Laplacian used in the diffusion process scheme is defined at each pointxi as

∆A
|xi

= div|xi
◦ (Ai · ∇)|xi

, (2.6)
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where∇ denotes the gradient operator anddiv denotes the divergence operator.Ai

plays a crucial role in this setting because it provides the cut-off effect: a samplexj in

the neighborhood ofxi is not considered for∆A
|xi

if the curvature atxi in directionxj is

larger than some threshold. This is the key to preserving sharp features. IfA ≡ 1, then

the above definition reduces to isotropic Laplacian. It is interesting to see that, the idea

of anisotropic diffusion is readily used in image processing to improve the performance

of Gaussian filtering at the singular parts of a image and goesback to Perona and Malik

(1990). Furthermore, Clarenz et al. (2004) combine anisotropic curvature evolution on

noisy triangulated meshes and anisotropic diffusion of noisy texture on fixed surface,

and solve the coupled problem for textured surfaces, enhancing both geometric features

and texture features at the same time.

Other than the Laplacian operator, an alternative smoothing operator is suggested by

Pauly et al. (2006) for point-based surfaces based on the implicit surface definition.

Given a set of unstructured sample points(x1, . . . ,xN), a smooth surface is defined as

the zero level set of a function

I(x) = n(x) · (x− a(x)), (2.7)

wheren(x) is the surface normal at given coordinatex anda(x) is the weighted average

of sample points

a(x) =

∑N
i=1 xiφx(‖xi − x‖)
∑N

i=1 φx(‖xi − x‖)
. (2.8)

The weighting functionφx is used to restrict the influence of faraway data points and

is chosen to be the Gaussian kernel function, i.e.,φx(r) = e(−r2/h2
x
) where the kernel

width hx should be set according to local feature size. Then it is natural to estimate the

surface normal (of unit length) atx by solving the following minimization problem

min
n(x)∈RD

N
∑

i=1

(n(x) · (xi − a(x)))2φx(‖xi − x‖), (2.9)

s.t. ‖n(x)‖ = 1,

the solution of which is the eigenvector corresponding to the smallest eigenvalue of a
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weighted covariance matrix. After that, each data pointx near the surface can be used

as initial value to solve the implicit function iteratively, and a projection operator could

thus be derived and applied repeatedly until convergence. The implicit surface here is

called theweighted least squaresapproximation.

Note that, there is a similar yet different method calledmoving least squares, used by

Levin (2003) for approximation and interpolation of scattered data. This method gen-

erally provides smooth approximation of(d − 1)-dimensional manifold inRd, d ≥ 2

. A projection operator is obtained in two steps. For any point r near the surface, first

compute a local hyperplaneH : n · (x − q) = 0 whereq is a point on the hyperplane

andn is the surface normal.H is used to approximate the tangent hyperplane of the

underlying surface nearr. And it is designed to have several properties, one of which

is thatq is the projection ofr ontoH. Meanwhile, an orthonormal coordinate system

originated atq is established onH. The second step is to compute a polynomialp(y) in

Rd−1 with some total degreem, through minimizing the weighted sum of squared errors

N
∑

i=1

(p(yi)− fi)
2φx(‖xi − q‖), (2.10)

whereyi’s are the coordinates of the projections ofxi’s ontoH under the predefined

orthonormal coordinate system,andfi’s are the heights ofxi’s overH. Therefore, the

projection ofx on the smooth manifold isPm(x) = q+ p(0)n.

In conclusion, the computer graphics papers focus on smoothing closed surfaces (they

may give special treatment for non-closed surfaces or surfaces with holes, for example

by Desbrun et al. (1999)) in 3D space. Many of them approximate differential operators

on the surface and implement smoothing by solving some partial differential equation.

Their techniques may not necessarily extend to the machine learning field since datasets

in machine learning usually dwell in very high dimensional space (for example, an im-

age could have tens of thousands of pixels), and many notionsin computer graphic may

not have correspondence there (for example, volume preservation and edge). However,

the use of differential operators and diffusion process, approximation of tangent space,

and the idea of preventing tangential drift are useful and applicable to high dimensional
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data.

2.2.3 Computational Geometry algorithms

There are also research work trying to smooth point-based surface from a computational

geometry point of view. Dey (2007) describes a suit of algorithms for reconstructing

closed 1-D curve or 2-D surface from dense samples, from inadequately dense sample

and from noisy samples. And the author provides mathematical proofs and guarantees

for his method. The algorithms are mainly based on Voronoi diagrams and their dual

Delaunay triangulations. For example, in essence, the surface normal is estimated by

the direction in which a Voronoi cell elongates. However, this kind of algorithms may

not carry over well to machine learning for two reasons. First, the Voronoi diagram

and its dual work well only in low dimensions, and become computationally infeasible

for high dimensions. Second, certain sampling conditions need to be satisfied for these

computational geometry algorithms to work well. For example, the typicalǫ-uniform

sampling condition requires that, for each point on the surface, there is a sample point

within a small factorǫ of its local feature size which is defined as the distance fromthe

point to the medial axis. Under such conditions, the error between the estimate from

Voronoi diagram and the true surface normal is guaranteed tobe smaller than some

bound depending onǫ. We note that the concepts of medial axis and local feature size

are often not applicable to problem settings in machine learning.

2.3 The Manifold Blurring Mean-shift (MBMS) Algo-

rithm

Our manifold denoising algorithm is based on the following ideas:

• Local clustering with Gaussian blurring mean-shift (GBMS)(Figure 2.1): the

blurring mean-shift update (Fukunaga and Hostetler, 1975)with unit step size
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moves data points to the kernel average of their neighbors:

xn ←
∑

m∈Nn

G
(

‖(xn − xm)/σ‖2
)

∑

m′∈Nn
G
(

‖(xn − xm′)/σ‖2
)xm. (2.11)

The average is overNn = {1, . . . , N} (full graph) or thek nearest neighbors ofxn

(k-nn graph), andG(t) = e−t/2. A single mean-shift step locally climbs up the kde

defined by the data points, and after one step all points are updated so the dataset

shrinks over iterations. As discussed previously, the process eventually converges

to a state where all points coincide (Cheng, 1995) when using full graph, but it

can be reliably stopped to produce good clusterings that depend onσ (Carreira-

Perpĩnán, 2006b, 2008).

• Local tangent space estimation with PCA: local PCA gives the best linearL-

dimensional manifold in terms of reconstruction error (i.e., orthogonal projection

on the manifold):

min
µ,U

∑

m∈N ′
n

∥

∥xm − (UUT (xm − µ) + µ)
∥

∥

2
(2.12)

s.t.UTU = I with UD×L, µD×1, whose solution isµ = EN ′
n
{x} andU = the

leadingL eigenvectors ofcovN ′
n
{x}. In general,N ′

n need not equalNn.

Although GBMS by itself has strong denoising power (controlled byσ and the number

of iterations), this denoising is directed not only orthogonally to the manifold but also

tangentially. This causes motion along the manifold, whichchanges important proper-

ties of the data that are not noise (for example, for a handwritten digit, it may change its

style). It also causes strong shrinkage, first at the manifold boundaries but also within

the manifold (see the example of Figure 2.2). Thus, while very useful for clustering, its

applicability to manifold denoising is limited.

OurManifold Blurring Mean-shift (MBMS) algorithm combines these two steps. At

each iteration and for every data pointxn, apredictor averaging stepis computed using

one step of GBMS with widthσ. We can use the full graph (Nn = {1, . . . , N}), or the

k-nn graph (Nn = k nearest neighbors ofxn) which has a similar effect as using a finite
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support kernel (e.g. Epanechnikov kernel). This step is responsible for local denoising.

Then, acorrector projective stepis computed using the local PCA of dimensionality

L on thek nearest neighbors ofxn. This is responsible for local manifold structure,

and removes the tangential component of the motion. The two steps are iterated until

sufficient denoising is achieved while avoiding shrinkage and distortions of the manifold

(see later). The complete algorithm is in Figure 2.1. We willrefer to the algorithm as

MBMSf if using the full graph for the GBMS step, MBMSk if using thek-nn graph

(samek for the GBMS and PCA steps), or simply as MBMS when the differenceis not

relevant.

Besides GBMS (MBMS forL = 0), another particular case of MBMS is of special

interest, which we callLocal Tangent Projection (LTP) algorithm (Figure 2.1): it is

MBMSk with σ = ∞, or equivalently it replaces the GBMS step with the mean of

thek nearest neighbors. Thus, each point projects onto its localtangent space, and the

process is iterated. It is simpler (one parameter less) and almost as effective as MBMS.

Finally, two other particular cases are PCA, forσ = ∞ andk = N , and no denoising

(the dataset will not change), forL = D or σ = 0.

Note the following remarks. First, for givenL, all versions of MBMS move points

along the same direction (orthogonally) and only differ in the length of the motion. This

length decreases monotonically withL because it is an orthogonal projection of the full-

length motion (GBMS). The length increases withσ initially (more denoising) but may

decrease for largerσ (as farther neighbors weigh in). Second, the GBMS coefficients

in (2.11) are updated at each iteration; not doing so is faster, but gives worse results.

Third, all the algorithms admit online versions by moving points asynchronously, i.e.,

by placing the step “xn ← xn + ∂xn” inside thefor loop.
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MBMS (L, k, σ) with full or k-nn graph: givenXD×N

repeat
for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) ork nearest neighbors ofxn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

G(‖(xn−xm)/σ‖2)
∑

m′∈Nn
G(‖(xn−xm′ )/σ‖2))

xm mean-shift step

Xn ← k nearest neighbors ofxn

(µn,Un)← PCAL(Xn) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )∂xn subtract parallel motion

end
X← X+ ∂X move points

until stop
return X

LTP (L, k) with k-nn graph: givenXD×N

repeat
for n = 1, . . . , N
Xn ← k nearest neighbors ofxn

(µn,Un)← PCAL(Xn) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )(µn − xn) project point onto tangent space

end
X← X+ ∂X move points

until stop
return X

GBMS (k, σ) with full or k-nn graph: givenXD×N

repeat
for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) ork nearest neighbors ofxn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

G(‖(xn−xm)/σ‖2)
∑

m′∈Nn
G(‖(xn−xm′ )/σ‖2)

xm mean-shift step

end
X← X+ ∂X move points

until stop
return X

Figure 2.1: Manifold blurring mean-shift algorithm (MBMS) and its particular cases
Local Tangent Projection (LTP,k-nn graph,σ =∞) and Gaussian Blurring Mean-shift
(GBMS,L = 0). Nn contains allN points (full graph, MBMSf) or onlyxn’s nearest
neighbors (k-nn graph, MBMSk).
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2.3.1 Practicalities

How to set the parameters?

If MBMS is embedded into another algorithm (e.g. classification), the most effective

way to set the parameters is to cross-validate them with a test set, although this does

add significant computation if other classifier parameters need to be cross-validated too;

we do this in our MNIST experiments. Otherwise, the parameters have an intuitive

meaning, and based on our experience it seems easy to find goodregions for them:

• σ is related to the level of local noise outside the manifold. The largerσ is,

the stronger the denoising effect; but too largeσ can distort the manifold shape

over iterations because of the effect of curvature and of different branches of the

manifold. Using a smallerσ is safer but will need more iterations. Using ak-nn

graph is even safer, as the motion is limited to near thek nearest neighbors and

allows largerσ, in factσ =∞ yields the LTP method.

• k is the number of nearest neighbors that estimates the local tangent space; this

is the easiest to set and we find MBMS quite robust to it. It typically grows

sublinearly withN .

• L is the local intrinsic dimension; it could be estimated (e.g. using the correlation

dimension) but here we fix it. IfL is too small, it produces more local clustering

and can distort the manifold; still, it can achieve pretty good results for goodσ

(L = 0 is GBMS, which can achieve some reasonable denoising, after all). If L is

too large, points will move little (L = D: no motion).

• Number of iterations: in our experience, afew (1–3) iterations (with suitableσ)

achieve most of the denoising; more iterations can refine this and achieve a better

result, but eventually shrinkage arises.

We find MBMSf and MBMSk/LTP with a few iterations give the best results in low and

high dimensions, respectively, but using ak-nn graph (in particular LTP) is generally a

safer and faster option that achieves very similar results to MBMSf.
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Stopping criterion

Because the denoising effect is strong, a practical indicator of whether we have achieved

significant denoising while preventing shrinkage is the histogram over all data points of

the orthogonal varianceλ⊥ (the sum of the trailingk − L eigenvalues ofxn’s local co-

variance). Its mean decreases drastically in the first few iterations (and would converge

cubically to zero in the Gaussian case), while the mean of thehistogram of the tangential

varianceλ‖ decreases only slightly and stabilizes; see Figure 2.4. Forcurved manifolds,

λ⊥ tends to a positive value dependent on the local curvature.

Computational complexity

Per iteration, this isO(N2D+N(D+k)min(D, k)2), where the first term is for finding

nearest neighbors and for the mean-shift step, and the second for the local PCAs. If one

uses thek-nn graph and does not update the neighbors at each iteration(which affects

the result little) then the first term is negligible and the cost per iteration is linear onN ;

the one-off cost of computing the nearest neighbors is amortized if MBMS is followed

by a spectral method for dimensionality reduction.

2.4 Experimental results

We demonstrate our MBMS algorithms on synthetic and real-world datasets in this sec-

tion. We emphasize that although the algorithms proposed here can be applied to many

areas as computer graphics and robotics, our focus here is todeal with general high

dimensional manifold data of possibly unknown intrinsic dimensionality, and without

ground truth neighborhood information.



25

τ = 0 τ = 1 τ = 2 τ = 3 τ = 5 τ = 10 τ = 20 τ = 60

M
B

M
S

f
M

B
M

S
k

LT
P

G
B

M
S

f

Figure 2.2: Denoising a spiral with outliers over iterations (τ = 0 is the original
dataset). Each box is the square[−30, 30]2, where100 outliers were uniformly added
to an existing1 000-point noisy spiral. Algorithms(L, k, σ): (1, 10, 1.5) and full graph
(MBMSf), (1, 10, 1.5) andk-nn graph (MBMSk),(1, 10,∞) andk-nn graph (LTP), and
(0, ·, 1.5) and full graph (GBMSf).

2.4.1 Noisy spiral with outliers

Figure 2.2 shows four versions of MBMS with a noisy spiral dataset (N = 1000 points

with Gaussian noise) with10% outliers added uniformly. GBMS (L = 0) clusters points

locally and, while it denoises the manifold, it also visiblyshrinks it tangentially, so al-

ready from the first iterations the boundaries shrink and points form multiple clusters

along the manifold. When usingL = 1 in MBMS to account for a curve, in-manifold

movement is prevented and so these undesirable effects are reduced. The three ver-

sions withL = 1 behave very similarly for the first 5–10 iterations, achieving excel-

lent denoising while being remarkably unaffected by outliers. Visually, the full graph

(MBMSf) looks best, although it begins to be affected by shrinking much earlier than

the k-nn graph versions (MBMSk and LTP); the inside of the spiral slowly winds in,

and also the whole spiral shrinks radially. MBMSk and LTP preserve the spiral shape

and size for far longer: after 200 iterations only a small radial shrinkage occurs. The
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reason is that thek-nn graph limits the influence on the mean-shift step of farther points

(in regions with different curvature or even different branches); strong denoising (large

σ) still occurs but is locally restricted. We have observed a similar behavior with other

datasets.

After denoising for a few steps, outliers can be easily detected—the distance to their

nearest neighbors is far larger than for non-outliers—and either removed, or projected

on the tangent space of thek nearest neighbors on the manifold. The reason why they

remain almost stationary and do not affect denoising of the mainstream points is simple.

Points near the manifold (non-outliers) have no outliers asneighbors because the con-

tinuity of the manifold means all their neighbors will be near the manifold; neither the

mean-shift step nor the tangent space estimation are affected, and these points move as if

there were no outliers. Outliers have most neighbors somewhere near the manifold, and

their tangent space is estimated as nearly orthogonal to themanifold at that point; they

barely move, and remain isolated for many iterations (eventually they are denoised too,

depending on how far they are from the manifold wrtk andσ). By this same reasoning,

if MBMS is applied to disconnected manifolds, each will be denoised in isolation.

2.4.2 More complex shapes

Figure 2.3 shows a 1D manifold (two tangent ellipses) with a self-intersection, a gap,

noise that varies depending on the manifold location, and a sharp density discontinuity.

In spite of these varying conditions, MBMSf achieves very good denoising with a single

(L, k, σ) value (row 1). Using the diffusion-map affinity normalizationD−αWD−α of

Coifman et al. (2005) withα = 1 slightly improves the result (row 2), but with constant

noise it has only negligible differences with our usual case(α = 0).

2.4.3 Dimensionality reduction

Figure 2.4 shows thek-nn-graph version (MBMSk) with a noisy Swiss roll in 100 di-

mensions (97 of which are noise). Isomap (Tenenbaum et al., 2000) and particularly
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Figure 2.3: Denoising a complex shape with nonuniform density and noise with
MBMSf (L = 1, k = 35) using the usual affinity (σ = 0.2, α = 0, row 1), the
diffusion-map affinity normalization (σ = 0.2, α = 1, row 2), the local scaling ap-
proach 1 (K = 35, γ = 1.4, row 3), and local scaling approach 2 (K = 70, row 4). The
upper partial ellipse has Gaussian noise of stdev0.15 and the lower ellipse of stdev vary-
ing between0 and to0.2, with a sharp density discontinuity. The first column (τ = 0)
shows the original noisy dataset and the kernel widths (the radii of the red circles) used
by different approaches at several points (centers of the red circles) in different density
regions.
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Figure 2.4: Dimensionality reduction with Isomap and LTSA for different iterations of
MBMSk denoising (10–nearest-neighbor graph,L = 2, k = 30, σ = 5). τ = 0 is
the original Swiss roll dataset (N = 4000 points) lifted to100 dimensions with addi-
tive Gaussian noise of stdev0.6 in each dimension. Isomap/LTSA used a10-nn graph.
Isomap’s residual variances (Tenenbaum et al., 2000) (τ = 0, 1, 2, 3, 5): 0.3128, 0.0030,
0.0002, 0.0002, 0.0003. View 0 shows dimensions 1–3; view 1 shows dimensions 1, 2
(left subplot) and 2, 4 (right subplot). Right column: histograms over all data points
of the normal, tangential, and normal/tangential ratio of the variances; the curves corre-
spond to the iterationsτ = 0, 1, 3, 5, 7, 9, and the insets forλ⊥ andλ⊥/λ‖ blow up the
bins near zero (which contain all points forτ ≥ 2).

LTSA (Zhang and Zha, 2004) are sensitive to noise and to shortcuts in the neighborhood

graph, but these are eliminated by MBMS. Excellent embeddings result for a wide range

of iterations, and one can trade off a little more denoising with a little more shrinkage.

In general, and depending on the level of noise, 2–3 iterations are often enough. The

histograms show that the tangent space eigenvaluesλ‖ change little over iterations, i.e.,

there is little in-manifold motion. However, the normal space eigenvaluesλ⊥ drop dras-

tically in the first 3 iterations (the histogram is a spike at almost zero) and then stay

roughly constant (they do not become exactly zero because ofthe manifold curvature),

indicating strong denoising orthogonal to the manifold, and signaling a good stopping

point. We repeated the experiment by adding 10% outliers within a box bounding the
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Figure 2.5: Left 3 plots: 5–fold cross-validation error (%) curves with a nearest-
neighbor classifier on the entire MNIST training dataset (60k points, thus each fold
trains on48k and tests on12k) using MBMSk; we selectedL = 9, k = 140, σ = 695 as
final values.Right plot: denoising and classification of the MNIST test set (10k points),
by training on the entire training set (rightmost value) andalso on smaller subsets of
it (errorbars over 10 random subsets). Algorithms(L, k, σ), all using ak-nn graph:
MBMSk (9, 140, 695), LTP (9, 140,∞), GBMS(0, 140, 600), and PCA (L = 41).

Swiss roll with essentially identical results (points nearthe manifold are denoised, out-

liers remain stationary), demonstrating the robustness ofMBMS.

2.4.4 Classification of MNIST digits

It is reasonable to assume that much of the essential character (style, thickness, etc.) of

a handwritten digit can be explained by a small number of degrees of freedom, so that

MBMS denoising might preserve such a manifold while removingother types of noise;

and that this may improve classification accuracy. Our setupis as follows. We use a

nearest-neighbor classifier (like MBMS, a nonparametric method), which allows us to

focus on the performance of MBMS without classifier-specific effects due to local op-

tima, model selection, etc. As denoising methods we use PCA (i.e., projecting the data

onto theL principal components’ manifold) and 3 versions of MBMS usingthe k-nn

graph and a single iteration: MBMSk, LTP and GBMS. We estimate (approximately)

optimal parameters by 5–fold cross-validation by searching over a grid, denoising sep-

arately each class of the training fold (N = 48 000 grayscale images of dimension

D = 784, or 28 × 28 pixels) and measuring the classification error on the test fold

(12 000 digits). For classification, the test points are fed directly (without denoising) to

the nearest-neighbor classifier. Figure 2.5 (left 3 plots) shows the MBMSk error curves

overL, k andσ; notice how MBMSk improves the baseline error (no denoising,also
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Figure 2.6: Sample pairs of (original,denoised) images from the training set. A few
(2.62%) grayscale values outside the[0, 255] training range have been clipped for
visualization.

achieved byL = D = 784 or σ = 0) of 3.06% over a very wide range of(L, k, σ).

We chose(9, 140, 695) and trained the models on the entire training set (60k points);

Figure 2.5 (right plot) shows the test set classification error. MBMSk achieves1.97% (a

36% relative decrease over the baseline of3.09%); LTP (9, 140,∞) achieves a slightly

larger error of2.15% (30% relative decrease). GBMS and PCA also improve over the

baseline but far less (2.59%, 14% decrease). These results are consistently confirmed

over smaller training sets, even up toN = 4000 (right panel); we used the same pa-

rameters as for the entire set. The methods combining both clustering and manifold

structure at the local level (MBMSk and LTP) are the clear winners. Judging from the

trend of the curves, the relative error decrease would stillgrow with the training set size.

Other options also reduced the error, but less so (however, in all these cases we used

the same parameters as above(9, 140, 695), which are not optimal anymore). Denois-

ing each test point (with one MBMSk iteration using the entiredenoised training set):

2.23%. Denoising each test point but with the original training set: 2.42%. Denois-

ing the entire training set without class information:2.89%. The beneficial effect of

MBMSk denoising in one way or another is clear.

Figure 2.6 shows training images before and after denoising. The most obvious change

is that the digits look smoother (as if they had been anti-aliased to reduce pixelation)



31

0 0 6 2 0 2 4 4 9 6 5 6 8 3 8

3 3 8 2 1 2 4 9 4 6 0 6 8 5 8

1 5 1 3 5 3 5 5 6 7 1 7 9 4 9

7 7 1 3 1 3 5 3 5 9 9 7 9 5 9

Figure 2.7: Some misclassified images. Each triplet is (test,original-nearest-
neighbor,denoised-nearest-neighbor) and the corresponding label is above each image,
with errors underlined. After denoising there are fewer errors, some of which are ar-
guably wrong ground-truth labels.

and easier to read; comparing the original vs the denoised

, one sees this would help classification. While this smooth-

ing homogenizes the digits somewhat, it preserves distinctive style aspects of each; ex-

cessive smoothing would turn each class into a single prototype image, and result in a

Euclidean distance classifier (the method of Hein and Maier 2007 shows oversmooth-

ing). MBMSk performs a sophisticated denoising (very different from simple averaging

or filtering) by intelligently closing loops, removing or shortening spurious strokes, en-

larging holes, removing speckle noise and, in general, subtly reshaping the digits while

respecting their orientation, slant and thickness. We emphasize that we did not do any

preprocessing of the data, and in particular no image-basedpreprocessing such as tan-

gent distance, deskewing, or centering the images by bounding box (known to improve

the nearest-neighbor classifier LeCun et al., 1998). MBMS doesnot know that the data

are images, and would give the same result if the pixels were reshuffled. Figure 2.7

shows misclassified images.
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2.5 Discussion

In previous sections, we have sticked to the simple algorithm in Figure 2.1 which in-

volves three parameters (L, k, σ), each playing different role in denoising. We now

discuss some extensions which may improve the performance under certain circum-

stances.

2.5.1 Different operators

At each iteration, the GBMS predictor step builds theN × N affinity matrix W =

(exp(−‖xn − xm‖2 /2σ2))nm, and the degree matrixD = diag
(

∑N
n=1 wnm

)

, which

define a random-walk matrixP = D−1W. The GBMS update can thus be written

concisely asX = PX. Note thatP is closely related with the well-known graph

LaplacianL = D −W (or its normalized versionI − D−1/2WD−1/2), which has

been used extensively for denoising (e.g. Desbrun et al., 1999; Hein and Maier, 2007;

Taubin, 1995), spectral clustering (Shi and Malik, 2000), dimension reduction (Belkin

and Niyogi, 2003), and manifold regularization (Belkin et al., 2006). In summary, all

these algorithms make essential use of the eigenspace ofP orL.

The denoising effect of GBMS can be considered as applying a low-pass filter to the

datasetX. It is therefore straightforward to use a different operator φ(P) in place of

P, such thatφ(P) has the same eigenvectors asP, while tailoring the frequency dis-

tribution ofX in a desirable way (e.g., to approximate an ideal low-pass filter, Taubin,

1995). This approach has already been investigated by Carreira-Perpĩnán (2008) in the

context of clustering. Carreira-Perpiñán (2008) has explored different forms ofφ, in-

cluding explicit, implicit, rational and exponential functions, and noticed that while the

different forms achieve approximately the same clusteringresult, their convergence rate

and runtime differ significantly.

Under the same framework of Carreira-Perpiñán (2008), we investigate the following

different operatorsφ(P) in the predictor step of MBMS (the corrector step is carried out

as before):
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Table 2.1: Summary of operators’ properties and graph of their defining functionφ(r),
r ∈ (0, 1). This table is taken from Carreira-Perpiñán (2008).

Method φ(r) parameter rangeconvergence ordercost per iteration
explicit-η 1− η + ηr η ∈ (0, 2]\{1} 1 1

GBMS (η = 1) r η = 1 3 1
explicit-n rn n = 1, 2, 3 . . . 2n+ 1 n
implicit-η 1

1+η−ηr
η ∈ (0,∞) 1 1

3
N
D

exponential-η e−η(1−r) η ∈ (0,∞) 1 2N
D

explicit–η explicit–n implicit–η exponential–η

η=0.25

η=0.5

η=0.75

η=1

η=1.25

η=1.5

η=1.75

r0
0

1

1

n=1

n=2

n=3

n=5

n=10

r0
0

1

1

η=0.5

η=1

η=10

η=100

η=1000

r0
0

1

1

η=0.5

η=1

η=10

η=100

η=1000

r0
0

1

1

• Explicit-η: φ(P) = (1− η)I+ ηP for η ∈ (0, 2].

• Explicit-n: φ(P) = Pn for n = 1, 2, 3, . . . .

• Implicit-η: φ(P) = ((1 + η)I− ηP)−1 for η > 0.

• Exponential-η: φ(P) = e−η(I−P) for η > 0, where the matrix exponential is

defined aseA =
∑∞

i=0 A
i/i! if the series converges.

We list their corresponding convergence order and cost per iteration (proportional to that

of usual GBMS, assuming full graph is used) in Table 2.1.

We demonstrate the above four different operators on the noisy spiral dataset in Fig-

ure 2.2, and use parameters such that their clustering behavior deviate from the usual

GBMS. Namely, we use explicit-η with η=1.8 (over-relaxation), explicit-n with n = 10,

implicit-η with η = 10, exponential-η with η = 10. All operators are run with MBMS

(L = 1) and GBMSk (L = 0) with other parameters fixed at(k = 10, σ = 1.5), and the

denoising results over iterations are shown in Figure 2.8 (computingP with full graph)

and Figure 2.9 (computingP with k-nn graph). We make a few observations from the

results.

• In terms of clustering behavior, different operators leadsto similar final result.
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Figure 2.8: Denoising a spiral with outliers (same dataset as in Figure2.2) using differ-
ent operators. All operators are run with MBMSf (odd rows,L = 1) and GBMSf (even
rows,L = 0) with other parameters fixed at(k = 10, σ = 1.5).
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Figure 2.9: Denoising a spiral with outliers (same dataset as in Figure2.2) using differ-
ent operators. All operators are run with MBMSk (odd rows,L = 1) and GBMSk (even
rows,L = 0) with other parameters fixed at(k = 10, σ = 1.5).
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Comparing the strength of denoising per iteration, the ranking of operators is ex-

ponential> implicit > explicit, which can be seen from the iterations used by

GBMSf or GBMSk to converge. And this is to be expected because the expo-

nential and implicit operator actually apply higher ordersof explicit operators im-

plicitly through their Taylor expansions. But the stronger denoising effect comes

at the price of much higher computational cost. We also notice that, when using

full graph in the predictor step, the implicit and exponential operator produce too

strong denoising effect to be corrected by local PCA. Overall, MBMSk leads to

smaller shrinkage and preserves the manifold shape better than MBMSf.

• Generally speaking, with thek-nn graph restricting clustering to be local, and the

following corrector step further limiting the motion, the difference between dif-

ferent operators of MBMSk are relatively small (much smallerthan the difference

between MBMS and GBMS). The explicit operators, whose result are very sim-

ilar to that of MBMSk in Figure 2.2, preserve the shape best andproduce little

shrinkage on this dataset. The implicit operator and exponential operator have

stronger denoising power, clearly seen in early iterations(τ = 1 and2), but cause

more shrinkage in later iterations. And since they are much slower to compute,

we conclude that explicit operators are practically more preferable.

• It is interesting to note that using the explicit-n operator is equivalent as running

the GBMS predictor step with fixedP for n times. Its good performance indicates

that we can run the predictor step with fixed operator for several iterations before

switching to the corrector step. In this way we reduce the frequency of updating

pairwise affinities and computing local PCAs, both of which are costly compared

to the predictor step, especially when the predictor step uses a sparse graph.

2.5.2 Local scaling

We have so far used a commonσ value for the entire dataset in MBMS. When the

dataset has different sampling density in different regions, using an individual, localized

σ for each data point places more emphasis on the geometry of the underlying manifold.



37

The same idea is used by Zelnik-Manor and Perona (2005) in constructing the pairwise

affinities between data points for spectral clustering, whereσ is simply set at each point

to be the distance to its 7th nearest neighbor, as an easy ruleof thumb. In the following,

we investigate the local scaling issue based on the more recent work of Vladymyrov and

Carreira-Perpĩnán (2013), which extends previous work by Hinton and Roweis (2003).

In the proposed entropic affinity algorithm,σ is chosen for each point such that it has

a distribution over neighbors with a desired perplexitylogK, or effective number of

neighborsK (to be distinguished from the local neighborhood sizek in the corrector

step). Formally, we can define a discrete distributionp(x; σ) at any locationx ∈ R
D

over theN data points

pn(x; σ) =
G
(

‖(x− xn)/σ‖2
)

∑N
m=1 G

(

‖(x− xm)/σ‖2
) . (2.13)

Notice these probabilities have exactly the same form as thenormalized affinity used

in mean-shift update (1.2). The intuition behind entropic affinity is to havep(x; σ)

“provide the same surprise as if we were to choose amongK equiprobable neighbors”.

As a result, the entropy ofp(x; σ), which is a nonlinear function ofσ, should match

the entropy of theK equiprobable neighbors case, which islogK. Given the user

parameterK, it reduces to a root finding problem to computeσ, for which Vladymyrov

and Carreira-Perpiñán (2013) have developed efficient derivative-based procedure. It is

shown that the entropic affinity algorithm finds better localscales than the rule of thumb

approach, while still being computationally efficient.

In this section, we investigate two different approaches toachieve local scaling in MBMS.

• Approach 1:we first obtain an individualσi for xi, i = 1, . . . , N using the en-

tropic affinity algorithm with certainK, and then plug inΣi = (γσi)
2I as the

covariance matrix at eachxi in the kde. Therefore, there are two user parameters

in this approach:K is used to estimate the “magnitude” of the local scale, while

the extra factorγ > 0 is used to control the scale globally for smoothing.

• Approach 2:we useK as a tuning parameter instead ofσ in the predictor step,

i.e., we simply use theσi returned by entropic affinity as the kernel width atxi,



38

and varyK globally to achieve optimal denoising. Notice thatK can take any

continuous value in[1, N ] in entropic affinity, and a largerK implies a largerσ

value, which in turn implies a stronger denoising effect of mean-shift. Theσi

returned by entropic affinity using the sameK value will be different for different

point, which reflect exactly the variation in local samplingdensity.

In this section, we setK = k, the neighborhood size used in corrector step in Approach

1 for simplicity. Intuitively, the valuek reflects our belief on the local geometry of each

point to be aL dimensional subspace approximately. But we emphasize thatK andk

have different meanings and they do not need to be the same. Asa result of this setting,

we have one parameter (γ vs. K) to be tuned for each approach in the experiments

below. The corresponding mean-shift update is derived using the new kde and applied

in the MBMS predictor step.

We demonstrate them on the complex shaped dataset in Figure 2.3, which has nonuni-

form density and noise in different regions. We have shown previously that, using un-

normalized affinities, a commonσ value that is appropriate for the highly noisy region

will be too large for the less noisy region and cause significant shrinkage there. In ap-

proach 1, we use the entropic affinity algorithm to find the individual σ value that gives

k = 35 effective neighbors for each point and rescale them withγ = 1.4; in approach

2, we useK = 70 effective neighbors.γ andK are tuned in each approach to achieve

good denoising and small shrinkage. Other than that, we run MBMSf algorithm using

the same parameters as before (k = 35, L = 1), without any affinity normalization

(α = 0). The denoised dataset at different iterations are shown inFigure 2.3 (row 3 and

row 4). The two approaches produce very similar results. Clearly, the manifold shape

is well-preserved, as in MBMSf with the diffusion-map affinity normalization (α = 1),

and shrinkage is even less noticeable than before, thanks tothe individual scales that

adapt to local density.

Our results essentially show that better density estimate used in the predictor step gives

better denoising. With the above approaches, we have used localized spherical (isotropic)

covariance matrixΣi = (σi)
2I in the kde instead of the homoscedastic formulation

(1.2). Potentially, further improvement can be obtained with non-spherical or full co-
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variance matrix. Before finishing this section, we discuss the interesting connection

between MBMS and the Manifold Parzen Windows by Vincent and Bengio (2003). The

authors propose to use manifold aligned kernel for density estimation and classifica-

tion, where the important observation is that spherical Gaussian density spread equally

along all directions in the input space, and that it wastes a lot of probability mass in

irrelevant region when the true data density is close to a nonlinear lower dimensional

manifold. Their solution is to estimate for each point an individual covariance matrix

or a “pancake”-shaped Gaussian that spreads mostly along the manifold. The manifold

structure in this work is estimated by first computing a localcovariance matrix and then

extracting the leading eigenvalues/eigenvectors—exactly the same way as we do in the

corrector step. It is easy to see that the resulting density estimate will concentrate near

the manifold. A disadvantage of this approach is that it requires storing the individual

covariance matrices for all data points (or at least their leading eigenvalues/eigenvectors)

to just evaluate the density at a test point.

2.5.3 Estimation of intrinsic dimensionality

Estimation of intrinsic dimensionalityL of a data manifold is a long standing problem in

manifold learning. It also plays a central role in MBMS—it distinguishes the manifold

structure from noise in the corrector step. We have observedempirically that the value

of L can influence the performance of MBMS significantly (e.g., compare MBMS with

GBMS). UnderestimatingL leads to shrinkage of true signal, while overestimating it

results in inadequate denoising. In this section, we investigate several approaches for

estimatingL in MBMS.

Existing methods of estimating intrinsic dimensionality can be roughly categorized into

geometric methods and eigenvalue methods. The common approach taken by geomet-

ric methods is to design quantities that vary according to the intrinsic dimensionality

L rather than the input dimensionalityD. Example quantities of this kind include: the

fraction of pairs of points that are within certain distancefrom each other (correlation

dimension, Camastra and Vinciarelli, 2002; Grassberger andProcaccia, 1983), the mini-
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mum number of balls of certain radius that cover the dataset (capacity dimension, Ḱegl,

2003), Euclidean distance from a data point to itsk-th nearest neighbor (Pettis et al.,

1979), and length of the minimal spanning tree on the geodesic nearest-neighbor dis-

tance (Costa and Hero, 2004). In these methods,L is recovered by estimating the growth

of the designed quantities over their arguments from finite samples. Levina and Bickel

(2005) propose to model the number of data points within certain distance from a point

in space as a Poisson process, and develop a maximum likelihood estimator for the rate

parameter which is a function ofL.

Eigenvalue methods estimate intrinsic dimensionality of dataset by looking for clear-cut

boundary in the spectrum computed by PCA (Bruske and Sommer, 1998; Fukunaga and

Olsen, 1971). Global PCA tends to overestimateL due to the curvature of nonlinear

manifold, and is thus not suitable here. And since we are already computing local PCAs

in the MBMS corrector step, eigen-analysis on the local covariance becomes an natural

choice for us. Notice the size of the local neighborhoodk is an important parameter

here, which should be chosen such that the neighborhood of each point approximately

lie onL-dimensional subspace. Using a too smallk, the neighborhood may appearD

dimensional due to the noise; using a too largek, the neighborhood is no longer local,

and curvature may obscure the structure (Brand, 2003).

In this section, we investigate experimentally two methodsfor automatic estimation of

L. The first one is the maximum likelihood method (denoted by MLE) by Levina and

Bickel (2005), which is a geometric method and is shown to achieve good bias and

variance balance. This method has one user parameterk, the size of neighborhood

within which the Poisson process model is employed. The second method is a simple

eigenvalue method through local PCA (denoted by EIG). Suppose the local covariance

matrix computed on thek nearest neighbors of a data point has eigenvaluesλ1 ≥ · · · ≥
λD. Then our EIG estimate at this point looks for the largest eigen-gap:

L = arg max
l=1,...,D−1

λl − λl+1. (2.14)

This is essentially assuming that the smallest variance in direction parallel to the man-

ifold is much larger than the largest variance in direction orthogonal to the manifold
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Figure 2.10: Estimation of intrinsic dimensionalityL of the 100D swissroll dataset,
both in the noiseless case (left) and noisy case (right). We plot the mean of estimatedL
at all data points vs. the parameterk used by each method. The black line denotes the
ground-truth dimensionalityL = 2.

within the neighborhood.

We first demonstrate MLE and EIG on the 100D swissroll exampleused in Section 2.4.3,

whereN = 4000 andL = 2. The first3 dimensions of the dataset is sampled from a

swissroll while the rest dimensions are pure random noise. With fixed parameterk,

we can use each method to obtain an estimate ofL at each point. The mean of the

pointwise estimate on the noisy and noiseless dataset is shown in Figure 2.10 for a

range ofk values. It is clear that, both methods work well with noiseless dataset (left

plot). But with the existence of noise, MLE significantly overestimatesL for all values

of k, whereas the EIG estimate is much more accurate and stable.

We also vary the input dimensionalityD by using the firstD dimensions of the 100D

swissroll dataset, which effectively change the noise level. The estimated dimensionality

on the dataset for both methods atk = 150 are shown in Figure 2.11. We observe that

the MLE estimate deteriorates quickly as the noise level increases, while EIG always

gives an estimate close toL = 2 regardless of the input dimensionality. This is because

the gap (2.14) remains the same no matter how many dimensionsof (moderate) noise is

added.

Next, we use the intrinsic dimensionality estimated by eachmethod in our MBMS cor-

rector step, where each point is allowed to have a different estimate. We do not directly
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Figure 2.11: Estimation of intrinsic dimensionalityL on the swissroll dataset for differ-
ent input dimensionalitiesD. We show the mean and standard deviation of estimatedL
at all data points obtained by MLE and EIG usingk = 150. The black line denotes the
ground-truth dimensionalityL = 2.

use the pointwise estimate from each method. Instead, a majority vote ofL among the

thek-nearest-neighbors of each point is used as a smoother version of the estimate. We

find this helps improve the estimate in practice. This completely frees the user from

setting a globalL parameter. We also update the estimate at each iteration. With appro-

priateσ parameter, and as the noise level get reduced over iterations, it should become

easier to estimate the intrinsic dimensionality. In the ideal case where bothL and the

tangent space are correctly estimated, the largest eigenvalue gap in (2.14) will be always

found atL over iterations, since orthogonal variance decreases quickly while parallel

variance do not change much under MBMS.

Figure 2.12 and Figure 2.13 show the denoising and dimensionreduction results on the

100D swissroll dataset, where parametersσ andk are tuned for each method to achieve

good estimation ofL and embedding. Apparently, MLE leads to insufficient denoising

in the beginning and many dimensions of noise are regarded asmanifold structure mis-

takenly due to the overestimation ofL. Even though the estimation of MLE becomes

better at later iterations (τ = 3 and5), the manifold structure is not well maintained
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because not all points are denoised at the same pace and tangent space estimation be-

comes unreliable. On the other hand, EIG gives much more accurate estimation ofL in

the beginning. Then it tends to underestimateL as noise level decreases, because the

local neighborhood at certain points approximately lie on asubspace of dimensionality

lower than the trueL. MLE and particularly EIG have a noticeable effect on the man-

ifold boundary, where points accumulate and produce a 1D alignment (see Figure 2.14

for a comparison). From the Isomap embedding, it is also clear that there are local

groups of latent representations (especially around the boundary) that approximately lie

on a 1D line because the estimatedL is 1 within those groups. Overall, MLE produces

stronger distortion of the manifold, and EIG results in muchbetter denoising effect in

this example.

In this section, we have investigated different approachesof estimating the intrinsic

dimensionality of dataset with manifold structure. We find that the geometric method

MLE is more sensitive to noise, and the simple eigenvalue method EIG performs well

with MBMS for denoising. Potentially they can be applied to datasets involving multiple

manifolds where each manifold may even have a different dimensionality.

2.6 Conclusion

With adequate parameter values, the proposed MBMS algorithmis very effective at de-

noising in a handful of iterations a dataset with low-dimensional structure, even with

extreme outliers, and causing very small shrinkage or manifold distortion. It is non-

parametric and deterministic (no local optima); its only user parameters (L, k, σ) are

intuitive and good regions for them seem easy to find. We also proposed LTP (local tan-

gent projection), a particular, simple case of MBMS that has quasi-optimal performance

and only needsL andk. We showed how preprocessing with MBMS improves the qual-

ity of algorithms for manifold learning and classification that are sensitive to noise or

outliers, and expect this would apply to other settings withnoisy data of intrinsic low

dimensionality, such as density estimation, regression orsemi-supervised learning.
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Figure 2.12: Dimensionality reduction with Isomap and LTSA for different iterations
of MBMSk denoising (k = 50, σ = 3) on the 100D swissroll dataset. Intrinsic dimen-
sionality at each data point is estimated by MLE at each iteration. Isomap/LTSA used a
10-nn graph. We show the colored histogram (frequency) of estimated dimensionalities
L on the dataset over iterations in row 3 and the denoised datasets colored according to
their estimatedL in row 4.
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Figure 2.13: Dimensionality reduction with Isomap and LTSA for different iterations
of MBMSk denoising (k = 50, σ = 3) on the 100D swissroll dataset. Intrinsic dimen-
sionality at each data point is estimated by EIG at each iteration. Isomap/LTSA used a
10-nn graph. We show the colored histogram (frequency) of estimated dimensionalities
L on the dataset over iterations in row 3 and the denoised datasets colored according to
their estimatedL in row 4.
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Figure 2.14: Boundary effect of MBMSk denoising (k = 50, σ = 3) on the 100D swis-
sroll dataset, with MLE (first row) and EIG (second row) estimated intrinsic dimension-
alities. MLE and particularly EIG have a noticeable effect on the manifold boundary,
where points accumulate and produce a 1D alignment. We show view 0 (dimensions
1–3) of the dataset before and after denoising.



Chapter 3

A denoising view of matrix completion

In matrix completion, we are given a matrix where the values of only some of the en-

tries are present, and we want to reconstruct the missing ones. Much work has focused

on the assumption that the data matrix has low rank. We propose a more general as-

sumption based on denoising, so that we expect that the valueof a missing entry can be

predicted from the values of neighboring points. We proposea nonparametric version

of denoising using the MBMS algorithm developed in Chapter 2, which is based on lo-

cal, iterated averaging with mean-shift, possibly constrained to preserve local low-rank

manifold structure. The few user parameters required (the denoising scale, number of

neighbors and local dimensionality) and the number of iterations can be estimated by

cross-validating the reconstruction error. Using our algorithms as a postprocessing step

on an initial reconstruction (provided by e.g. a low-rank method), we show consistent

improvements with synthetic, image and motion-capture data (Wang et al., 2011).

3.1 Introduction

Completing a matrix from a few given entries is a fundamental problem with many ap-

plications in machine learning, computer vision, network engineering, and data mining.

Much interest in matrix completion has been caused by recenttheoretical breakthroughs

47
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in compressed sensing (Candès and Recht, 2009; Candès and Tao, 2010) as well as by

the now celebrated Netflix challenge on practical prediction problems (Bell and Koren,

2007; Koren, 2008). Since completion of arbitrary matricesis not a well-posed prob-

lem, it is often assumed that the underlying matrix comes from a restricted class. Matrix

completion models almost always assume a low-rank structure of the matrix, which is

partially justified through factor models (Bell and Koren, 2007) and fast convex relax-

ation (Cand̀es and Tao, 2010), and often works quite well when the observations are

sparse and/or noisy. The low-rank structure of the matrix essentially asserts that all

the column vectors (or the row vectors) live on a low-dimensional subspace. This as-

sumption is arguably too restrictive for problems with richer structure, e.g. when each

column of the matrix represents a snapshot of a seriously corrupted motion capture se-

quence (see section 3.4), for which a more flexible model, namely a curved manifold, is

more appropriate.

In this chapter, we present a novel view of matrix completionbased on manifold de-

noising, which conceptually generalizes the low-rank assumption to curved manifolds.

Traditional manifold denoising is performed on fully observed data (Hein and Maier,

2007), aiming to send the data corrupted by noise back to the correct surface (defined

in some way). However, with a large proportion of missing entries, we may not have

a good estimate of the manifold. Instead, we start with a poorestimate and improve it

iteratively. Therefore the “noise” may be due not just to intrinsic noise, but mostly to

inaccurately estimated missing entries. We show that our algorithm can be motivated

from an objective purely based on denoising, and prove its convergence under some

conditions. We then consider a more general case with a nonlinear low-dimensional

manifold and use a stopping criterion that works successfully in practice. Our model

reduces to a low-rank model when we require the manifold to beflat, showing a relation

with a recent thread of matrix completion models (Jain et al., 2010). In our experiments,

we show that our denoising-based matrix completion model can make better use of the

latent manifold structure on both artificial and real-worlddatasets, and yields superior

recovery of the missing entries.
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Notation In this chapter, we use the subindex notationXM andXP to indicate selec-

tion of the missing or present values of the matrixXD×N , whereP ⊂ U ,M = U \ P
andU = {(d, n): d = 1, . . . , D, n = 1, . . . , N}. The indicesP and valuesXP of the

present matrix entries are the data of the problem.

3.2 A brief review of related work

Matrix completion is widely studied in theoretical compressed sensing community (Candès

and Recht, 2009; Candès and Tao, 2010). The minimum rank matrix completion prob-

lem is formulated as

min
X

rank (X)∗ s.t. XP = XP , (3.1)

which is know to be NP-hard and difficult to solve in both theory and practice (Chistov

and Grigoriev, 1984; Meka et al., 2008). Candès and Recht (2009) propose to solve the

matrix completion problem using the following convex objective function

min
X
‖X‖∗ s.t. XP = XP , (3.2)

where‖X‖∗ (callednuclear norm) is the sum of singular values ofX, and used as con-

vex surrogate for minimizing the rank ofX. The authors show that for matrices that

satisfy certain conditions and have small number of presententries sampled randomly,

the unique solution of problem (3.2) actually recovers the entire matrix exactly (in which

cases, (3.1) and (3.2) becomesequivalent) with high probability. Notice that (3.2) can

be transformed into a semidefinite program and solved with interior point method (Liu

and Vandenberghe, 2009). In order to solve large instances of matrix completion, Cai

et al. (2010) propose a dual subgradient ascent algorithm called singular value thresh-

olding for (3.2), which iteratively shrinks the singular values ofcertain estimate towards

zero, similar to the shrinkage operations used forℓ1 penalty optimization in compressed

sensing (Beck and Teboulle, 2009).
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Keshavan et al. (2010) propose to optimize the following objective function for comple-

tion of a rank-r matrix with decompositionX = USVT

min
U∈RD×r,V∈RN×r

F (U,V) ≡ min
S∈Rr×r

1

2

∑

(i,j)∈P

(Xij − (USVT )ij)
2 (3.3)

UTU = DI, VTV = NI, (3.4)

where the rankr and initial(U,V) are obtained through the SVD of thetrimmedversion

of XP (by setting to zero over-represented rows and columns). Thekey observation

here is that functionF (U,V) depends on the (scaled) orthonormal matrices(U,V)

only through their column spaces, and rotations in the column spaces do not change

its value. Thus the objective function can be considered as optimizing F (U,V) over

the Cartesian product of two Grassmannian manifolds, and theauthors apply gradient

descent technique on this Riemannian manifold.

Jain et al. (2010) approach the matrix completion problem bysolving the problem

min
X

1

2

∥

∥XP −XP

∥

∥

2

Fro
s.t. rank (X) ≤ r, (3.5)

and design a efficient gradient projection algorithm for it where each iteration involve

projecting certain estimate to the (non-convex) set of rankr matrix using singular value

decomposition. In a related problem setting, Ji and Ye (2009) propose to use the gradient

projection algorithm and Nesterov’s accelerated scheme for unconstrained, trace-norm

regularized learning tasks.

Matrix completion is also well studied in practical recommender systems, where it is

commonly believed that there are only latent few factors that contribute to the user

ratings (Koren, 2008). Assuming a low-rank factorization modelX = LRT with R
D×r

andR ∈ R
N×r (r < min(D,N)), a straightforward objective function would be

min
L,R

∑

(i,j)∈P

(Xij − LiR
T
j )

2 + λ(‖L‖2Fro + ‖R‖
2
Fro), (3.6)

whereLi denotes thei-th row of L (andRj likewise), which can be solved withal-
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ternating least squaresalgorithm. Optimization of this objective function can also be

done without alternation and higher order method, e.g. the damped Newton algorithm

(Buchanan and Fitzgibbon, 2005). Different matrix norms anderror measure (e.g. hinge

loss for discrete observations) have also been used by Srebro et al. (2005). A probabilis-

tic extension of this matrix factorization approach has been proposed by Salakhutdinov

and Mnih (2008a) and later a Bayesian approach by Salakhutdinov and Mnih (2008b).

An online version of this matrix factorization model is developed to handle one column

of X at a time by Balzano et al. (2010) for matrix completion and more general subspace

tracking, where stochastic gradient descent technique on the Grassmannian manifold is

used for optimization.

As we can see, most matrix completion models rely on a low-rank assumption, and

cannot fully exploit a more complex structure of the problem, such as curved manifolds.

Related work is on multi-task learning in a broad sense, whichextracts the common

structure shared by multiple related objects and achieves simultaneous learning on them.

This includes applications such as alignment of noise-corrupted images (Peng et al.,

2010), recovery of images with occlusion (Buchanan and Fitzgibbon, 2005), and even

learning of multiple related regressors or classifiers (Argyriou et al., 2007). Again, all

these works are essentially based on a subspace assumption,and do not generalize to

more complex situations.

A line of work based on a nonlinear low-rank assumption (witha latent variablez of

dimensionalityL < D) involves setting up a least-squares error function

min
f ,Z

N
∑

n=1

‖xn − f(zn)‖2 =
∑

(d,n)∈P

(Xdn − fd(zn))
2, (3.7)

where one ignores the terms for whichxdn is missing, and estimates the functionf and

the low-dimensional data projectionsZ by alternating optimization. Linear functionsf

have been used in the homogeneity analysis literature (Gifi,1990), where this approach

is called “missing data deleted” and is equivalent to (3.6).Nonlinear functionsf have

been used recently (neural nets (Scholz et al., 2005); Gaussian processes for collab-

orative filtering (Lawrence and Urtasun, 2009)). Better results are obtained if adding
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a projection term
∑N

n=1 ‖zn − F(xn)‖2 and optimizing over the missing data as well

(Carreira-Perpĩnán and Lu, 2011).

There is also rich literature on the problem of missing values/incomplete data in the

research field of statistics. One principled way of modelingincomplete data is based

on mixture modeling where the missing values can be considered as “hidden” variables,

similar to those indicator variables that already exist in mixture models. By marginaliz-

ing out all hidden variables and maximizing the likelihood of observed data, parameters

of the mixture models can be learnt by theExpectation Maximizationalgorithm (Demp-

ster et al., 1977; Ghahramani and Jordan, 1994). For a detailed discussion of this ap-

proach and its relationship with various other statisticalapproaches, we refer the readers

to Ghahramani and Jordan (1994).

Prior to our denoising-based work there have been efforts toextend the low-rank mod-

els to smooth manifolds, mostly in the context of compressedsensing. Baraniuk and

Wakin (2009) show that certain random measurements, e.g. random projection to a

low-dimensional subspace, can preserve the metric of the manifold fairly well, if the

intrinsic dimension and the curvature of the manifold are both small enough. However,

these observations are not suitable for matrix completion and no algorithm is given for

recovering the signal. Chen et al. (2010) explicitly model a manifold with a nonparamet-

ric mixture of factor analyzers where each mixing componenthas low-rank covariance

structure (this model is analogous to the multiple subspaces model discussed below).

The authors also propose an algorithm for recovering the signal from random linear

measurements. Notice they estimate the manifold given complete data, while no com-

plete data is assumed in our matrix completion setting.

Another relevant research area is subspace clustering (Vidal, 2011), where the dataset is

assumed to lie on the union of multiple affine subspaces whichmay intersect with each

other. This assumption generalizes the single subspace/low-rank assumption and has

important applications in computer vision (e.g., motion segmentation, face clustering)

and other areas. Under this assumption, Elhamifar and Vidal(2009) propose to model

each data point as a sparse linear combination of the rest dataset, and show that by

solving a sparse regression problem one can find neighborhood for each point from
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the same subspace it is sampled from. The authors use the detected neighborhood of

each point to build a graph on the dataset and use it as the input to spectral clustering

algorithms to separate and recover the underlying subspaces. This approach is shown

to be robust to noise and outliers (Soltanolkotabi et al., 2013) and is also extended to

clustering of nonlinear manifolds (Elhamifar and Vidal, 2011).

3.3 Blurring mean-shift denoising algorithms for ma-

trix completion

3.3.1 GBMS/MBMS revisited

In this section, we derive a objective function for the Gaussian blurring mean-shift

(GBMS) algorithm, which will be used later for matrix completion. In GBMS, de-

noising is performed in a nonparametric way by local averaging: each data point moves

to the average of its neighbors (to a certain scale), and the process is repeated. Consider

a datasetX = {x1, . . . ,xN} ⊂ R
D and define a Gaussian kernel density estimate (up to

some normalization constant)

p(x) =
1

N

N
∑

n=1

G

(∥

∥

∥

∥

x− xn

σ

∥

∥

∥

∥

2)

(3.8)

with bandwidthσ > 0 and kernelG(t) = e−t/2 (other kernels may be used, such as the

Epanechnikov kernel, which results in sparse affinities). The (non-blurring)mean-shift

algorithmrearranges the stationary point equation∇p(x) = 0 into the iterative scheme

x(τ+1) = f(x(τ)) with

p(n|x(τ)) =
G
(∥

∥(x(τ) − xn)/σ
∥

∥

2)

∑N
n′=1 G

(

‖(x(τ) − xn′)/σ‖2
) , (3.9a)

x(τ+1) = f(x(τ)) =
N
∑

n=1

p(n|x(τ))xn. (3.9b)
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This converges to a mode ofp from almost every initialx ∈ R
D, and can be seen as

taking self-adapting step sizes along the gradient(since the mean shift vectorf(x)− x

is parallel to∇p(x)).

Theblurring mean-shift algorithmapplies one step of the previous scheme, initialized

from every point, in parallel for all points. That is, given the datasetX = {x1, . . . ,xN},
for eachxn ∈ X we obtain a new point̃xn = f(xn) by applying one step of the mean-

shift algorithm, and then we replaceX with the new dataset̃X, which is a blurred

(shrunk) version ofX. By iterating this process we obtain a sequence of datasets

X(0),X(1), . . . (and a corresponding sequence of kernel density estimatesp(0)(x), p(1)(x),

. . . ) whereX(0) is the original dataset andX(τ) is obtained by blurringX(τ−1) with one

mean-shift step. We can see this process as maximizing the following objective function

(Cheng, 1995) by taking parallel steps of the form (3.9) for each point:

E(X) =
N
∑

n=1

p(xn) =
1

N

N
∑

n,m=1

G
(

‖(xn − xm)/σ‖2
)

∝
N
∑

n,m=1

e−
1

2‖xn−xm
σ ‖2 . (3.10)

This process eventually converges to a datasetX(∞) where all points are coincident: a

completely denoised dataset where all structure has been erased. As shown by Carreira-

Perpĩnán (2006b), this process can be stopped early to return clusters (= locally denoised

subsets of points); the number of clusters obtained is controlled by the bandwidthσ.

However, here we are interested in the denoising behavior ofGBMS.

The GBMS step can be formulated in a matrix form reminiscent ofspectral clustering

(Carreira-Perpĩnán, 2006b) as̃X = XP whereX = (x1, . . . ,xN) is aD×N matrix of

data points;W is theN×N matrix of Gaussian affinitieswnm = G
(

‖(xn − xm)/σ‖2
)

;

D = diag (
∑N

n=1 wnm) is the degree matrix; andP = WD−1 is anN × N stochastic

matrix: pnm = p(n|xm) ∈ (0, 1) and
∑N

n=1 pnm = 1. P (or rather its transpose) is the

stochastic matrix of the random walk in a graph (Chung, 1997),which in GBMS repre-

sents the posterior probabilities of each point under the kernel density estimate (1.1).P

is similar to the matrixN = D− 1

2WD− 1

2 derived from the normalized graph Laplacian

commonly used in spectral clustering, e.g. in the normalized cut (Shi and Malik, 2000).

Since, by the Perron-Frobenius theorem (Horn and Johnson, 1986, Chapter 8), all left
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eigenvalues ofP(X) have magnitude less than 1 except for one that equals 1 and is

associated with an eigenvector of constant entries, iterating X̃ = XP(X) converges to

the stationary distribution of eachP(X), where all points coincide.

From this point of view, the product̃X = XP(X) can be seen as filtering the datasetX

with a data-dependent low-pass filterP(X), which makes clear the denoising behavior.

This also suggests using other filters (Carreira-Perpiñán, 2008)X̃ = Xφ(P(X)) as long

asφ(1) = 1 and|φ(r)| < 1 for r ∈ [0, 1), such as explicit schemesφ(P) = (1−η)I+ηP

for η ∈ (0, 2], power schemesφ(P) = Pn for n = 1, 2, 3 . . . or implicit schemes

φ(P) = ((1 + η)I− ηP)−1 for η > 0.

One important problem with GBMS is that it denoises equally inall directions. When

the data lies on a low-dimensional manifold, denoising orthogonally to it removes out-

of-manifold noise, but denoising tangentially to it perturbs intrinsic degrees of freedom

of the data and causes shrinkage of the entire manifold (moststrongly near its bound-

ary). To prevent this, themanifold blurring mean-shift algorithm (MBMS)(Chapter 2)

first computes a predictor averaging step with GBMS, and then for each pointxn a cor-

rector projective step removes the step direction that liesin the local tangent space ofxn

(obtained from local PCA run on itsk nearest neighbors). In practice, both GBMS and

MBMS must be stopped early to prevent excessive denoising andmanifold distortions.

3.3.2 GBMS/MBMS for matrix completion

We consider the natural extension of GBMS to the matrix completion case by adding

the constraints given by the present values. Then we have thefollowing constrained

optimization problem:

max
X

E(X) =
N
∑

n,m=1

G
(

‖(xn − xm)/σ‖2
)

s.t. XP = XP . (3.11)

This is similar to low-rank formulation (3.6) for matrix completion that have the same

constraints but use as objective function the reconstruction error with a low-rank as-

sumption.
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We initializeXM to the output of some other method for matrix completion, such as

singular value projection (SVP; Jain et al., 2010). For simple constraints such as ours,

gradient projection algorithms are attractive. The gradient of E wrt X is a matrix of

D ×N whosenth column is:

∇xn
E(X) =

2

σ2

N
∑

m=1

e−
1

2‖xn−xm
σ ‖2(xm − xn)

∝ 2

σ2
p(xn)

(

−xn +
N
∑

m=1

p(m|xn)xm

)

(3.12)

and its projection on the constraint space is given by zeroing its entries having indices

in P; callΠP this projection operator. Then, we have the following step of lengthα ≥ 0

along the projected gradient:

X(τ+1) = X(τ) + αΠP(∇XE(X(τ)))

⇐⇒ X
(τ+1)
M = X

(τ)
M + α

(

ΠP(∇XE(X(τ)))
)

M
(3.13)

which updates only the missing entriesXM. Since our search direction is ascent and

makes an angle with the gradient that is bounded away fromπ/2, andE is upper

bounded, continuously differentiable and has bounded Hessian (thus a Lipschitz con-

tinuous gradient) inRNL, by carrying out a line search that satisfies the Wolfe condi-

tions, we are guaranteed convergence to a local stationary point, typically a maximizer

(Nocedal and Wright, 2006, Theorem 3.2). However, as reasoned later, we do not per-

form a line search at all, instead we fix the step size to the GBMSself-adapting step

size, which results in a simple and faster algorithm consisting of carrying out a GBMS

step onX (i.e., X(τ+1) = X(τ)P(X(τ))) and then refillingXP to the present values.

While we describe the algorithm in this way for ease of explanation, in practice we do

not actually compute the GBMS step for allxdn values, but only for the missing ones,

which is all we need. Thus, our algorithm carries out GBMS denoising stepswithin the

missing-data subspace. We can derive this result in a different way by starting from

the unconstrained optimization problemmaxXP
E(X) =

∑N
n,m=1 G

(

‖(xn − xm)/σ‖2
)

(equivalent to (3.11)), computing its gradient wrtXP , equating it to zero and rearranging
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(in the same way the mean-shift algorithm is derived) to obtain a fixed-point iteration

identical to our update above.

Figure 3.1 shows the pseudocode for our denoising-based matrix completion algorithms

(using three nonparametric denoising algorithms: GBMS, MBMSand LTP).

Convergence and stopping criterion As noted above, we have guaranteed conver-

gence by simply satisfying standard line search conditions, but a line search is costly.

At present we do not have a proof that the GBMS step size satisfies such conditions,

or indeed that the new iterateX(τ+1)
M increases or leaves unchanged the objective, al-

though we have never encountered a counterexample. In fact,it turns out that none of

the work about GBMS that we know about proves that either: Cheng(1995) proves that

∅(X(τ+1)) ≤ ∅(X(τ)) for 0 < ρ < 1, where∅(·) is the set diameter, while Carreira-

Perpĩnán (2006b, 2008) notes thatP(X) has a single eigenvalue of value 1 and all others

of magnitued less than 1. While this shows that all points converge to the same location,

which indeed is the global maximum of (3.10), it does not necessarily follow that each

step decreasesE.

However, the question of convergence asτ →∞ has no practical interest in a denoising

setting, because achieving a total denoising almost never yields a good matrix comple-

tion. What we want is to achievejust enoughdenoising and stop the algorithm, as was

the case with GBMS clustering, and as is the case in algorithmsfor image denoising.

We propose to determine the optimal number of iterations, aswell as the bandwidthσ

and any other parameters, by cross-validation. Specifically, we select a held-out set by

picking a random subset of the present entries and considering them as missing; this

allows us to evaluate an error between our completion for them and the ground truth.

We stop iterating when this error increases.

This argument justifies an algorithmic, as opposed to an optimization, view of denoising-

based matrix completion:apply a denoising step, refill the present values, iterate until

the validation error increases. This allows very general definitions of denoising, and

indeed a low-rank projection is a form of denoising where points are not allowed outside
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GBMS (k, σ) with full or k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors ofxn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

G(‖(xn−xm)/σ‖2)
∑

m′∈Nn
G(‖(xn−xm′ )/σ‖2)

xm mean-shift step

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

MBMS (L, k, σ) with full or k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors ofxn (k-nn graph)

∂xn ← −xn +
∑

m∈Nn

G(‖(xn−xm)/σ‖2)
∑

m′∈Nn
G(‖(xn−xm′ )/σ‖2)

xm mean-shift step

Xn ← k nearest neighbors ofxn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )∂xn subtract parallel motion

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

LTP (L, k) with k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Xn ← k nearest neighbors ofxn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )(µn − xn) project point onto tangent space

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

Figure 3.1: Our denoising matrix completion algorithms, based on Manifold Blurring
Mean Shift (MBMS) and its particular cases Local Tangent Projection (LTP,k-nn graph,
σ =∞) and Gaussian Blurring Mean Shift (GBMS,L = 0); see Section 2.3 for details.
Nn contains allN points (full graph) or onlyxn’s nearest neighbors (k-nn graph). The
indexM selects the components of its input corresponding to missing values. Parame-
ters: denoising scaleσ, number of neighborsk, local dimensionalityL.
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the linear manifold. Our formulation using the objective function (3.11) is still useful

in that it connects our denoising assumption with the more usual low-rank assumption

that has been used in much matrix completion work, and justifies the refilling step as

resulting from the present-data constraints under a gradient-projection optimization.

MBMS denoising for matrix completion Following our algorithmic-based approach

to denoising, we could consider generalized GBMS steps of theform X̃ = Xφ(P(X)).

For clustering, Carreira-Perpiñán Carreira-Perpiñán (2008) found an overrelaxed ex-

plicit stepφ(P) = (1− η)I+ ηP with η ≈ 1.25 to achieve similar clusterings but faster.

Here, we focus instead on the MBMS variant of GBMS that allows only for orthogonal,

not tangential, point motions (defined wrt their local tangent space as estimated by local

PCA), with the goal of preserving low-dimensional manifold structure. MBMS has 3

user parameters: the bandwidthσ (for denoising), and the latent dimensionalityL and

the number of neighborsk (for the local tangent space and the neighborhood graph). A

special case of MBMS calledlocal tangent projection (LTP)results by using a neighbor-

hood graph and settingσ =∞ (so only two user parameters are needed:L andk). LTP

can be seen as doing a low-rank matrix completion locally. LTP was found in Chapter 2

to have nearly as good performance as the bestσ in several problems. MBMS also in-

cludes as particular cases GBMS (L = 0), PCA (k = N , σ = ∞), and no denoising

(σ = 0 orL = D).

Note that if we apply MBMS to a dataset that lies on a linear manifold of dimensionality

d usingL ≥ d then no denoising occurs whatsoever because the GBMS updateslie on

the d-dimensional manifold and are removed by the corrector step. In practice, even

if the data are assumed noiseless, the reconstruction from alow-rank method will lie

close to but not exactly on thed-dimensional manifold. However, this suggests using

largish ranks for the low-rank method used to reconstructX and lowerL values in the

subsequent MBMS run.

In summary, this yields a matrix completion algorithm wherewe apply an MBMS step,

refill the present values, and iterate until the validation error increases. Again, in an

actual implementation we compute the MBMS step only for the missing entries ofX.
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The shrinking problem of GBMS is less pronounced in our matrixcompletion setting,

because we constrain some values not to change. Still, in agreement with Chapter 2, we

find MBMS to be generally superior to GBMS.

A special case of our algorithm is directly related to low-rank matrix completion al-

gorithms. If we takek = N neighbors andσ = ∞ then MBMS becomes PCA inL

dimensions, and our algorithm iterates between projectingX onto the PCA subspace it

defines (equivalent to the SVD ofX if it has zero mean) and resetting the present en-

tries. This is a method of alternating projections (Lewis and Malick, 2008), similar to

previous SVD-based work such as SVP (Jain et al., 2010), and to the linear version of

the method of (Carreira-Perpiñán and Lu, 2011). Finally, our expectation that the value

of a missing entry can be predicted from the values of neighboring points is similar to

one category of collaborative filtering methods that essentially use similar users/items

to predict missing values (Bell and Koren, 2007).

Computational cost With a full graph, the cost per iteration of GBMS and MBMS

isO(N2D) andO(N2D +N(D + k)min(D, k)2), respectively. In practice with high-

dimensional data, best denoising results are obtained using a neighborhood graph (see

Section 2.3), so that the sums over points in eqs. (3.10) or (3.11) extend only to the

neighbors. With ak-nearest-neighbor graph and if we do not update the neighbors at

each iteration (which affects the result little), the respective cost per iteration isO(NkD)

andO(NkD+N(D+k)min(D, k)2), thus linear inN . The graph is constructed on the

initial X we use, consisting of the present values and an imputation for the missing ones

achieved with a standard matrix completion method, and has aone-off cost ofO(N2D).

The cost when we have a fractionµ = |M|
ND
∈ [0, 1] of missing data is simply the above

timesµ. Hence the run time of our mean-shift-based matrix completion algorithms is

faster the more present data we have, and thus faster than theusual GBMS or MBMS

case, where all data are effectively missing.
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Table 3.1: Swissroll dataset: reconstruction errors obtained by different algorithms
along with their optimal parameters (σ, k, L, no. iterationsτ ). The three columns show
the root sum of squared errors on missing entries, the mean, and the standard deviation
of the pointwise reconstruction error, resp.

Methods RSSE mean stdev
Gaussian 168.1 2.63 1.59
+ GBMS (∞, 10, 0, 1) 165.8 2.57 1.61
+ MBMS (1, 20, 2, 25) 157.2 2.36 1.63

SVP 156.8 1.94 2.10
+ GBMS (3, 50, 0, 1) 151.4 1.89 2.02
+ MBMS (3, 50, 2, 2) 151.8 1.87 2.05

3.4 Experimental results

We compare with representative methods of several approaches: a low-rank matrix com-

pletion method, singular value projection (SVP Jain et al.,2010, whose performance

we found similar to that of alternating least squares, ALS (Koren, 2008)); fitting aD-

dimensional Gaussian model with EM and imputing the missingvalues of eachxn as the

conditional meanE {xn,Mn
|xn,Pn

} (we use the implementation of (Schneider, 2001));

and the nonlinear method of (Scholz et al., 2005) (nlPCA). We initialize GBMS and

MBMS from some or all of these algorithms. For methods with user parameters, we set

them by cross-validation in the following way: we randomly select 10% of the present

entries and pretend they are missing as well, we run the algorithm on the remaining

90% of the present values, and we evaluate the reconstruction at the 10% entries we

kept earlier. We repeat this over different parameters’ values and pick the one with

lowest reconstruction error. We then run the algorithm withthese parameters values on

the entire present data and report the (test) error with the ground truth for the missing

values.

100D Swissroll We created a 3D swissroll dataset with3 000 points and lifted it to

100D with a random orthonormal mapping, and added a little noise (spherical Gaussian

with stdev0.1). We selected uniformly at random 6.76% of the entries to be present. We

use the Gaussian model and SVP (fixed rank= 3) as initialization for our algorithm. We

typically find that these initialX are very noisy (Figure 3.3), with some reconstructed
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Figure 3.2: Reconstruction error of GBMS/MBMS over iterations on 100D swissroll
(each curve is a differentσ value).
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Figure 3.3: Denoising effect of the different algorithms on 100D swissroll. For visual-
ization, we project the 100D data to 3D with the projection matrix used for creating the
data. Present values are refilled for all plots.

points lying between different branches of the manifold andcausing a big reconstruction

error. We fixedL = 2 (the known dimensionality) for MBMS and cross-validated the

other parameters:σ and k for MBMS and GBMS (both usingk-nn graph), and the

number of iterationsτ to be used. Table 3.1 gives the performance of MBMS and

GBMS for testing, along with their optimal parameters. Figure 3.3 shows the results

of different methods at a few iterations. MBMS initialized from the Gaussian model

gives the most remarkable denoising effect. To show that there is a wide range ofσ

and number of iterationsτ that give good performance with GBMS and MBMS, we fix

k = 50 and run the algorithm with varyingσ values and plot the reconstruction error for

missing entries over iterations in Figure 3.2. Both GBMS can achieve good denoising

(and reconstruction), but MBMS is more robust, with good results occurring for a wide

range of iterations, indicating it is able to preserve the manifold structure better.

Mocap data We use the running-motion sequence 0901 from the CMU mocap database

with 148 samples (≈ 1.7 cycles) with 150 sensor readings (3D positions of 50 joints on
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Figure 3.5: Results on Mocap dataset. Sample reconstructions when 85% percent data
is missing. Row 1: initialization. Row 2: init+GBMS. Row 3: init+MBMS. Color
indicates different initialization: black, original data; red, nlPCA; blue, SVP; green,
Gaussian.
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Table 3.2: MNIST-7 dataset: errors of the different algorithms and their optimal pa-
rameters (σ, k, L, no. iterationsτ ). The three columns show the root sum of squared
errors on missing entries (×10−4), the mean, and the standard deviation of pixel errors,
respectively.

Methods RSSE mean stdev
nlPCA 7.77 26.1 42.6
SVP 6.99 21.8 39.3
+ GBMS (400,140,0,1) 6.54 18.8 37.7
+ MBMS (500,140,9,5) 6.03 17.0 34.9

a human body). The motion is intrinsically 1D, tracing a loopin 150D. We compare

nlPCA, SVP, the Gaussian model, and MBMS initialized from the first three algorithms.

For nlPCA, we do a grid search for the weight decay coefficient while fixing its structure

to be2×10×150 units, and use an early stopping criterion. For SVP, we do grid search

on {1, 2, 3, 5, 7, 10} for the rank. For MBMS (L = 1) and GBMS (L = 0), we do grid

search forσ andk.

We report the reconstruction error as a function of the proportion of missing entries from

50% to 95%. For each missing-data proportion, we randomly select 5 different sets of

present values and run all algorithms for them. Figure 3.4 gives the mean errors of all

algorithms. All methods perform well when missing-data proportion is small. nlPCA,

being prone to local optima, is less stable than SVP and the Gaussian model, especially

when the missing-data proportion is large. The Gaussian model gives the best and most

stable initialization. At 95%, all methods fail to give an acceptable reconstruction, but up

to 90% missing entries, MBMS and GBMS always beat the other algorithms. Figure 3.5

shows selected reconstructions from all algorithms.

MNIST digit ‘7’ The MNIST digit ‘7’ dataset contains6 265 greyscale (0–255) im-

ages of size28×28. We create missing entries in a way reminiscent of run-length errors

in transmission. We generate 16 to 26 rectangular boxes of anarea approximately 25

pixels at random locations in each image and use them to blackout pixels. In this way,

we create a high dimensional dataset (784 dimensions) with about 50% entries missing

on average. Because of the loss of spatial correlations within the blocks, this missing

data pattern is harder than random.
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Figure 3.6: Selected reconstructions of MNIST block-occluded digits‘7’ with different
methods.

The Gaussian model cannot handle such a big dataset because it involves inverting large

covariance matrices. nlPCA is also very slow and we cannot afford cross-validating its

structure or the weight decay coefficient, so we picked a reasonable structure (10×30×
784 units), used the default weight decay parameter in the code (10−3), and allowed

up to 500 iterations. We only use SVP as initialization for our algorithm. Since the

intrinsic dimension of MNIST is suspected to be not very high, we used rank 10 for

SVP andL = 9 for MBMS. We also use the samek = 140 as in Section 2.4. So we

only had to chooseσ and the number of iterations via cross-validation.

Table 3.2 shows the methods and their corresponding error. Figure 3.6 shows some

representative reconstructions from different algorithms, with present values refilled.

The mean-shift averaging among closeby neighbors (a soft form of majority voting)

helps to eliminate noise, unusual strokes and other artifacts created by SVP, which by

their nature tend to occur in different image locations overthe neighborhood of images.

Random initialization In previous examples, we have mainly used the reconstruc-

tions from other models as the initializations for our algorithm. While these initial-

izations do seem very noisy, they have basically captured the overall shape of the data

manifold. A natural question to ask is whether MBMS is robust to unstructured initial-

izations. We investigate this problem empirically on the 100D swissroll dataset, using
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Figure 3.7: Root mean squared error (RMSE) per entry obtained by SVP and MBMS
with different initializations on the 100D swissroll dataset at different missing propor-
tions. We show the mean and standard deviation of RMSE averaged over5 different
missing/present partitions of the the data matrix.

random initial values for the missing entries. We now randomly selectp · D dimen-

sions for each sample to be missing, wherep is the missing proportion ranging from

10% to 95%. Furthermore, we generate random values from the Gaussian distribution

N (m, s) for missing entries wherem ands are the empirical mean and standard devia-

tion of the present entries respectively. We then apply MBMS to this initialization, and

cross-validateσ for best reconstruction error on the missing entries by a grid search,

while fixing k = 100 andL = 2. In Figure 3.7, we show the root mean squared er-

ror (RMSE) per entry of the random initialization, MBMS with random initialization,

SVP (fixed rank=3), and MBMS with SVP initialization, each averaged over5 different

missing/present partitions of the the data matrix, at different missing proportionsp. We

also show the sample initialization and reconstructions atdifferent missing proportions

in Figure 3.8.

In general, the performance of MBMS with random initialization degrades asp in-

creases. This to be expected since the initial pairwise distances and local neighbor-
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Figure 3.8: Sample reconstructions of the 100D swissroll dataset using MBMS with
random initializations or SVP initialization for different missing proportions. For visu-
alization, we project the 100D data to 3D with the projectionmatrix used for creating
the data.

hoods also become more and more corrupted asp increases, and it is then more difficult

to estimate the tangent space and manifold structure. This can also be seen from the

sample random initialization (Figure 3.8, row 1) and MBMS reconstruction (row 2) at

p ≥ 90%, where the basic shape of swissroll is completely lost. Froman optimiza-

tion point of view, initialization is important to our non-convex objective function and

gradient-based approach. On the other hand, the low rank model SVP (row 3) has supe-

rior and more robust performance (the reconstruction errordid not increase much until

95% of the entries are missing), and MBMS (row 4) could always further improve over

SVP when it performs poorly. As a result, it is practically a good idea to apply a sim-

pler and robust model first to obtain a reasonable initial reconstruction and then apply

MBMS to refine the details for matrix completion.
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3.5 Conclusion

We have proposed a new paradigm for matrix completion, denoising, which generalizes

the commonly used assumption of low rank. Assuming low-rankimplies a restrictive

form of denoising where the data is forced to have zero variance away from a linear

manifold. More general definitions of denoising can potentially handle data that lives in

a low-dimensional manifold that is nonlinear, or whose dimensionality varies (e.g. a set

of manifolds), or that does not have low rank at all, and naturally they handle noise in

the data. Denoising works because of the fundamental fact that a missing value can be

predicted by averaging nearby present values.

Although we motivate our framework from a constrained optimization point of view

(denoise subject to respecting the present data), we argue for an algorithmic view of

denoising-based matrix completion:apply a denoising step, refill the present values,

iterate until the validation error increases. In turn, this allows different forms of de-

noising, such as based on low-rank projection (earlier work) or local averaging with

blurring mean-shift (this chapter). Our nonparametric choice of mean-shift averaging

further relaxes assumptions about the data and results in a simple algorithm with very

few user parameters that afford user control (denoising scale, local dimensionality) but

can be set automatically by cross-validation. Our algorithms are intended to be used as

a postprocessing step over a user-provided initializationof the missing values, and we

show they consistently improve upon existing algorithms.

The MBMS-based algorithm bridges the gap between pure denoising (GBMS) and local

low rank. Other definitions of denoising should be possible,for example using temporal

as well as spatial neighborhoods, and even applicable to discrete data if we consider de-

noising as a majority voting among the neighbours of a vector(with suitable definitions

of votes and neighborhood).



Chapter 4

TheK-modes algorithm for clustering

Many clustering algorithms exist that estimate a cluster centroid, such asK-means,K-

medoids or mean-shift, but no algorithm seems to exist that clusters data by returning

exactlyK meaningful modes. We propose a natural definition of aK-modes objective

function by combining the notions of density and cluster assignment. The algorithm

becomesK-means andK-medoids in the limit of very large and very small scales.

Computationally, it is slightly slower thanK-means but much faster than mean-shift or

K-medoids. UnlikeK-means, it is able to find centroids that are valid patterns, truly

representative of a cluster, even with nonconvex clusters,and appears robust to outliers

and misspecification of the scale and number of clusters (Carreira-Perpĩnán and Wang,

2013a).

4.1 Introduction

Given a datasetx1, . . . ,xN ∈ R
D, we consider clustering algorithms based on centroids,

i.e., that estimate a representativeck ∈ R
D of each clusterk in addition to assigning data

points to clusters. Two of the most widely used algorithms ofthis type areK-means

and mean-shift.K-means has the number of clustersK as a user parameter and tries to

69
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minimize the objective function

min
Z,C

E(Z,C) =
K
∑

k=1

N
∑

n=1

znk ‖xn − ck‖2 (4.1)

s.t. znk ∈ {0, 1},
K
∑

k=1

znk = 1, n = 1, . . . , N, k = 1, . . . , K

whereZ are binary assignment variables (of pointn to clusterk) andC = (c1, . . . , cK)

are centroids, free to move inRD. At an optimum, centroidck is the mean of the points

in its cluster. Gaussian mean-shift (Carreira-Perpiñán, 2000; Cheng, 1995; Comaniciu

and Meer, 2002; Fukunaga and Hostetler, 1975) assumes we have a kernel density esti-

mate (kde) with bandwidthσ > 0 and kernelG(t) = e−t/2 (up to some normalization

constant)

p(x) =
1

N

N
∑

n=1

G
(

‖(x− xn)/σ‖2
)

x ∈ R
D (4.2)

and applies the iteration (started from each data point):

p(n|x) = G
(

‖(x− xn)/σ‖2
)

∑N
n′=1 G

(

‖(x− xn′)/σ‖2
) , x← f(x) =

N
∑

n=1

p(n|x)xn. (4.3)

which converges to a mode (local maximum) ofp from nearly any initialx (Carreira-

Perpĩnán, 2007). Each mode is the centroid for one cluster, which contains all the points

that converge to its mode. The user parameter is the bandwidth σ and the resulting

number of clusters depends on it implicitly.

The pros and cons of both algorithms are well known.K-means tends to define round

clusters; mean-shift can obtain clusters of arbitrary shapes and has been very popu-

lar in low-dimensional clustering applications such as image segmentation (Comaniciu

and Meer, 2002), but does not work well in high dimension. Bothcan be seen as spe-

cial EM algorithms (Bishop, 2006; Carreira-Perpiñán, 2007). Both suffer from outliers,

which can move centroids outside their cluster inK-means or create singleton modes

in mean-shift. Computationally,K-means is much faster than mean-shift, atO(KND)

andO(N2D) per iteration, respectively, particularly with large datasets. In fact, accel-
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K-means K-modes GMS

Figure 4.1: A cluster of 7 rotated-1 USPS digit images and the centroidsfound by
K-means,K-modes (both withK = 1) and mean-shift (withσ so there is one mode).

erating mean-shift has been a topic of active research (Carreira-Perpĩnán, 2006a; Yuan

et al., 2010). Mean-shift does not require a value ofK, which is sometimes convenient,

although many users often find it desirable to force an algorithm to produce exactlyK

clusters (e.g. if prior information is available).

One important aspect in many applications concerns the validity of the centroids as pat-

terns in the input space, as well as how representative they are of their cluster. Figure 4.1

illustrates this with a single cluster consisting of continuously rotated digit-1 images.

Since these images represent a nonconvex cluster in the high-dimensional pixel space,

their mean (which averages all orientations) is not a valid digit-1 image, which makes

the centroid not interpretable and hardly representative of a digit 1. Mean-shift does

not work well either: to produce a single mode, a large bandwidth is required, which

makes the mode lie far from the manifold; a smaller bandwidthdoes produce valid digit-

1 images, but then multiple modes arise for the same cluster,and under mean-shift they

define each a cluster. Clustering applications that require valid centroids for nonconvex

or manifold data abound (e.g. images, shapes or proteins).

A third type of centroid-based algorithms are exemplar-based orK-medoid clustering

(Bishop, 2006; Hastie et al., 2009; Kaufman and Rousseeuw, 1990). These constrain

the centroids to be points from the dataset (“exemplars”), such asK-medians, and often
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minimize aK-means objective function (4.1) with a non-Euclidean distance. They are

slow, since updating centroidck requires testing all pairs of points in clusterk. Forcing

the centroids to be exemplars is often regarded as a way to ensure the centroids are

valid patterns. However, the exemplars themselves are often noisy and thus not that

representative of their neighborhood. Not constraining a centroid to be an exemplar can

remove such noise and produce a more typical representative.

Given that most location statistics have been used for clustering (mean, mode, median),

it is remarkable that noK-modes formulation for clustering seems to exist, that is, an

algorithm that will find exactlyK modes that correspond to meaningful clusters. An

obvious way to define aK-modes algorithm is to pickK modes from a kde, but it is

not clear what modes to pick (assuming it has at leastK modes, which will require a

sufficiently small bandwidth). Picking the modes with highest density need not correlate

well with clusters that have an irregular density, or an approximately uniform density

with close but distinct high-density modes.

We define aK-modes objective as a natural combination of two ideas: the cluster as-

signment idea fromK-means and the density maximization idea of mean-shift. The

algorithm has two interesting special cases,K-means and a version ofK-medoids, in

the limits of large and small bandwidth, respectively. For small enough bandwidth,

the centroids are denoised, valid patterns and typical representatives of their cluster.

Computationally, it is slightly slower thanK-means but much faster than mean-shift or

K-medoids.
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4.2 AK-modes Objective Function

We maximize the objective function

max
Z,C

L(Z,C) =
K
∑

k=1

N
∑

n=1

znkG
(

‖(xn − ck)/σ‖2
)

(4.4)

s.t. znk ∈ {0, 1},
K
∑

k=1

znk = 1, n = 1, . . . , N, k = 1, . . . , K.

For a given assignmentZ, this can be seen as (proportional to) the sum of a kde as

in (4.2) but separately for each cluster. Thus, a good clustering must move centroids

to local modes, but also defineK separate kdes. This naturally combines the idea of

clustering through binary assignment variables with the idea that high-density points

are representative of a cluster (for suitable bandwidth values).

As a function of the bandwidthσ, theK-modes objective function has two interesting

limit cases. Whenσ →∞, it becomesK-means. This can be seen from the centroid up-

date (which becomes the mean), or from the objective function directly. Indeed, approx-

imating it with Taylor’s theorem for very largeσ and using the fact that
∑K

k=1 znk = 1

gives

L(Z,C) ≈
N
∑

k=1

N
∑

n=1

zkn(1− ‖xn − ck‖2 /2σ2)

= N − E(Z,C)/2σ2

whereE(Z,C) is the same as in (4.1) and is subject to the same constraints.Thus,

maximizingL becomes minimizingE, exactly theK-means problem. Whenσ → 0,

it becomes aK-medoids algorithm, since the centroids are driven towardsdata points.

Thus,K-modes interpolates smoothly between these two algorithms, creating a contin-

uous path that links aK-mean to aK-medoid. However, its most interesting behavior

is for intermediateσ.
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4.3 TwoK-modes Algorithms

As is the case forK-means andK-medoids, minimizing theK-modes objective func-

tion is NP-hard. We focus on iterative algorithms that find a locally optimum clustering

in the sense that no improvement is possible on the centroidsgiven the current assign-

ments, and vice versa. We give first an algorithm for fixedσ and then use it to construct

a homotopy algorithm that sweeps over aσ interval.

4.3.1 For Fixedσ

It is convenient to use alternating optimization:

• Assignment stepOver assignmentsZ for fixedC, the constrained problem sepa-

rates into a constrained problem for each pointxn, of the form

max
Zn

K
∑

k=1

znkgnk s.t.
K
∑

k=1

znk = 1, znk ∈ {0, 1},

with gnk = G
(

‖(xn − ck)/σ‖2
)

. The solution is given by assigning pointxn to

its closest centroid in Euclidean distance (assuming the kernelG is a decreasing

function of the Euclidean distance).

• Mode-finding step Over centroidsC for fixed Z, we have a separate uncon-

strained maximization for each centroid, of the form

L(ck) =
N
∑

n=1

znkG
(

‖(xn − ck)/σ‖2
)

,

which is proportional to the cluster kde, and can be done withmean-shift. Note

the step overC need not be exact, i.e., the centroids need not converge to their

corresponding modes. We exit when a tolerance is met orI mean-shift iterations

have been run.
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Thus, the algorithm operates similarly toK-means but finding modes instead of means:

it interleaves a hard assignment step of data points to centroids with a mode-finding step

that moves each centroid to a mode of the kde defined by the points currently assigned

to it.

Convergence of this algorithm (in value) follows from the facts that each step (overZ or

overC) is strictly feasible and decreases the objective or leavesit unchanged, and that

the objective function is lower bounded by 0 within the feasible set. Besides, since there

is a finite number of assignments, convergence occurs in a finite number of outer-loop

steps (as happens withK-means) if the step overC is exact and deterministic. By this

we mean that for eachck we find deterministically a maximum of its objective function

(i.e., the mode forck is a deterministic function ofZ). This prevents the possibility that

for the same assignmentZ we find different modes for a givenck, which could lead the

algorithm to cycle. This condition can be simply achieved byusing an optimization al-

gorithm that either has no user parameters (such as step sizes; mean-shift is an example),

or has user parameters set to fixed values, and running it to convergence. The(Z∗,C∗)

convergence point is a local maximum in the sense thatL(Z∗,C) has a local maximum

atC = C∗ andL(Z,C∗) has a global maximum atZ = Z∗.

The computational cost per outer-loop iteration of this algorithm (settingI = 1 for

simplicity in the mean-shift step) is identical to that ofK-means: the step overZ is

O(KND) and the step overC isO(N1D + · · · + NKD) = O(ND) (whereNk is the

number of points currently assigned tock), for a total ofO(KND). And also as in

K-means, the steps parallelize: overC, the mean-shift iteration proceeds independently

in each cluster; overZ, each data point can be processed independently.

4.3.2 Homotopy Algorithm

We start withσ = ∞ (i.e., runK-means, possibly several times and picking the best

optimum). Then, we gradually decreaseσ while runningJ iterations of the fixed-σ

K-modes algorithm for each value ofσ, until we reach a target valueσ∗. This follows

an optimum path(Z(σ),C(σ)) for σ ∈ [σ∗,∞). In practice, as is well known with
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homotopy techniques, this tends to find better optima than starting directly at the target

valueσ∗. We use this homotopy algorithm in our experiments. Given wehave to run

K-means multiple times to find a good initial optimum (as commonly done in practice),

the homotopy does not add much computation. Note that the homotopy makesK-modes

a deterministic algorithm given the local optimum found byK-means.

4.3.3 User Parameters

The basic user parameter ofK-modes is the desired number of clustersK. The target

bandwidthσ∗ in the homotopy is simply used as a scaling device to refine thecentroids.

We find that representative, valid centroids are obtained for a wide range of intermediate

σ values. A good targetσ∗ can be obtained with a classical bandwidth selection criterion

for kernel density estimates (Wand and Jones, 1994), such asthe average distance to the

kth nearest neighbor.

Practically, a user will typically be interested in theK centroids and clusters resulting

for the target bandwidth. However, examining the centroid pathsck(σ) can also be

interesting for exploratory analysis of a dataset, as illustrated in our experiments with

handwritten digit images.

4.4 Relation with Other Algorithms

K-modes is most closely related toK-means and to Gaussian mean-shift (GMS), since

it essentially introduces the kernel density estimate intotheK-means objective function.

This allowsK-modes to find exactlyK true modes in the data (in its mathematical sense,

i.e., maxima of the kde for each cluster), while achieving assignments as inK-means,

and with a fast runtime, thus enjoying some of the best properties from bothK-means

and GMS.

K-means andK-modes have the same update step for the assignments, but theupdate

step for the centroids is given by setting each centroid to a different location statistic
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of the points assigned to it: the mean forK-means, a mode forK-modes.K-means

andK-modes also define the same class of clusters (a Voronoi tessellation, thus convex

clusters), while GMS can produce possibly nonconvex, disconnected clusters.

In GMS, the number of clusters equals the number of modes, which depends on the

bandwidthσ. If one wants to obtain exactlyK modes, there are two problems. The first

one is computational: sinceK is an implicit, nonlinear function ofσ, finding aσ value

that producesK modes requires inverting this function. This can be achieved numeri-

cally by running mean-shift iterations while trackingK(σ) as in scale-space approaches

(Collins, 2003), but this is very slow. Besides, particularlyfor high-dimensional data,

the kde only achievesK modes for a very narrow (even empty) interval ofσ. The second

problem is that even with an optimally tuned bandwidth, a kdewill usually create unde-

sirable, spurious modes where data points are sparse (e.g. outliers or cluster boundaries),

again particularly with high-dimensional data. We avoid this problem in the homotopy

version ofK-modes by starting with largeσ, which tracks important modes. The dif-

ference betweenK-modes and GMS is clearly seen in the particular case where weset

K = 1 (as in Figure 4.1):K-modes runs the mean-shift update initialized from the data

mean, so asσ decreases, this will tend to find a single, major mode of the kde. However,

the kde itself will have many modes, all of which would becomeclusters under GMS.

The fundamental problem in GMS is equating modes with clusters. The true density of

a cluster may well be multimodal to start with. Besides, in practice a kde will tend to

be bumpy unless the bandwidth is unreasonably large, because it is by nature a sum of

bumpy kernels centered at the data points. This is particularly so with outliers (which

create small modes) or in high dimensions. There is no easy way to smooth out a kde

(increasing the bandwidth does smooth it, but at the cost of distorting the overall density)

or to postprocess the modes to select “good” ones. One has to live with the fact that a

good kde will often have multiple modes per cluster.

K-modes provides one approach to this problem, by separatingthe roles of cluster as-

signment and of density. Each cluster has its own kde, which can be multimodal, and the

homotopy algorithm tends to select an important mode among these within each cluster.

This allowsK-modes to achieve good results even in high-dimensional problems, where
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GMS fails.

Computationally,K-modes andK-means areO(KND) per iteration for a dataset ofN

points inD dimensions. WhileK-modes in its homotopy version will usually take more

iterations, this extra runtime is small because in practiceone runsK-means multiple

times from different initializations to achieve a better optimum. GMS isO(N2D) per

iteration, which is far slower, particularly with large datasets. The reason is that in

GMS the kde involves allN points and one must run mean-shift iterations started from

each of theN points. However, inK-modes the kde for clusterk involves only the

Nk points assigned to it and one must run mean-shift iterationsonly for the centroid

ck. Much work has addressed approximating GMS so that it runs faster, and some of

it could be applied to the mean-shift step inK-modes, such as using Newton or sparse

EM iterations (Carreira-Perpiñán, 2006a).

In addition to these advantages, our experiments show thatK-modes can be more robust

thanK-means and GMS with outliers and with misspecification of eitherK or σ.

There are two variations of mean-shift that replace the local mean step of (4.3) with a

different statistic: the local (Tukey) median (Shapira et al., 2009) and a medoid defined

as any dataset point which minimizes a weighted sum of squared distances (Sheikh

et al., 2007). Both are really medoid algorithms, since they constrain the centroids to be

data points, and do not find true modes (maxima of the density). In general,K-medoid

algorithms such asK-centers orK-medians are combinatorial problems, typically NP-

hard (Hochbaum and Shmoys, 1985; Kaufman and Rousseeuw, 1990; Meyerson et al.,

2004). In the limitσ → 0, K-modes can be seen as a deterministic annealing approach

to aK-medoids objective (just as the elastic net (Durbin and Willshaw, 1987) is for the

traveling salesman problem).

There exists another algorithm called “K-modes” (Chaturvedi et al., 2001; Huang, 1998).

This is defined for categorical data and usesℓ0 error in itsK-means type objective func-

tion. The “centroids” step boils down to finding for each dimension the most frequent

value (thus the term “mode”, but mode is not well defined for high dimensional categor-

ical data). It is quite different from our algorithm, which is defined for continuous data
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Figure 4.2: K-modes results for two bandwidth values usingK = 2. We show the
means∗, their within-cluster nearest neighbor◦, the modes•, the paths followed by
each mode asσ decreases, and the contours of each kde. EachK-modes cluster uses a
different color.

and uses “mode” in its mathematical sense of density maximum.

4.5 Experimental results

We compare withK-means and Gaussian mean-shift (GMS) clustering. ForK-means,

we run it 20 times with different initializations and pick the one with minimum value

of E in (4.1). ForK-modes, we use its homotopy version initialized from the best K-

means result and finishing at a target bandwidth (whose valueis set either by using a

kde bandwidth estimation rule or by hand, depending on the experiment).

4.5.1 Toy Examples

Figures 4.2 and 4.3 illustrate the three algorithms in 2D examples. They show theK

modes and the kde contours for each cluster, forσ = ∞ or equivalentlyK-means

(left panel) and for an intermediateσ (right panel). We runK-modes decreasingσ

geometrically in20 steps from3 to 1 in Figure 4.2 and from1 to 0.1 in Figure 4.3.

In Figure. 4.2, which has 3 Gaussian clusters, we purposefully setK = 2 (bothK-



80

−1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ =∞ (K-means)

−1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ = 0.1

Figure 4.3: Like Figure 4.2 but for the two-moons dataset.

means andK-modes work well withK = 3). This makesK-means put one of the

centroids in a low-density area, where no input patterns arefound.K-modes moves the

centroid inside a cluster in a maximum-density area, where many input patterns lie, and

is then more representative.

In Figure 4.3, the “two-moons” dataset has two nonconvex, interleaved clusters and we

setK = 2. The “moons” cannot be perfectly separated by eitherK-means orK-modes,

since both define Voronoi tessellations. However,K-modes does improve the clusters

over those ofK-means, and as before it moves the centroids from a region where no

patterns are found to a more typical location within each cluster. Note how, although the

bandwidth used (σ = 0.1) yields a very good kde for each cluster and would also yield

a very good kde for the whole dataset, it results in multiple modes for each “moon”,

which means that GMS would return around 13 clusters. In thisdataset, no value ofσ

results in two modes that separate the moons.

One might argue that, if aK-means centroid is not a valid pattern, one could simply

replace it with the data point from its cluster that is closest to it. While this sometimes

works, as would be the case in the rotated-digit-1 of Figure 4.1, it often does not: the

same-cluster nearest neighbor could be a point on the cluster boundary, therefore atyp-

ical (Figure 4.2) or even a point in the wrong cluster (Figure4.3). K-modes will find

points interior to the clusters, with higher density and thus more typical.
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4.5.2 Degree Distribution of a Graph

We construct an undirected graph similar to many real-worldgraphs and estimate the

distribution of the degree of each vertex (Newman, 2010). Toconstruct the graph, we

generated a random (Erdős-Ŕenyi) graph (with1 000 vertices and9 918 edges), which

has a Gaussian degree distribution, and a graph with a power-law (long-tailed) distribu-

tion (with 3 000 vertices and506 489 edges), and then took the union of both graphs and

added a few edges at random connecting the two subgraphs. Theresult is a connected

graph with two types of vertices, reminiscent of real-worldnetworks such as the graph

of web pages and their links in the Internet. Thus, our dataset hasN = 4000 points

in 1D (the degree of each vertex). As shown in Figure 4.4, the degree distribution is a

mixture of two distributions that are well-separated but have a very different character:

a Gaussian and a skewed, power-law distribution. The latterresults in a few vertices

having a very large degree (e.g. Internet hubs), which practically appear as outliers to

the far right (outside the plots).

We setK = 2. K-means obtains a wrong clustering. One centroid is far to theright,

in a low-density (thus unrepresentative) region, and determines a cluster containing the

tail of the power-law distribution; this is caused by the outliers. The other centroid is on

the head of the power-law distribution and determines a cluster containing the Gaussian

and the head of the power-law distribution.

We runK-modes decreasingσ from 200 to 1 geometrically in40 steps. K-modes

shifts the centroids to the two principal modes of the distributions and achieves a perfect

clustering. Note that the kde for the power-law cluster has many modes, butK-modes

correctly converges to the principal one.

GMS cannot separate the two distributions for any value ofσ. Settingσ small enough

that the kde has the two principal modes implies it also has many small modes in the

tail because of the outliers (partly visible in the second panel). This is a well-known

problem with kernel density estimation.
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Figure 4.4: Degree distribution of a graph.Left column: a histogram of the distribution,
colored according to theK-modes clustering forσ =∞ (K-means) toσ = 1; the black
vertical bar indicates the cluster boundary.Middle column: the kde for each cluster
with K-modes.Right column: the kde for the whole dataset with GMS. The X axis is
truncated to a degree of 800, so many outlying modes to the right are not shown.
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4.5.3 Handwritten Digit Images

We selected 100 random images (16 × 16 grayscale) from the USPS dataset for each

digit 0–9. This gives a dataset ofN = 1000 points in[0, 1]256. We ranK-means and

K-modes withK = 10, decreasingσ from 10 to 1 geometrically in100 steps.

Figure 4.5 shows that most of the centroids forK-means are blurry images consisting of

an average of digits of different identity and style (slant,thickness, etc.), as seen from the

20 nearest-neighbor images of each centroid (within its cluster). Such centroids are hard

to interpret and are not valid digit images. This also shows how the nearest neighbor

to the centroid may be an unusual or noisy input pattern that is not representative of

anything except itself.

K-modes unblurs the centroids asσ decreases. The class histograms for the 20 nearest-

neighbors show how the purity of each cluster improves: forK-means most histograms

are widely distributed, whileK-modes concentrates the mass into mostly a single bin.

This meansK-modes moves the centroids onto typical regions that both look like valid

digits, and are representative of their neighborhood. Thiscan be seen not just from the

class labels, but also from the style of the digits, which becomes more homogeneous

underK-modes (e.g. see clusterc2, containing digit-6 images, orc4 andc5, containing

digit-0 images of different style).

StoppingK-modes at an intermediateσ (preventing it from becoming too small) achieves

just the right amount of smoothing. It allows the centroids to look like valid digit images,

but at the same time to average out noise, unusual strokes or other idiosyncrasies of the

dataset images (while not averaging digits of different identities or different styles, as

K-means does). This yields centroids that are more representative even than individual

images of the dataset. In this sense,K-modes achieves a form of intelligent denoising

similar to that of manifold denoising algorithms (Chapter 2).

Note that, forK-modes, centroidsc6 andc9 look very similar, which suggests one of

them is redundant (while none of theK-means centroids looked very similar to each

other). Indeed, removingc6 and rerunningK-modes withK = 9 simply reassigns
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Figure 4.5: Clustering results on USPS data withK-modes withK = 10 for σ = ∞
(i.e., K-means, top panel) andσ = 1 (middle panel), and for GMS withσ = 1.8369
(bottom panel), which achievesK = 10 modes. In each panel, each row corresponds to
a clusterk = 1, . . . , K = 10. The leftmost image shows the centroidck and the right
20 images are the 20 nearest neighbors to it within clusterk. The right panel shows the
histogram of class labels (color-coded) for the neighbors.
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nearly all data points in the cluster ofc6 to that of c9 and the centroid itself barely

changes. This is likely not a casuality. If we have a single Gaussian cluster but use

K > 1, it will be split into sectors like a pie, but inK-means the centroids will be apart

from each other, while inK-modes they will all end up near the Gaussian center, where

the mode of each kde will lie. This suggests that redundancy may be easier to detect in

K-modes than inK-means.

GMS withσ = 1.8369 gives exactly10 modes, however of these one is a slanted-digit-

1 cluster likec9 in K-modes and contains98.5% of the training set points, and the

remaining 9 modes are associated with clusters containing between 1 and 4 points only,

and their centroids look like digits with unusual shapes, i.e., outliers. As noted before,

GMS is sensitive to outliers, which create modes at nearly all scales. This is particularly

so with high-dimensional data, where data is always sparse,or with data lying on a low-

dimensional manifold (both of which occur here). In this case, the kde changes from a

single mode for largeσ to a multiplicity of modes over a very narrow interval ofσ.

4.5.4 Summary

The previous experiments suggest thatK-modes is more robust thanK-means and GMS

to outliers and parameter misspecification (K or σ). Outliers shift centroids away from

the main mass of a cluster inK-means or create spurious modes in GMS, butK-modes

is attracted to a major mode within each cluster. GMS is sensitive to the choice of

bandwidth, which determines the number of modes in the kde. However,K-modes will

return exactlyK modes (one per cluster) no matter the value of the bandwidth,and

whether the kde of the whole dataset has more or fewer thanK modes.K-means is

sensitive to the choice ofK: if it is smaller than the true number of clusters, it may

place centroids in low-density regions between clusters (which are invalid patterns); if

it is larger than the true number of clusters, multiple centroids will compete for a cluster

and partition it, yet the resulting centroids may show no indication that this happened.

With K-modes, ifK is too small the centroids will move inside the mass of each cluster

and become valid patterns. IfK is too large, centroids from different portions of a
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cluster may look similar enough that their redundancy can bedetected.

4.6 Discussion

While K-modes is a generic clustering algorithm, an important use is in applications

where one desires representative centroids in the sense of being valid patterns, typical

of their cluster, as described earlier. By makingσ small enough,K-modes can always

force the centroids to look like actual patterns in the training set (thus, by definition,

valid patterns). However, an individual pattern is often noisy or idiosyncratic, and a

more typical and still valid pattern should smooth out noiseand idiosyncrasies—just as

the idea of an “everyman” includes features common to most men, but does not coin-

cide with any actual man. Thus, best results are achieved with intermediate bandwidth

values: neither too large that they average widely different patterns, not too small that

they average a single pattern, but just small enough that they average a local subset of

patterns—where the average is weighted, as given by (4.3) but using points from a sin-

gle cluster. Then, the bandwidth can be seen as a smoothing parameter that controls

the representativeness of the centroids. Crucially, this role is separate from that ofK,

which sets the number of clusters, while in mean-shift both roles are conflated, since the

bandwidth determines both the smoothing and the number of clusters.

How to determine the best bandwidth value? Intuitively, onewould expect that band-

width values that produce good densities should also give reasonable results withK-

modes. Indeed, this was the case in our experiments using a simple bandwidth estima-

tion rule (the average distance to thekth nearest neighbor). In general, what “repre-

sentative” means depends on the application, andK-modes offers potential as an ex-

ploratory data analysis tool. By running the homotopy algorithm from large bandwidths

to small bandwidths (where “small” can be taken as, say, one tenth of the result from

a bandwidth estimator), the algorithm conveniently presents to the user a sequence of

centroids spanning the smoothing spectrum. As mentioned before, the computational

cost of this is comparable to that of runningK-means multiple times to achieve a good

optimum in the first place. Finally, in other applications, one may want to useK-modes
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as a post-processing of theK-means centroids to make them more representative.

4.7 Conclusion and Future Work

OurK-modes algorithm allows the user to work with a kernel density estimate of band-

width σ (like mean-shift clustering) but produce exactlyK clusters (likeK-means). It

finds centroids that are valid patterns and lie in high-density areas (unlikeK-means),

are representative of their cluster and neighborhood, yet they average out noise or id-

iosyncrasies that exist in individual data points. Computationally, it is slightly slower

thanK-means but far faster than mean-shift. Theory and experiments suggest that it

may also be more robust to outliers and parameter misspecification thanK-means and

mean-shift.

OurK-modes algorithm can use a local bandwidth at each point rather than a global one,

and non-Gaussian kernels, in particular finite-support kernels (such as the Epanechnikov

kernel) may lead to a faster algorithm.

A main application forK-modes is in clustering problems where the centroids must be

interpretable as valid patterns. Beyond clustering,K-modes may also find application

in problems where the data fall in a nonconvex low-dimensional manifold, as in find-

ing landmarks for dimensionality reduction methods (de Silva and Tenenbaum, 2003),

where the landmarks should lie on the data manifold; or in spectral clustering (Ng et al.,

2002), where the projection of the data on the eigenspace of the graph Laplacian defines

a hypersphere.



Chapter 5

The LaplacianK-modes algorithm for

clustering

Aside from the merits of theK-modes algorithm proposed in Chapter 4, its major dis-

advantage is its assignment rule, which is the same asK-means and results in only

convex clusters. In this chapter, we introduce a new algorithm based onK-modes,

which essentially relaxes the discrete cluster indicator matrix to continuous variables

and imposes a smoothness penalty on the assignments. We namethis algorithmLapla-

cianK-modes. It naturally combines three powerful ideas in clustering:the explicit use

of assignment variables (as inK-means); the estimation of cluster centroids which are

modes of each cluster’s density estimate (as in mean-shift); and the regularizing effect

of the graph Laplacian, which encourages similar assignments for nearby points (as in

spectral clustering). The optimization algorithm alternates an assignment step, which

is a convex quadratic program, and a mean-shift step, which separates for each cluster

centroid. The algorithm finds meaningful density estimatesfor each cluster, even with

challenging problems where the clusters have manifold structure, are highly nonconvex

or in high dimension. It also provides centroids that are valid patterns, truly representa-

tive of their cluster (unlikeK-means), and an out-of-sample mapping that predicts soft

assignments for a new point.

88
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Table 5.1: Comparison of properties of different clustering algorithms.

K-means K-medoids Mean-shift
Spectral

clustering
K-modes

Laplacian
K-modes

Centroids invalid “valid” “valid” N/A valid valid
Nonconv. clust. no depends yes yes no yes
Density no no yes no yes yes
Assignment hard hard hard hard hard soft
Cost/iteration KND KN

2
D N

2
D N

2 ∼ N
3

KND KND

5.1 Introduction

TheK-modes algorithm (Chapter 4) combines the idea of clusteringthrough binary as-

signment variables with the idea that high-density points are representative of a cluster.

Each centroid found by theK-modes algorithm is the mode of a kde defined by data

points in each cluster. As a result, the centroids average out noise or idiosyncrasies that

exist in individual data points and are representative of their cluster and neighborhood.

This can be seen from theK-modes centroid for the rotated digit-1 problem in Fig-

ure 4.1.K-modes was also shown to have nice properties such as being more robust to

mis-specification of the bandwidth and to outliers, and enjoying an efficient optimization

procedure.

One important disadvantage ofK-modes is that it uses the same assignment rule asK-

means (each point is assigned to its closest centroid in Euclidean distance), so it can only

find convex clusters (a Voronoi tessellation). Therefore, like K-means, it cannot han-

dle clusters with nonconvex shapes or manifold structure, unlike mean-shift or spectral

clustering (Shi and Malik, 2000).

The main contribution of this chapter is to solve this issue,while keeping the nice

properties thatK-modes does have. The key idea is to modify theK-modes objec-

tive function such that the assignment rule becomes much more flexible. We then give

an alternating optimization procedure to find the assignments and the modes. The re-

sultingLaplacianK-modesalgorithm is able to produce for each cluster a nonparamet-

ric density and a mode as valid representative (likeK-modes), to separate nonconvex

shaped clusters (like mean-shift and spectral clustering), and to give soft assignment of



90

data points to each cluster. Yet, all of these merits are achieved at a reasonable com-

putational cost, and the algorithm works well with high-dimensional data. Table 5.1

compares LaplacianK-modes with other popular clustering algorithms.

5.2 Algorithm

5.2.1 The LaplacianK-Modes Algorithm

We change the assignment rule ofK-modes to handle more complex shaped clusters

based on two ideas: (1) the observation thatnearby data points should have similar

assignments; and (2) the use ofsoft assignments, which allows more flexibility in the

clusters and simplifies the optimization. We first build a graph (e.g.k-nearest-neighbor

graph) on the dataset, and letwmn be an affinity (e.g. binary, heat kernel) betweenxm

andxn. We then add to theK-modes objective function a Laplacian smoothing term
λ
2

∑N
m=1

∑N
n=1 wmn ‖zm − zn‖2 to be minimized, wherezn = [zn1, . . . , znK ]

T is the

assignment vector ofxn, n = 1, . . . , N , to each of theK clusters, andλ ≥ 0 is a

trade-off parameter. The assignments are now continuous variables, but constrained to

be positive and sum to1. Thus,znk can be considered as the probability of assigningxn

to clusterk (soft assignment). Thus, theLaplacianK-modesobjective function is:

min
Z,C

λ

2

N
∑

m=1

N
∑

n=1

wmn ‖zm − zn‖2 −
N
∑

n=1

K
∑

k=1

znkG

(∥

∥

∥

∥

xn − ck

σ

∥

∥

∥

∥

2)

(5.1)

s.t.
K
∑

k=1

znk = 1, n = 1, . . . , N,

znk ≥ 0, n = 1, . . . , N, k = 1, . . . , K.

We can rewrite this objective in matrix form:

min
Z,C

λ tr
(

ZTLZ
)

− tr
(

BTZ
)

(5.2)

s.t. Z1K = 1N , Z ≥ 0



91

whereL = D −W is the graph Laplacian for the affinity matrixW = (wnm) and

degree matrixD = diag (
∑N

n=1 wmn), B = (bnk) is anN ×K matrix containing data-

centroid affinitiesbnk = G(‖(xn − ck)/σ‖2), n = 1, . . . , N , k = 1, . . . , K, 1K is a

K dimensional vector of1s and≥ means elementwise comparison. Other variations of

the graph Laplacian can also be used (e.g. the normalized Laplacian), see von Luxburg

(2007). The constraint onZ shows it is a stochastic matrix. We can obtain a hard

clustering if desired by assigning each point to the clusterwith highest assignment value.

Special Cases of the Hyperparameters(λ, σ) In LaplacianK-modes, in addition to

K there are two user parameters:λ controls the smoothness of the assignment, andσ

controls the smoothness of the kde defined on each cluster. Consider first the case of

λ = 0, where LaplacianK-modes becomes the originalK-modes algorithm. Carreira-

Perpĩnán and Wang (2013a) already noted that theK-modes algorithm has two interest-

ing limit cases: it becomesK-means whenσ → ∞, and a form ofK-medoids when

σ → 0, since the centroids are driven towards data points. In bothcases the assignments

are hard (1-out-of-K coding). The case whenλ → ∞ makes the first term in (5.1)

dominant and forces all connected points to have identical assignments, which is not

interesting for the purpose of clustering. Therefore, the most interesting behavior of the

algorithm is for intermediateλ. Finally, another interesting special case of Laplacian

K-modes corresponds toλ > 0 andσ → ∞, which we callLaplacianK-means, and

which seems to be new as well.

5.2.2 Optimization Procedure for LaplacianK-modes

To solve (5.1), we use alternating optimization overC andZ, which takes advantage of

the problem’s structure.

C-step For fixedZ, we are only concerned with the second term of (5.1) which is

theK-modes objective. Therefore, our step overC is identical to that ofK-modes: it

decouples over clusters and we apply mean-shift to solve foreachck separately. The
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cost of this step isO(KND).

Z-step Unlike in K-modes, ourZ-step no longer decouples, which means we have to

solve forNK variables all together. Since the graph LaplacianL is positive semidefi-

nite, the problem overZ is a convex quadratic program (QP). While we could apply a

standard QP algorithm, such as an interior point method, we provide here an algorithm

that is very simple (no parameters to set), efficient and thatscales well to real problems

where the number of pointsN or the number of clustersK is very large. The solution is

based on the gradient proximal algorithm used by Beck and Teboulle (2009). Their gen-

eral framework solves convex problems of the formminx f(x) = g(x) + h(x), where

g is convex and has Lipschitz continuous gradient (with constantL), andh is convex

but not necessarily differentiable. The gradient proximalalgorithm iteratively updates

the variables by first taking a gradient step of the first function and then projecting it

with the second function, i.e.,xτ+1 = argminy
L
2
‖y − (xτ − 1

L
∇g(xτ ))‖2 + h(y). It

can be proven that the algorithm converges in objective function value with rateO(1/T )
(whereT is the iteration counter) with aconstant stepsize1

L
, and using Nesterov’s ac-

celeration scheme improves the rate toO(1/T 2) (see Appendix B for details).

To apply this framework to ourZ-step, we make the identification thatg is our smooth

quadratic objective function, which has continuous gradient with L = 2λM being the

(smallest) Lipschitz constant whereM is the largest eigenvalue ofL, andh is the indi-

cator function of the probability simplex. Consequently, our proximal step is computing

the Euclidean projection of the gradient step onto the probability simplex. Note that

computing the Euclidean projection onto theK dimensional simplex is itself a quadratic

program. Fortunately, there exists an efficient algorithm which computes the exact pro-

jection withO(K logK) time complexity (Duchi et al., 2008, also see Appendix A for

details).

We provide the accelerated gradient projection algorithm for ourZ-step in Algorithm 1.

Notice the graph Laplacian is sparse and its largest eigenvalueM can be obtained effi-

ciently (e.g. by power iterations). Therefore the constantstepsizes can be easily deter-

mined right after constructing graph Laplacian. Compared toa pure gradient projection



93

Algorithm 1 Accelerated gradient projection for theZ step.

Input: Initial Z0 ∈ RN×K , s = 1
2λM

whereM is the largest eigenvalue of the graph
LaplacianL.

1: SetY1 = Z0, t1 = 1, τ = 1.
2: repeat
3: Compute gradient atYτ : Gτ = 2λLYτ −B

4: Zτ = simplex projection of each row ofYτ − sGτ

5: tτ+1 = (1 +
√

1 + 4t2τ )/2
6: Yτ+1 = Zτ + ( tτ−1

tτ+1
)(Zτ − Zτ−1)

7: τ = τ + 1
8: until convergence

Output: Zτ is the solution of theZ-step.

algorithm, the additional computational effort of the acceleration scheme in maintaining

an auxiliary sequenceY (lines 5–6 of Algorithm 1) is minimal, and we clearly observe

an improved convergence behavior in practice. Each iteration of Algorithm 1 costs

O(NKρ+NK logK), whereρ is the neighborhood size in constructingL (or the num-

ber of nonzero entries in each row). The first term accounts for computing the gradient

and the second term accounts for projecting each row ofZ onto the probability simplex.

Notice that, although it is solving a large QP, the cost per iteration of ourZ-step is inde-

pendent of the input dimensionalityD, and is even less costly than theC-step which has

time complexityO(KND). Despite its sublinear convergence rate, the algorithm has

a clear advantage in its simplicity: it does not require any line search or costly matrix

operation, and is extremely easy to implement. We note that an alternative approach

for theZ-step is the Alternating Direction Method of Multipliers (ADMM, Boyd et al.,

2011), which is applied in our recent work of an simple assignment model for the same

type of optimization problem (Carreira-Perpiñán and Wang, 2013b).

Convergence Properties In theC-step, each mean-shift update increases the density

of the cluster kde (or leaves it unchanged) and its convergence rate to a mode is lin-

ear in general (Carreira-Perpiñán, 2007). Roughly speaking, achieving an approximate

solution of errorǫ in this step takeslog(1/ǫ) iterations. In theZ-step, the accelerated

gradient projection converges theoretically atO(1/T 2) rate whereT is iteration counter.

Roughly speaking, achieving an approximate solution of error ǫ in this step takes1/
√
ǫ
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Figure 5.1: Learning curve of LaplacianK-modes on the synthetic 2-moons problem
(N = 1000, D = 2, K = 2). We show the relative errors in objective function value
(|Eτ − Eopt| / |Eopt|) over iterations (τ ) of our alternating optimization scheme for user
parameters(λ = 1, σ = 0.2).

iterations, although gradient projection seems to performmuch better than its theoretical

guarantee in practice (Beck and Teboulle, 2009). We could further improve the conver-

gence rate of gradient projection to be linear, by adding a quadratic regularization onZ

to the objective function such that it becomes strongly convex (see Appendix B). We

alternate theC andZ steps until a convergence criterion is satisfied (e.g. the change to

the variables is below some threshold). In an efficient implementation, both steps should

be inexact (e.g. each could run for a fixed, small number of iterations). Note that the

Z-step algorithm is feasible, so exiting it early produces valid assignments.

It is to be understood that, even though the per iteration cost of LaplacianK-modes has

the same complexity asK-modes andK-means in terms of problem size (Table 5.1),

LaplacianK-modes may need many more iterations to converge to an accurate solution

(in factK-means is guaranteed to converge to an exact local minimum infinite steps).

To illustrate this point, we show in Figure 5.1 the learning curve of LaplacianK-modes
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on the synthetic example of two moons (dataset is shown in Figure 5.3) for some fixed

user parameter.

Homotopy Algorithm As with K-means andK-modes, the LaplacianK-modes ob-

jective function has local optima, which are caused by the nonlinear, kde term. One

strategy to find a good optimum consists of first finding a good optimum forK-means

and then run a homotopy algorithm initialized there. We can construct a homotopy by

varying continuouslyλ from 0 andσ from∞, which corresponds toK-means, to their

target values(λ∗, σ∗). In practice, we follow this path approximately, by runningsome

iterations of the fixed-(λ,σ) LaplacianK-modes algorithm for each value of (λ,σ). In

practice, as is well known with homotopy techniques, this tends to find better optima

than starting directly at the target value(λ∗, σ∗). A good optimum forK-means can

be obtained by picking the best of several random restarts, or by using theK-means++

initialization strategy, which has approximation guarantees (Arthur and Vassilvitskii,

2007).

5.2.3 Out-of-sample Problem

We now consider the out-of-sample problem, that is, given anunseen test pointx ∈ R
D,

we wish to find a meaningful assignmentz(x) to the clusters found during training. A

natural and efficient way to do this is to solve a problem of thesame form as (5.1) with

a dataset consisting of the original training set augmentedwith x, but keepingZ and

C fixed to the values obtained during training (this avoids having to solve for all points

again). After dropping constant terms, this is equivalent to the following problem:

min
z

λ
N
∑

n=1

wn ‖z− zn‖2 −
K
∑

k=1

zkG

(∥

∥

∥

∥

xn − ck

σ

∥

∥

∥

∥

2)

s.t. zk ≥ 0, k = 1, . . . , K,
K
∑

k=1

zk = 1
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wherewn is the affinity between test pointx and training pointxn. After some algebra,

the above optimization problem further reduces to the following quadratic program:

min
z

1

2
‖z− (z̄+ γq)‖2 s.t. zT1K = 1, z ≥ 0 (5.3)

where the expressions forz̄, q = [q1, . . . , qK ]
T andγ are as follows:

z̄ =
N
∑

n=1

wn
∑N

n′=1 wn′

zn,

qk =
G(‖(x− ck)/σ‖2)

∑K
k′=1 G(‖(x− ck′)/σ‖2)

,

γ =

∑K
k=1G(‖(x− ck)/σ‖2)

2λ
∑N

n=1 wn

.

Thus, the out-of-sample solution is the projection of theK-dimensional vector̄z + γq

onto the probability simplex. The computational cost isO(ND), dominated by the cost

of z̄, since the simplex projection costsO(K logK).

The solution has an intuitive interpretation, consisting of the linear combination of two

terms, each a valid assignment vector (having positive elements that sum to1). The

Laplacian term,̄z, is the weighted average of the neighboring training points’ assign-

ments, and results in nonconvex clusters. The kde term,q, assigns a point based on its

distances (posterior probabilities) to the centroids, andresults in convex clusters. These

two distinct assignment rules are combined using a weightγ to give the final assign-

ment. Essentially,x is assigned to clusterk with high probability if its nearby points are

assigned to it (̄zk is large) or if it is close tock (qk is large). Although the out-of-sample

mapping is defined variationally, it is just as useful as a closed-form expression: compu-

tationally it does not require an iterative procedure, and the interpretation above makes

its meaning clear. This interpretation also illuminates the meaning of the Laplacian in

the training objective (5.1). In fact, iterating the out-of-sample mapping sequentially

over the training points gives another (slower) way to solvetheZ-step, i.e., alternating

optimization overz1, . . . , zN .
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5.3 A brief review of related work

We have discussed centroids-based algorithms (K-means,K-modes, mean-shift) at

length in Chapter 4. Here we review other closely related workof LaplacianK-modes

in the clustering context.

Obtaining hard assignments by optimizing over a discrete cluster indicator matrix is

usually difficult, because interesting objective functions are typically NP-hard. Spectral

clustering algorithms (Shi and Malik, 2000; Yu and Shi, 2003) avoid this difficulty by

first approximating the solution using eigenvectors of the normalized graph Laplacian.

Formally, spectral clustering solves the following optimization problem (D andW are

defined as in Section 5.2)

min
Z

tr
(

ZTWZ
)

(5.4)

s.t. ZTDZ = I.

And the global optimum of this non-convex problem is obtained by theK leading eigen-

vectors ofD− 1

2WD− 1

2 . However, since the eigenvectors do not readily provide valid as-

signments, these algorithms need to run another clusteringalgorithm (usuallyK-means)

on the eigenvectors to obtain actual partitions of the data—a post-processing step that

may have multiple local optima. In LaplacianK-modes, we relaxZ to be a stochastic

matrix, so ourZ-step results from a convex QP and provides soft assignmentsof points

to clusters, which may also be used as posterior probabilities.

Laplacian smoothing has also been used in combination with nonnegative matrix factor-

ization (NMF) for clustering (Cai et al., 2011). NMF learns a decomposition of the input

data matrix where both basis and coefficients are nonnegative, and tends to produce part-

based representation of the data (Lee and Seung, 1999). Cai etal. (2011) add to the NMF

objective function a Laplacian smoothing term regarding the coefficient matrix, so that

data points that are close in input space are encouraged to have a similar representation
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using the common basis set. Formally, it solves the following optimization problem

min
U,V

‖X−UV‖2 + tr
(

VLVT
)

(5.5)

s.t. U ≥ 0, V ≥ 0,

whereU = [u1, . . . ,uK ] ∈ R
D×K are the basis/dictionary of the dataset andV =

[v1, . . . ,vN ] ∈ R
K×N are the coefficients for each data point. Note the Laplacian

smoothing termtr
(

VTLV
)

imposes smoothness on the coefficients/codes. Similar to

spectral clustering, the coefficientsV provides the representation of the dataset using

learnt basis and does not give clustering assignment either. ThusK-means is then ap-

plied toV obtain a final partition of the data.

There has been recent work in clustering that directly optimizes over a stochastic assign-

ment matrix. Arora et al. (2011) optimize over a stochastic matrixZ such thatZZT best

approximates a rescaled similarity matrix. Formally, it solves the following optimization

problem

min
c,Z

∥

∥cW − ZZT
∥

∥

2
(5.6)

s.t. c > 0, Z1K = 1N , Z ≥ 0.

It is easy to see that the optimization problem has multiple solutions which are related by

rotations about the normal to the probability simplex (e.g., permutations of the columns

of Z which change the cluster labels). The authors propose to exploits the geometry of

the problem using rotation-based algorithm, which is straightforward for up toK = 4

clusters and requires optimization procedure for computing projection onto probability

simplex for more clusters.

Yang and Oja (2012) use the idea of AnchorGraphs (Liu et al., 2010) to approximate

the affinities between data points through a two-step Data-Cluster-Data (DCD) random

walk. Assume uniform prior distributionP (i) = 1/N over the data points, the random
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walk probabilities from clusterck to data pointxi can be written as

P (i|k) = P (k|i)P (i)
∑N

n=1 P (k|n)P (n)
=

zik
∑N

n=1 znk
.

Then consider then the two-step random walks fromxi to xj via the augmented cluster

nodes{ck}Kk=1:

P (i|j) =
K
∑

k=1

P (i|k)P (k|j) =
K
∑

k=1

zikzjk
∑N

n=1 znk
.

The authors then minimize the generalized KL divergence between a given sparse affin-

ity matrix W and the affinities resulted from DCD random walks over the stochastic

matrixZ:

min
Z

N
∑

i=1

N
∑

j=1

(

P (i|j) log P (i|j)
wij

− P (i|j) + wij

)

(5.7)

s.t. Z1K = 1N , Z ≥ 0.

It is obvious that the above approaches are related to LaplacianK-modes in that they all

optimize certain objective over the assignment probabilities. LaplacianK-modes has a

very simple quadratic problem over the assignmentsZ, whereas the objective function

of Yang and Oja (2012) is heavily nonlinear. Thanks to the kdeterm in the objective

function, LaplacianK-modes does not have the issue of rotational equivalence of Arora

et al. (2011), and makes use of the efficient projection onto the probability simplex to

deal with any number of clusters. Furthermore, LaplacianK-modes provides density

estimate of the clusters and prototypical centroids while the above algorithms do not.
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Figure 5.2: Synthetic dataset of5-spirals. From left to right:K-modes clustering (λ =
0, σ = 0.2, the circle at the top right corner has a radius ofσ); LaplacianK-modes
clustering (λ = 100, σ = 0.2); LaplacianK-modes assignment probabilities; contours
of the kde of the “red” cluster.

5.4 Experimental results

5.4.1 Illustrative Synthetic Examples

Spirals We first demonstrate the power of Laplacian smoothing. The 2Ddataset in

Figure 5.2 consist of5 spirals where each spiral contains400 points (denoted by◦).
The natural way of partitioning this dataset intoK = 5 groups is to assign points of

each spiral into a separate cluster. Due to the nonconvex shape of the spirals, the ideal

result can not be possibly achieved byK-modes (plot 1, we color each point differently

according to the cluster it is assigned to) orK-means (achieves a similar result toK-

modes which is not shown here), even though theK-modes centroids (denoted by◮)

are lying on each spiral and are valid representatives of thedataset. We then build5-

nearest neighbor graph on this dataset using heat kernel weighting, and run Laplacian

K-modes usingK-means result as initialization. We achieve perfect separation of the

spirals and one centroid for each spiral in few steps of our alternating optimization

scheme, as shown in plot 2. We show the assignment probabilitiesZ in plot 3, where

each data pointxn is colored using a mixture of the 5 clusters’ colors with its assignment

probabilityzn being the mixing coefficient. We show the contours of the kde defined on

the “red” cluster in plot 4, which is localized to the clusterand represents its shape well.

It is obvious that running mean-shift on this dataset with the sameσ will result in a large
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Figure 5.3: Synthetic dataset of2-moons. We denote data points by+ and centroids
by ◮. We run LaplacianK-modes in homotopy and show results at final parameter
value (λ = 1 andσ = 0.1). From left to right:K-modes clustering (λ = 0, σ → ∞);
LaplacianK-modes clustering and contours of kde of each cluster; LaplacianK-modes
assignment probabilities, using the same coloring scheme as in5-spirals; out-of-sample
mapping in input space, colored in the same way as assignmentprobabilities of plot 3
(training points are now plotted in yellow).

number of modes and therefore clusters. In contrast, the number of modes is fixed in

LaplacianK-modes and the algorithm will track one of the major modes in each cluster.

It is interesting to notice that because the kernel widthσ we use is quite small, only

a small proportion of data points are close enough to centroids to have nonzero affin-

ity. This implies that theB matrix in (5.2) is quite sparse. Nonetheless, we achieve

good assignment probabilities using the graph Laplacian, which propagates the sparse

“label” information inB throughout the graph. This also partly explains the successof

Laplacian smoothing in spectral clustering (Shi and Malik,2000) and semi-supervised

learning algorithms (Belkin et al., 2006; Zhu et al., 2003).

Noisy Two Moons We demonstrate the out-of-sample mapping of LaplacianK-modes

on the “two-moons” dataset in Figure 5.3. The dataset has twononconvex, interleaved

clusters (each has400 points) and we set add massive outliers (200 points) around them.

The “moons” cannot be perfectly separated by eitherK-means (results shown in plot

1) or K-modes, since both define Voronoi tessellations. This problem is also difficult

for hierarchical clustering because, as is well known, its major problem is that it cre-

ates connections between different clusters as the mergingoccurs. We build5-nearest

neighbor graph on this dataset using heat kernel weighting,and run LaplacianK-modes

from K-means initialization. We run the homotopy version and reduceσ from 5 to 0.1
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in 10 steps while fixingλ = 1. The obtained hard partition, along with the two centroids

and kdes for each cluster atσ = 0.1 are given in plot 2. With the existence of heavy

noise/outliers, the “inliers” are still perfectly separated, the modes lie in high density

area and we obtain good density estimate for each cluster. Weshow the assignment

probabilitiesZ in plot 3, colored using the same scheme as in the spirals example. The

assignment is certain near the centroids (purer color) and obscure at the boundaries and

outliers (mixed color). Finally, the out-of-sample mapping in input space is shown in

plot 4, where we compute out-of-sample assignment for a fine grid and color each grid

point using the same coloring scheme as in plot 3. We see clearly that the assignment

rule is very different from the hard assignment ofK-means. The mapping at each point

combines the average assignment of nearby training points and the assignment from

centroids, and has complicated, flexible shape.

Figure-Ground Segmentation We consider the problem of segmenting an occluder

from a textured background in a grayscale image. This problem has been shown to be

difficult for spectral clustering (Carreira-Perpiñán and Zemel, 2005; Chennubhotla and

Jepson, 2003), because of the intensity gradients between the occluder and the back-

ground (and within the background itself), which cause manygraph edges to connect

them, see the example in Figure 5.4. We formalize it as a clustering problem and parti-

tion the pixels intoK = 5 clusters. We use for each pixel its 2D location and intensity

value as features, and build a graph where each pixel is connected to the eight nearby

pixels, with edge weighted using a heat kernel of widthσ (same value is used as Gaus-

sian kernel width for LaplacianK-modes). The goal is to have one of the clusters extract

the occluder, which can then be separated from the background. To measure the perfor-

mance, we choose the cluster that overlap the most with occluder as positive prediction

(the rest pixels are considered as background/negative prediction) and compute classi-

fication error rate. As we can see from Figure 5.4, normalizedcut (Yu and Shi, 2003)

performs well for a narrow range ofσ, while LaplacianK-modes (with fixedλ = 0.1)

has much more stable performance when using the same graph. This is due to the fact

that our algorithm has different, more flexible assignment rule compared to spectral

clustering.
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Figure 5.4: Occluder segmentation result. Top: original image and error rates over
range ofσ. Bottom: segmentation of normalized cut and LaplacianK-modes atσ = 0.2.
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Figure 5.5: Clustering results on USPS data with LaplacianK-modes withK = 10,
λ = 0.12 and homotopy forσ. Each row corresponds to a clusterk = 1, . . . , K = 10.
The leftmost image shows the centroidck and the right 20 images are the 20 nearest
neighbors to it within clusterk. The right panel shows the histogram of class labels
(color-coded) for the neighbors.

USPS Digits We now cluster the USPS digits subset used in Section 4.5. Starting

from the samek-means result in Figure 4.5, we run the homotopy version of Laplacian

K-modes and gradually decreaseσ from 10 to 1 in 100 steps (the same values used by

K-modes), while fixingλ = 0.12. A 5-nearest-neighbor graph is built on this dataset

to compute the Laplacian. We show the centroids and their neighborhood found by

LaplacianK-modes in Figure 5.5. We see that, similar toK-modes, the centroids are

valid patterns, and the neighborhood of each centroid are homogeneous. Notice these

centroids represent more classes than those ofK-modes (c10 is a prototypical2). But

still, the centroids can not uncover all the 10 classes. An explanation is that the sample

size of this dataset is relatively small and the variations within each class is not very

smooth, and it is therefore hard to build a graph that more or less connects images of the

same class and separate different classes. A potential solution is to use features that are

more invariant to within class variations rather than pixelvalues.

5.4.2 Clustering Analysis

We report clustering statistics in datasets with known pattern class labels (which the al-

gorithms did not use): (1) MNIST, which contains28 × 28 grayscale handwritten digit
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Table 5.2: Statistics (size, dimensionality, number of classes) of the three real world
datasets.

dataset N D K
MNIST 2000 784 10

COIL–20 1440 1024 20
TDT2 9394 36771 30

Table 5.3: Clustering accuracy (%) on three datasets. N/A means our GMScode ran
out of memory.

dataset K-means K-modes GMS NCut GNMF DCD
Laplacian
K-modes

MNIST 58.2 59.2 15.9 65.5 66.2 69.4 70.5
COIL–20 66.5 67.2 27.2 79.0 75.3 71.5 81.0 (81.5)

TDT2 68.9 70.0 N/A 88.4 88.6 55.1 91.4

images (we randomly sample 200 of each digit); (2) COIL–20, which contains32× 32

grayscale images of 20 objects viewed from varying angles; (3) the NIST Topic De-

tection and Tracking (TDT2) corpus, which contains on-topic documents of different

semantic categories (documents appearing in more than one category are removed and

only the largest 30 categories are kept). Statistics of the datasets are collected in ta-

ble 5.2. Datasets (2) and (3) are the same as used by Cai et al. (2011), and we also use

the same features: pixel values for (1) and (2), and TFIDF for(3).

We compare the following algorithms:K-means, initialized randomly;K-modes, a spe-

cial case of LaplacianK-modes withλ = 0; Gaussian mean-shift (GMS), we search for

σ that produces exactlyK modes; Normalized cut (NCut), one typical spectral cluster-

ing algorithm, and we use the implementation of Yu and Shi (2003); Graph regularized

NMF (GNMF) proposed by Cai et al. (2011); Data-Cluster-Data random walk (DCD)

proposed by Yang and Oja (2012); and LaplacianK-modes, initialized fromK-means.

Several algorithms uses graph Laplacian: for NCut, GNMF, andLaplacianK-modes,

we build 5-nearest-neighbor graph and use binary weightingscheme for computing

graph Laplacian (same as in Cai et al., 2011); for DCD, we find that it achieve better

performance using a graph built with larger neighborhood size, so we let DCD select op-

timal size in{5, 10, 20, 30}. We run each algorithm with20 random restarts, letting them

use respective optimal hyper-parameter (if there is any) based on grid search, and report
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Table 5.4: Normalized Mutual Information (%) on three datasets.

dataset K-means K-modes GMS NCut GNMF DCD
Laplacian
K-modes

MNIST 53.3 53.6 6.51 66.9 64.9 65.6 68.8
COIL–20 75.3 75.9 38.9 88.0 87.5 77.6 87.3(88.0)

TDT2 75.3 75.8 N/A 83.7 83.7 68.6 88.8
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Figure 5.6: Centroids found by different algorithms on MNIST. First row: K-means
(λ = 0, σ →∞, ACC: 55.2%, NMI: 50.2%). Second row:K-modes (λ = 0, σ = 0.35,
ACC: 56.0%, NMI: 50.6%). Third row: LaplacianK-modes (λ = 0.07, σ = 0.35,
ACC: 70.5%, NMI: 68.8%).

the best performance from different random restarts. Performance evaluations using two

criteria—accuracy (ACC) and normalized mutual information (NMI)—are given in ta-

bles 5.3 and 5.4, respectively. It is clear that algorithms using Laplacian smoothing are

in general superior than algorithms not using it, demonstrating the importance of graph

Laplacian in separating nonconvex and manifold clusters. GMS performs poorly for the

reasons described earlier. On all datasets, LaplacianK-modes achieves the best or close

to best performance under both criteria (we find in practice there exist wide range of

hyper-parameters with which our algorithm gives very competitive performance). We

are able to further improve our performance on COIL–20 using the homotopy technique

described earlier: we fixλ at0.01, and decreaseσ from 0.45 to 0.1 gradually in7 steps,

initializing the algorithm for currentσ value from solution for the previousσ value. This

improved result is shown in parenthesis in tables 5.3 and 5.4.

Another key advantage of LaplacianK-modes is that the centroids are interpretable pat-

terns of the dataset. We show the centroids (each as a image) found by centroids-based

algorithms (using optimal hyper-parameter) on MNIST in Figure 5.6 and COIL–20 in
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Figure 5.7: Centroids found by different algorithms on COIL–20. First row: K-means
(λ = 0, σ → ∞, ACC: 64.8%, NMI: 73.5%). Second row:K-modes (λ = 0, σ=0.3,
ACC: 65.5%, NMI: 73.0%). Third row: LaplacianK-modes (λ = 0.01, σ = 0.1, ACC:
73.2%, NMI: 83.8%). Fourth row: LaplacianK-modes with homotopy inσ (λ = 0.01,
ACC: 81.5%, NMI: 88.0%, see text).

Figure 5.7, all using theK-means initialization. For such high dimensional problems

with smallK, GMS tends to have majority of the centroids associated withvery few

points that are outliers with unusual patterns, and we do notshow them here. Not

surprisingly, someK-means centroids are blurry images consisting of an averageof

digits/objects of different identity and style. This implies some centroids lie between

different branches of data manifolds, thus in low density area and not prototypical.

K-modes centroids have cleaner shapes, but the identities ofthe centroids somewhat

overlap. This is becauseK-modes concerns about kdes only, and multiple modes might

move to the same manifold which happen to have higher density. LaplacianK-modes

centroids not only have prototypical shapes, but also covers more digit/object identities

(such centroids should help obtain better accuracy).

Applying our algorithm at an intermediateσ achieves just the right amount of smooth-

ing. This is clearly seen from the centroids obtained on MNIST. It allows the centroids

to look like valid digit images, but at the same time to average out noise, unusual strokes

or other idiosyncrasies of the dataset images (while not averaging digits of different

identities or different styles, asK-means does). This yields centroids that are more

representative even than individual images of the dataset.
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5.5 Conclusion

Our LaplacianK-modes algorithm enjoys some of the best properties of a range of

clustering algorithms. It is nonparametric and allows the user to work with a kernel

density estimate that produces exactlyK clusters (as inK-means andK-modes), even

in high dimension (unlike in mean-shift), and which can be nonconvex (as in mean-shift

and spectral clustering). It also finds centroids that are valid patterns and lie in high-

density areas, are representative of their cluster and neighborhood, yet they average

out noise or idiosyncrasies that exist in individual data points. Computationally, our

current alternating optimization scheme is simple, efficient and scales well. Experiments

demonstrate the superior performance of LaplacianK-modes compared to well-known

clustering algorithms.

There are some obvious extensions to the algorithm that might improve the performance.

Our Laplacian smoothing term could use more carefully constructed graphs (Zelnik-

Manor and Perona, 2005) or better normalized Laplacian (Zass and Shashua, 2007) in

place of the usual Laplacian. We could also use localized kernel widthσ (Vladymyrov

and Carreira-Perpiñán, 2013) for each data point to obtain better kde. Moreover,we

would like to investigate about the automatic choice of hyper-parameters and design

homotopy procedure in parameterλ.



Chapter 6

Concluding remarks

We have shown in this thesis some successful examples of learning the manifold struc-

ture of data using the mean-shift algorithms. Here we give some concluding remarks and

concerns for future research (or what is not fully investigated in this thesis regarding the

topic of manifold learning with mean-shift).

• Popular applications of mean-shift algorithms are usuallyin relatively low dimen-

sions (Carreira-Perpiñán, 2006a,b, 2008; Comaniciu and Meer, 2002; Comani-

ciu et al., 2003). This is because, in high dimensions, one may need significant

amount of data to obtain a good kernel density estimate. An intuitive reasoning

is through the kernel bandwidth selection: since data points are sparse in high

dimensional Euclidean spaces, a small bandwidth at each point includes only the

point itself and cause the density to be a sum ofδ functions, while a big band-

width includes all points and locality is lost, thus the range of “good” bandwidth

may be very narrow. Exploiting the manifold structure can overcome the curse of

dimensionality to some extent, as we have shown empiricallyin this thesis. Yet

one may still wonder what is the limit of this approach, e.g.,what is the sample

complexity for the learning algorithms in this thesis to work well, or when can

we even believe the local tangent space estimated in a neighborhood using PCA

is a good approximate of the manifold structure? Recent theoretical research may

shed some light on such problems (Canas et al., 2012).

109
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• There has been work on generalizing the mean-shift procedure for mode finding in

Euclidean space to certain Riemannian manifolds (Cetingül and Vidal, 2009; Sub-

barao and Meer, 2006, 2009) (similar generalization exist forK-means, Banerjee

et al., 2005). Such algorithms involve procedures of movingon the tangent plane

and mapping the resulting vector back to the manifold, so as to guarantee to oper-

ate “on” the manifold of interest, although clustering of manifold can be achieved

via dimension reduction and clustering in the latent space as well (Goh and Vidal,

2008). It would be interesting to establish a connection between these approaches

with the MBMS algorithms in this thesis, which also constrainthe mean-shift

motion with regard to the manifold structure.

• Random projection has become increasingly popular for machine learning (Bara-

niuk and Wakin, 2009; Candes and Tao, 2006; Dasgupta and Freund, 2009; Li

and Hastie, 2008; Wakin et al., 2006). The power of random projection can be

characterized by the famous Johnson-Lindenstrauss lemma (Dasgupta and Gupta,

1999; Johnson and Lindenstrauss, 1984). Roughly speaking, the lemma implies

that one can reduce the dimensionality of a dataset toO(logN) whereN is the

dataset size with certain random projections, without distorting the distance be-

tween any pair of points too much. Baraniuk et al. (2006) show that the same type

of random projections also satisfy therestricted isometry propertyrequirement on

the sensing operator for compressed sensing (Donoho, 2006). Therefore, random

projection is a very efficient dimensionality reduction technique as it requires lit-

tle or no training, and it is effective as it maintains most ofthe useful information

within the dataset, e.g., it approximately preserves the pairwise distances between

data points, and allows for exact recovery of sparse signals. As we have seen, the

time complexity of mean-shift is linear in the input dimensionality and thus mean-

shift is costly for very high dimensional dataset (e.g., documents represented by

TFIDF features), exacerbating the slow speed due to its convergence rate. We

expect random projection to be useful for reducing the time complexity of mean-

shift, by first projecting very high dimensional dataset into moderate dimensions,

without sacrificing much the clustering accuracy.
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• The revived interest on mean-shift can be attributed to its simplicity and wide

applications, mainly in computer vision. Therefore, another future direction is

to apply the newly developed mean-shift algorithms to real-world applications,

while incorporating various domain knowledge.



Appendix A

Projection onto the probability simplex

We provide an elementary proof of a simple, efficient algorithm for computing the Eu-

clidean projection of a point onto the probability simplex.This algorithm is used in

LaplacianK-modes clustering in Chapter 5.

A.1 Problem

Consider the problem of computing the Euclidean projection of a pointy = [y1, . . . , yD]
T ∈

R
D onto the probability simplex, which is defined by the following optimization prob-

lem:

min
x∈RD

1

2
‖x− y‖2 (A.1a)

s.t. xT1 = 1 (A.1b)

x ≥ 0. (A.1c)

This is a quadratic program and the objective function is strictly convex, so there is a

unique solution which we denote byx = [x1, . . . , xD]
T with a slight abuse of notation.

112



113

A.2 Algorithm

The followingO(D logD) algorithm finds the solutionx to the problem:

Algorithm 2 Euclidean projection of a vector onto the probability simplex.

Input: y ∈ R
D

Sorty into u: u1 ≥ u2 ≥ · · · ≥ uD

Findρ = max{1 ≤ j ≤ D: uj +
1
j
(1−∑j

i=1 ui) > 0}
Defineλ = 1

ρ
(1−∑ρ

i=1 ui)

Output: x s.t.xi = max{yi + λ, 0}, i = 1, . . . , D.

The complexity of the algorithm is dominated by the cost of sorting the components of

y. The algorithm is not iterative and identifies the active setexactly after at mostD

steps. It can be easily implemented (see section A.4).

The algorithm has the following geometric interpretation.The solution can be written

asxi = max{yi + λ, 0}, i = 1, . . . , D, whereλ is chosen such that
∑D

i=1 xi = 1. Place

the valuesy1, . . . , yD as points on the X axis. Then the solution is given by a rigid shift

of the points such that the points to the right of the Y axis sumto 1.

The pseudocode above appears in Duchi et al. (2008), although earlier papers (Brucker,

1984; Pardalos and Kovoor, 1990) solved the problem in greater generality1.

Other algorithms The problem (A.1) can be solved in many other ways, for example

by particularizing QP algorithms such as active-set methods, gradient-projection meth-

ods or interior-point methods. It can also be solved by alternating projection onto the

two constraints in a finite number of steps (Michelot, 1986).Another way (Boyd and

Vandenberghe, 2004, Exercise 4.1, solution available athttp://see.stanford.

edu/materials/lsocoee364b/hw4sol.pdf ) is to construct a Lagrangian for-

mulation by dualizing the equality constraint and then solve a 1D nonsmooth optimiza-

tion over the Lagrange multiplier. Algorithm 2 has the advantage of being very simple,

1http://www.cs.berkeley.edu/ ˜ jduchi/projects/DuchiShSiCh08.html
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not iterative, and identifying exactly the active set at thesolution after at mostD steps

(each of costO(1)) after sorting.

A.3 A simple proof

A proof of correctness of Algorithm 2 can be found in Shalev-Shwartz and Singer (2006)

and Chen and Ye (2011), but we offer a simpler proof which involves only the KKT

theorem.

We apply the standard KKT conditions for the problem (Nocedal and Wright, 2006).

The Lagrangian of the problem is

L(x, λ,β) = 1

2
‖x− y‖2 − λ(xT1− 1)− βTx

whereλ andβ = [β1, . . . , βD]
T are the Lagrange multipliers for the equality and in-

equality constraints, respectively. At the optimal solution x the following KKT condi-

tions hold:

xi − yi − λ− βi = 0, i = 1, . . . , D (A.2a)

xi ≥ 0, i = 1, . . . , D (A.2b)

βi ≥ 0, i = 1, . . . , D (A.2c)

xiβi = 0, i = 1, . . . , D (A.2d)
D
∑

i=1

xi = 1. (A.2e)

From the complementarity condition (A.2d), it is clear thatif xi > 0, we must have

βi = 0 andxi = yi + λ > 0; if xi = 0, we must haveβi ≥ 0 andxi = yi + λ+ βi = 0,

whenceyi+λ = −βi ≤ 0. Obviously, the components of the optimal solutionx that are

zeros correspond to the smaller components ofy. Without loss of generality, we assume
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the components ofy are sorted andx uses the same ordering , i.e.,

y1 ≥ · · · ≥ yρ ≥ yρ+1 ≥ · · · ≥ yD,

x1 ≥ · · · ≥ xρ > xρ+1 = · · · = xD,

and thatx1 ≥ · · · ≥ xρ > 0, xρ+1 = · · · = xD = 0. In other words,ρ is the number of

positive components in the solutionx. Now we apply the last condition and have

1 =
D
∑

i=1

xi =

ρ
∑

i=1

xi =

ρ
∑

i=1

(yi + λ)

which givesλ = 1
ρ
(1 −∑ρ

i=1 yi). Henceρ is the key to the solution. Once we know

ρ (there are onlyD possible values of it), we can computeλ, and the optimal solution

is obtained by just addingλ to each component ofy and thresholding as in the end of

Algorithm 2. (It is easy to check that this solution indeed satisfies all KKT conditions.)

In the algorithm, we carry out the tests forj = 1, . . . , D if tj = yj+
1
j
(1−∑j

i=1 yi) > 0.

We now prove that the number of times this test turns out positive is exactlyρ. The

following theorem is essentially Lemma 3 of Shalev-Shwartzand Singer (2006).

Theorem1. Let ρ be the number of positive components in the solutionx, then

ρ = max{1 ≤ j ≤ D: yj +
1
j
(1−∑j

i=1 yi) > 0}.

Proof. Recall from the KKT conditions (A.2) thatλρ = 1 −∑ρ
i=1 yi, yi + λ > 0 for

i = 1, . . . , ρ andyi + λ ≤ 0 for i = ρ + 1, . . . , D. In the sequel, we show that for

j = 1, . . . , D, the test will continue to be positive untilj = ρ and then stay non-positive

afterwards, i.e.,yj + 1
j
(1 −∑j

i=1 yi) > 0 for j ≤ ρ, andyj + 1
j
(1 −∑j

i=1 yi) ≤ 0 for

j > ρ.

(i) For j = ρ, we have

yρ +
1

ρ

(

1−
ρ
∑

i=1

yi

)

= yρ + λ = xρ > 0.
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(ii) For j < ρ, we have

yj +
1

j

(

1−
j
∑

i=1

yi

)

=
1

j

(

jyj +1−
j
∑

i=1

yi

)

=
1

j

(

jyj +

ρ
∑

i=j+1

yi+1−
ρ
∑

i=1

yi

)

=
1

j

(

jyj +

ρ
∑

i=j+1

yi + ρλ

)

=
1

j

(

j(yj + λ) +

ρ
∑

i=j+1

(yi + λ)

)

.

Sinceyi + λ > 0 for i = j, . . . , ρ, we haveyj + 1
j
(1−∑j

i=1 yi) > 0.

(iii) For j > ρ, we have

yj +
1

j

(

1−
j
∑

i=1

yi

)

=
1

j

(

jyj +1−
j
∑

i=1

yi

)

=
1

j

(

jyj +1−
ρ
∑

i=1

yi−
j
∑

i=ρ+1

yi

)

=
1

j

(

jyj + ρλ−
j
∑

i=ρ+1

yi

)

=
1

j

(

ρ(yj + λ) +

j
∑

i=ρ+1

(yj − yi)

)

.

Noticeyj + λ ≤ 0 for j > ρ, andyj ≤ yi for j ≥ i sincey is sorted, therefore

yj +
1
j
(1−∑j

i=1 yi) < 0.

Remarks

1. We denoteλj =
1
j
(1−∑j

i=1 yi). At thej-th test,λj can be considered as a guess

of the trueλ (indeed,λρ = λ). If we use this guess to compute a tentative solution

x̄ wherex̄i = max{yi + λj, 0}, then it is easy to see thatx̄i > 0 for i = 1, . . . , j,

and
∑j

i=1 x̄i = 1. In other words, the firstj components of̄x are positive and sum

to 1. If we find x̄j+1 = 0 (or yj+1 + λj ≤ 0), then we know we have found the

optimal solution andj = ρ becausēx satisfies all KKT conditions.

2. To extend the algorithm to a simplex with a different scale, i.e., xT1 = a for

a > 0, replace the1−∑ui terms witha−∑ ui in Algorithm 2.
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A.4 Matlab code

The following Matlab code implements algorithm 2.

function X = SimplexProj(Y)

[N,D] = size(Y);
X = sort(Y,2,’descend’);
Xtmp = (cumsum(X,2)-1) * diag(sparse(1./(1:D)));
X = max(bsxfun(@minus,Y,Xtmp(sub2ind([N,D],...

(1:N)’,sum(X>Xtmp,2)))),0);



Appendix B

Convergence rates of the gradient

projection algorithms

In this appendix, we provide proofs of the convergence properties of the gradient projec-

tion algorithm. Namely, the convergence rate is sublinear for weakly convex functions

and linear for strongly convex functions. Moreover, we showthat Nesterov’s accelera-

tion scheme can be used to improve the convergence speed significantly in both cases.

B.1 Basic algorithm

There has been great recent interest in optimizing convex function of the composite

form f(x) = g(x) + h(x) in the field of machine learning, whereg is a (usually differ-

entiable) fitting term, andh is a (usually non-smooth) regularization term which gives

inductive bias towards desirable models (e.g. sparse solution is preferred when using a

ℓ1 regularization). Many algorithms (Becker et al., 2011; Cai etal., 2010; Duchi et al.,

2010; Ji and Ye, 2009; Lan, 2012; Nesterov, 2007) exploit thefact that several inter-

esting, commonly used regularizersh leads to simple and efficient projection step (see

Xiao, 2010, Section 2 for a short list of such regularizers),and thus it is wise to treat

g andh separately instead of treating their sum as a single convex function. Beck and

118



119

Algorithm 3 Gradient projection algorithm.
Input: L=Lipschitz constant of∇g, some constantν > 0 (inverse stepsize).

1: repeat
2: xτ+1 = pν(xτ ),
3: τ = τ + 1,
4: until convergence.

Output: xτ is the solution.

Teboulle (2009) took this approach and incorporated Nesterov’s acceleration scheme,

and demonstrated the superior performance of accelerated gradient projection (FISTA)

on large scaleℓ1 problem, which makes the algorithm very popular at the time.

The original gradient projection algorithm dates back to Rockafellar (1976), hence the

proof for the convergence properties is certainly not new. Here I simply follow the steps

of Beck and Teboulle (2009) and fill in all the missing details to give a complete ele-

mentary proof and to make this note self-contained. The gradient projection algorithm

for solving problems of the formf(x) = g(x)+h(x) is sketched in Algorithm 3, where

the steppν is defined as

pν(x) = argmin
y

ν

2

∥

∥

∥

∥

y − (x− 1

ν
∇g(x)))

∥

∥

∥

∥

2

+ h(y). (B.1)

B.2 Weakly convex functions

For now, the only assumptions about the convex functiong are that it is continuously

differentiable, and its gradient∇g is Lipschitz continuous with constantL > 0. In this

section, we call such functionsweaklyconvex functions (to be differentiated from the

stronglyconvex functions introduced later). In order to prove the convergence properties

of the algorithm, we first need several results about generalconvex functions, which

appear in many papers and textbooks (e.g. Bertsekas, 1999; Nesterov, 2004). The first

one concerns a quadratic upper bound of a smooth function derived from its Lipschitz

constant.

Lemma B.2.1. Let g : R
n → R be a continuous differentiable function and∇g is
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Lipschitz continuous with constantL(g). Then, for anyL ≥ L(g), we have

g(x) ≤ g(y) + 〈∇g(y),x− y〉+ L

2
‖x− y‖2 for everyx,y ∈ R

n. (B.2)

Proof. Consider first the case in whichg is a function of single variablex. According

to the assumption, we have|g′(1)− g′(0)| < L(g). Moreover,

g(1) = g(0) +

∫ 1

0

g′(x)dx

= g(0) +

∫ 1

0

g′(0)dx+

∫ 1

0

(g′(x)− g′(0))dx

≤ g(0) + g′(0) +

∫ 1

0

|g′(x)− g′(0)| dx

≤ g(0) + g′(0) + L(g)

∫ 1

0

xdx

= g(0) + g′(0) +
1

2
L(g).

Now consider the case in whichg is a multi-variate function. It is obvious thatφ(t) =

g(x + t(y − x)) is a uni-variate function, andφ′(t) = 〈∇g(x + t(y − x)),y − x〉.
Additionally, φ′(t) has a Lipschitz constant ofL(φ) ≤ L(g) ‖y − x‖2. This is because

for anyt1 andt2, we have

|φ′(t1)− φ′(t2)| = |〈∇g(x+ t1(y − x))− g(x+ t2(y − x)),y − x〉|
≤ ‖g(x+ t1(y − x))− g(x+ t2(y − x))‖ ‖y − x‖
≤ L(g) ‖y − x‖2 |t1 − t2| .

Thus we can apply the previous result for uni-variate case toφ(t), and obtain

g(y) = φ(1) ≤ φ(0) + φ′(0) +
1

2
L(φ)

≤ g(x) + 〈∇g(x),y − x〉+ L

2
‖x− y‖2 .



121

This lemma also leads to the following useful inequalities.

Corollary B.2.2. Letg andL satisfy the assumptions in Lemma B.2.1. Then the follow-

ing inequalities hold for anyx,y ∈ R
n:

g(y) ≥ g(x) + 〈∇g(x),y − x〉+ 1

2L
‖∇g(x)−∇g(y)‖2 , (B.3)

〈∇g(x)−∇g(y),x− y〉 ≥ 1

L
‖∇g(x)−∇g(y)‖2 . (B.4)

Proof. Consider the functionφ(y) = g(y) − 〈∇g(x),y〉. Thenφ also has Lipschitz

continuous gradient of constantL and its optimal point isy∗ = x. Therefore, in view of

Lemma B.2.1, we have

φ(x) = φ(y∗) ≤ φ(y − 1

L
∇φ(y)) ≤ φ(y) + 〈∇φ(y),− 1

L
∇φ(y)〉+ L

2

∥

∥

∥

∥

1

L
∇φ(y)

∥

∥

∥

∥

2

= φ(y)− 1

2L
‖∇φ(y)‖2 .

And we get (B.3) since∇φ(y) = ∇g(y)−∇g(x). We invoke (B.3) again withx andy

interchanged, and obtain

g(x) ≥ g(y) + 〈∇g(y),x− y〉+ 1

2L
‖∇g(x)−∇g(y)‖2 .

Add this inequality and (B.3) gives (B.4).

The next lemma concerns the optimality condition at the projection

pL(x) = argmin
y

L

2

∥

∥

∥

∥

y − (x− 1

L
∇g(x)))

∥

∥

∥

∥

2

+ h(y). (B.5)

Lemma B.2.3. For anyx ∈ R
n andL > 0, we havez = pL(x) if and only if there exist

γ(x) ∈ ∂h(z), the subdifferential ofh at z, such that

∇g(x) + L(z− x) + γ(x) = 0. (B.6)

Proof. First, notice that the projection step solves a strictly convex objective function

and hence the projection is unique. Sinceh is not necessarily differentiable, we have to
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invoke the (necessary and sufficient) optimality conditionfor non-differentiable convex

function. That is, vector0 belongs to the subdifferential at the optimum, i.e.,

0 ∈ L(z− (x− 1

L
∇g(x))) + ∂h(z),

by the calculus of subdifferential. This means there existγ(x) ∈ ∂h(z) (the choice of

particular subgradient depends onx) such that,

∇g(x) + L(z− x) + γ(x) = 0.

RemarkB.2.4. The projection step (B.5) can be equivalently written as

pL(x) = argmin
y

g(x) + 〈∇g(x),y − x〉+ L

2
‖y − x‖2 + h(y). (B.7)

In view of Lemma B.2.1 and (B.7), we can see that the gradient projection algorithm is

in fact a majorization-minimization algorithm, since the right hand side of (B.7) is an

upper bound off .

RemarkB.2.5. Whenh is the indicator function of some convex setC, i.e.,

h(x) =

{

0 : x ∈ C,

∞ : x 6∈ C,

the subdifferential atx ∈ C is the normal cone ofC asx (the set of vectorst such that

〈t,y − x〉 ≤ 0 for all y ∈ C). In this case, the projection step is indeed computing the

Euclidean projection of the gradient step onto the convex constraint set:

pL(x) = argmin
y

1

2

∥

∥

∥

∥

y − (x− 1

L
∇g(x)))

∥

∥

∥

∥

2

s.t. x ∈ C.

With the previous two lemmas, we are now ready to prove the most important result,

which says essentially that every gradient projection stepimproves the original objective
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functionf(x) = g(x) + h(x) usually by a non-zero amount.

Lemma B.2.6. For anyx,y ∈ R
n andL ≥ L(g), we have

f(x)− f(pL(y)) ≥
L

2
‖pL(y)− y‖2 + L〈pL(y)− y,y − x〉. (B.8)

Proof. Denotez = pL(y). By Lemma B.2.1, we have

g(z) ≤ g(y) + 〈∇g(y), z− y〉+ L

2
‖z− y‖2 . (B.9)

It is noteworthy that we have used the second order upper bound at reference pointy

instead ofx, because it will greatly simply the rest derivation.

By the convexity ofh, we have

h(z) ≤ h(x)− 〈γ(y),x− z〉,

where we have chosen the specific subgradientγ(y) defined in Lemma B.2.3. Summing

the above two inequalities and using (B.6) gives

f(z) = g(z) + h(z) ≤ g(y) + 〈∇g(y), z− y〉+ L

2
‖z− y‖2 + h(x)− 〈γ(y),x− z〉,

= g(y) + 〈∇g(y), z− y〉+ L

2
‖z− y‖2 + h(x) + 〈∇g(y) + L(z− y),x− z〉

= g(y) + 〈∇g(y),x− y〉+ h(x) +
L

2
‖z− y‖2 + L〈z− y,x− z〉.

Therefore,

f(x)− f(z) ≥ g(x)− g(y)− 〈∇g(y),x− y〉 − L

2
‖z− y‖2 + L〈z− y, z− x〉

≥ 0− L

2
‖z− y‖2 + L〈z− y, z− y〉+ L〈z− y,y − x〉 (B.10)

=
L

2
‖z− y‖2 + L〈z− y,y − x〉,

where we have used the convexity ofg in (B.10).
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RemarkB.2.7. Settingy = x in Lemma B.2.6 gives

f(x)− f(pL(x)) ≥
L

2
‖pL(x)− x‖2 , (B.11)

meaning that each gradient projection step decreases the objective function by at least
L
2
‖pL(x)− x‖2.

We are now fully equipped to prove the convergence rate of gradient projection algo-

rithm.

Theorem B.2.8 (Sublinear convergence rate for weakly convex functions). Let g be

continuously differentiable and∇g is Lipschitz continuous with constantL(g). For any

L ≥ L(g), let xτ+1 = pL(xτ ), τ = 0, 1, . . . , be the sequence generated by the gradient

projection algorithm, andx∗ be a minimum off . Then for anyT ≥ 1, we have

f(xT )− f(x∗) ≤ L ‖x0 − x∗‖2
2T

. (B.12)

Proof. Invoking Lemma B.2.6 withx = x∗ andy = xτ , we obtain

2

L
(f(x∗)− f(xτ+1)) ≥ ‖xτ+1 − xτ‖2 + 2〈xτ+1 − xτ ,xτ − x∗〉

= ‖xτ+1 − x∗‖2 − ‖xτ − x∗‖2 .

Note thatf(x∗)−f(xτ+1) ≤ 0 by definition ofx∗, so the distance between the sequence

and a minimum‖xτ − x∗‖ is also non-increasing. Summing the above inequality over

τ = 0, . . . , T − 1 gives

2

L

(

Tf(x∗)−
T−1
∑

τ=0

f(xτ+1)

)

≥ ‖x∗ − xT‖2 − ‖x∗ − x0‖2 . (B.13)

In view of (B.11), we have

2

L
(f(xτ )− f(xτ+1)) ≥ ‖xτ − xτ+1‖2 .
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Multiplying this inequality byτ and summing overτ = 0, . . . , T − 1, we obtain

2

L

T−1
∑

τ=0

(τf(xτ )− (τ + 1)f(xτ+1) + f(xτ+1)) ≥
T−1
∑

τ=0

τ ‖xτ − xτ+1‖2 ,

which simplifies to

2

L

(

−Tf(xT ) +
T−1
∑

τ=0

f(xτ+1)

)

≥
T−1
∑

τ=0

τ ‖xτ − xτ+1‖2 . (B.14)

Adding (B.13) and (B.14), we have

2T

L
(f(x∗)−f(xT )) ≥ ‖x∗ − xT‖2+

T−1
∑

τ=0

τ ‖xτ − xτ+1‖2−‖x∗ − x0‖2 ≥ −‖x∗ − x0‖2

and hence it follows that

f(xT )− f(x∗) ≤ L ‖x0 − x∗‖2
2T

.

B.3 Strongly convex functions

The sublinear rate from previous section can be greatly improved if f has additional

structures. In this section, we consider the case in whichg is µ-strongly convex with

some parameterµ > 0, i.e.,

g(y) ≥ g(x) + 〈∇g(x),y − x〉+ µ

2
‖y − x‖2 , for everyx,y ∈ R

n. (B.15)

In other words, functiong is greater than its linear approximation by a quadratic func-

tion. Notice this assumption is stronger than the strictly convex condition, because it

follows trivially that if x 6= y, we have

g(y) > g(x) + 〈∇g(x),y − x〉, (B.16)
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which defines strictly convexity. Weakly convex function can be considered as having

µ = 0. For a twice continuously differentiable function, we can set µ andL to be

the smallest and largest eigenvalue of the Hessian matrix, respectively. An immediate

consequence of the above assumption is thatf is alsoµ-strongly convex, and is thus

strictly convex and has an unique global optimum.

The next lemma shows an important property of the strongly convex function. It is a

strengthened version of Corollary B.2.2.

Lemma B.3.1. Let g be a strongly convex function of parameterµ and∇g is Lipschitz

continuous with constantL. Then for anyx,y ∈ R
n, we have

〈∇g(x)−∇g(y),x− y〉 ≤ µL

µ+ L
‖x− y‖2 + 1

µ+ L
‖∇g(x)−∇g(y)‖2 . (B.17)

Proof. Considerφ(x) = g(x) − 1
2
µ ‖x‖2. Note that∇φ(x) = ∇g(x) − µx. This

function is convex, because for anyx,y ∈ R
n we have

φ(y)− φ(x)− 〈∇φ(x),y − x〉 = g(y)− g(x)− 〈∇g(x),y − x〉 − µ

2
‖y − x‖2 ≥ 0,

by (B.15). Similarly, we can see that

φ(y)− φ(x)− 〈∇φ(x),y − x〉 ≤ 1

2
(L− µ) ‖x− y‖2 .

Therefore we can apply Corollary B.2.2 toφ and obtain

〈∇φ(x)−∇φ(y),x− y〉 ≤ 1

L− µ
‖∇φ(x)−∇φ(y)‖

and this inequality can be rewritten as (B.17).

We will show that for strongly convex functions, the gradient projection algorithm can

achieve linear convergence rate, which is theoretically much better than the sublinear

rate since it implies the error decreases at a geometric rateat every iteration. This result

is not given in Beck and Teboulle (2009) since they are not concernedwith strongly
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convex functions. The proof given below is based on an onlinenote of Benjamin Recht1

which, however, places stronger assumption ong (it assumes thatg has second order

derivatives which is not required here).

We will need the following lemma which concerns the nonexpansive property of the

projection step.

Lemma B.3.2. (Nonexpansiveness of projection) For anyx,y ∈ R
n andL > 0, we

have

‖pL(x)− pL(y)‖ ≤
∥

∥

∥

∥

(x− 1

L
∇g(x))− (y − 1

L
∇g(y))

∥

∥

∥

∥

. (B.18)

Proof. We apply Lemma B.2.3 tox andy, and obtain

x− 1

L
∇g(x) = pL(x) +

1

L
γ(x),

y − 1

L
∇g(y) = pL(y) +

1

L
γ(y).

As a result,

∥

∥

∥

∥

(x− 1

L
∇g(x))− (y − 1

L
∇g(y))

∥

∥

∥

∥

2

=

∥

∥

∥

∥

1

L
(γ(x)− γ(y)) + (pL(x)− pL(y))

∥

∥

∥

∥

2

=
1

L2
‖γ(x)− γ(y)‖2 + 2

L
〈γ(x)− γ(y), pL(x)− pL(y)〉+ ‖pL(x)− pL(y)‖2

(B.19)

Noticeγ(x) andγ(y) are subgradients ofh atpL(x) andpL(y) respectively. By defini-

tion of subgradient, we have

h(pL(y))− h(pL(x)) ≥ 〈γ(x), pL(y)− pL(x)〉,
h(pL(x))− h(pL(y)) ≥ 〈γ(y), pL(x)− pL(y)〉.

Adding these two inequalities gives

〈γ(x)− γ(y), pL(x)− pL(y)〉 ≥ 0.

1http://pages.cs.wisc.edu/˜brecht/cs726docs/ProjectedGradientMethods.pdf
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In view of this inequality, it follows from (B.19) that

∥

∥

∥

∥

(x− 1

L
∇g(x))− (y − 1

L
∇g(y))

∥

∥

∥

∥

≥ ‖pL(x)− pL(y)‖ .

Theorem B.3.3(Linear convergence rate for strongly convex functions). Letg be strongly

convex with parameterµ and∇g is Lipschitz continuous with constantL. Letxτ+1 =

pL+µ

2

(xτ ), τ = 0, 1, . . . , be the sequence generated by the gradient projection algorithm,

andx∗ is the minimum off . Then for anyT ≥ 1, we have

‖xT − x∗‖ ≤
(

κ− 1

κ+ 1

)T

‖x0 − x∗‖ , (B.20)

f(xT )− f(x∗) ≤ L

2

(

κ− 1

κ+ 1

)2T

‖x0 − x∗‖2 , (B.21)

whereκ = L/µ.

Proof. The proof technique here is somewhat different from TheoremB.2.8, and the

main reason is that we are now usingν ≤ L and thus Lemma B.2.6 does not apply.

We first assume that the projection uses an arbitrary inversestepsizeν > 0. We assert

thatx∗ = pν(x
∗), i.e., the global optimum off is a fixed point under the projection.

This is because the optimality ofx∗ implies that

0 = ∇g(x∗) + γ,

whereγ is some subgradient ofh atx∗. This equality can be written as

0 = ∇g(x∗) + ν(x∗ − x∗) + γ.

In view of Lemma B.2.3, we see thatx∗ = pν(x
∗).
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We now make use of the nonexpansive property of projection, and obtain

‖xτ+1 − x∗‖ = ‖pν(xτ )− pν(x
∗)‖ ≤

∥

∥

∥

∥

(xτ −
1

ν
∇g(xτ ))− (x∗ − 1

ν
∇g(x∗))

∥

∥

∥

∥

= ‖xτ − x∗‖2 − 2

ν
〈xτ − x∗,∇g(xτ )−∇g(x∗)〉+ 1

ν2
‖∇g(xτ )−∇g(x∗)‖2 .

In view of Lemma B.3.1 and the Lipschitz continuity of∇g, it follows that

‖xτ+1 − x∗‖2 ≤ (1− 2µL

ν(µ+ L)
) ‖xτ − x∗‖2 + 1

ν
(
1

ν
− 2

µ+ L
) ‖∇g(xτ )−∇g(x∗)‖2 .

It is easy to see that the second term vanishes atν = L+µ
2

and we are left with‖xτ+1 − x∗‖ ≤
(

κ−1
κ+1

)

‖xτ − x∗‖. We apply this relation recursively forτ = T − 1, . . . , 0 and obtain

(B.20).

To prove convergence in function value, we simply note that

f(xT ) ≤ f(x∗) +
L

2
‖xT − x∗‖2

(we have used Lemma B.2.1 and the fact that0 is in the subdifferential off(x∗)).

RemarkB.3.4. In the case of our LaplacianK-modes model (Chapter 5),µ andL are

relatively easy to set, since they correspond to the extremaof eigenvalues of the sparse

Laplacian matrix. WhenL is not known, we could apply backtracking line search to find

an estimate of it and still guarantee convergence of the algorithm (see Beck and Teboulle,

2009 for the procedure), and the proof of this approach is only slightly different from the

one presented here. On the other hand, it is straight-forward and natural to have strongly

convex objective function in machine learning problems, byadding regularizations.

RemarkB.3.5. Despite its theoretically better convergence rate in Theorem B.3.3, the

practical performance of the algorithm may not be satisfying, if κ = L
µ

is large and

the geometric rate(κ−1
κ+1

)2 is close to1. In some sense,κ measures the difficulty of

the convex problem for first order methods, and thus is sometimes referred to as the

problem’scondition number.
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Algorithm 4 Accelerated gradient projection algorithm for weakly convexg.
Input: L=Lipschitz constant of∇g.

1: Sety1 = x0, t1 = 1.
2: repeat
3: xτ = pL(yτ ),

4: tτ+1 =
1+
√

1+4t2τ
2

,
5: yτ+1 = xτ + ( tτ−1

tτ+1
)(xτ − xτ−1),

6: τ = τ + 1,
7: until convergence.

Output: xτ is the solution.

B.4 Acceleration scheme

The accelerated gradient projection algorithm is based on the work of Nesterov in early

1980s, and has been a hot topic recently to speedup first ordermethods (Beck and

Teboulle, 2009; Hu et al., 2009; Ji and Ye, 2009; Nesterov, 2005, 2007; Rakhlin et al.,

2012). The idea of the algorithm is to maintain an auxiliary sequence, taking into ac-

count the information from previous steps. The updating formula for this sequence is

somewhat similar to that of conjugate gradient (Nocedal andWright, 2006) and the mo-

mentum technique (Bishop, 1995) typically used in neural network training.

B.4.1 Weakly convex function

Nesterov’s original proof for the acceleration scheme is based on the notion ofestimate

sequence(Nesterov, 2004). For weakly convex functions, we follow the proof of Beck

and Teboulle (2009) instead, which is formally simpler. Forthe ease of discussion, we

abstract the accelerated gradient projection algorithm inAlgorithm 4.

Note the difference between Algorithm 4 and Algorithm 3. Instead of projecting the

previous estimatexτ , we are now projectingyτ , which is a specific combination of

previous two estimatesxτ andxτ−1.

Analogous to Lemma B.2.6, we first derive an estimate of progress for the projection

step. The difference, however, is that we now have to consider two consecutive steps
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together.

Lemma B.4.1. The sequences{xτ}∞τ=0 and{yτ}∞τ=1 generated via Algorithm 4 satisfy

for everyτ ≥ 1
2

L
(t2τvτ − t2τ+1vτ+1) ≥ ‖uτ+1‖2 − ‖uτ‖2 , (B.22)

wherevτ = f(xτ )− f(x∗), uτ = tτxτ − (tτ − 1)xτ−1 − x∗.

Proof. We first apply Lemma B.2.6 at (x = xτ , y = yτ+1) and likewise (x = x∗,

y = yτ+1), and get

2

L
(vτ − vτ+1) ≥ ‖xτ+1 − yτ+1‖2 + 2〈xτ+1 − yτ+1,yτ+1 − xτ 〉,
2

L
(0− vτ+1) ≥ ‖xτ+1 − yτ+1‖2 + 2〈xτ+1 − yτ+1,yτ+1 − x∗〉,

where we have used the fact thatxτ+1 = pL(yτ+1). Multiplying the first inequality

above by(tτ+1 − 1) and adding it to the second inequality gives

2

L
((tτ+1 − 1)vτ − tτ+1vτ+1) ≥tτ+1 ‖xτ+1 − yτ+1‖2

+ 2〈xτ+1 − yτ+1, tτ+1yτ+1 − (tτ+1 − 1)xτ − x∗〉.

Multiplying the last inequality bytτ+1 and using the relationt2τ = t2τ+1−tτ+1, we obtain

2

L
(t2τvτ − t2τ+1vτ+1) ≥‖tτ+1(xτ+1 − yτ+1)‖2

+ 2tτ+1〈xτ+1 − yτ+1, tτ+1yτ+1 − (tτ+1 − 1)xτ − x∗〉.

Applying the usual Pythagoras relation

‖b− a‖2 + 2〈b− a, a− c〉 = ‖b− c‖2 − ‖a− c‖2

to the right-hand side of the last inequality with

a = tτ+1yτ+1, b = tτ+1xτ+1, c = (tτ+1 − 1)xτ + x∗,
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we thus get

2

L
(t2τvτ − t2τ+1vτ+1) ≥‖tτ+1xτ+1 − (tτ+1 − 1)xτ − x∗‖2

− ‖tτ+1yτ+1 − (tτ+1 − 1)xτ − x∗‖2 .

Therefore, withyτ+1 anduτ defined by

tτ+1yτ+1 = tτ+1xτ + (tτ − 1)(xτ − xτ−1), and uτ = tτxτ − (tτ − 1)xτ−1 − x∗,

it follows that
2

L
(t2τvτ − t2τ+1vτ+1) ≥ ‖uτ+1‖2 − ‖uτ‖2 .

RemarkB.4.2. The convergence of the algorithm now depends on the asymptotic be-

havior of the{tτ}∞τ=0 sequence. Using the recursive definition of the sequence, itis easy

to prove by induction thattτ ≥ τ+1
2

.

Theorem B.4.3(Improved sublinear convergence rate for weakly convex functions).

Letg be continuously differentiable and∇g is Lipschitz continuous with constantL. Let

{xτ}∞τ=0 be generated via the accelerated gradient projection algorithm. Then for any

T ≥ 1, we have

f(xT )− f(x∗) ≤ 2L ‖x0 − x∗‖2
(T + 1)2

. (B.23)

Proof. Lemma B.4.1 shows that the sequence of{ 2
L
t2τvτ + ‖uτ‖2} is non-increasing

over iterations. Now we consider the case ofτ = 1. Sincet1 = 1, we have

2

L
t21v1 =

2

L
(f(x1)− f(x∗)) and ‖u1‖2 = ‖x1 − x∗‖2 . (B.24)

Moreover, in view of Lemma B.2.6, we have

f(x∗)− f(pL(y1)) ≥
L

2
‖pL(y1)− y1‖2 + L〈y1 − x∗, pL(y1)− y1〉.
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Thus,

f(x∗)− f(x1) = f(x∗)− f(pL(y1))

≥ L

2
‖pL(y1)− y1‖2 + L〈y1 − x∗, pL(y1)− y1〉

=
L

2
‖x1 − y1‖2 + L〈y1 − x∗,x1 − y1〉

=
L

2
(‖x1 − x∗‖2 − ‖y1 − x∗‖2).

Consequently, combining this inequality with (B.24) gives

2

L
t21v1 + ‖u1‖2 ≤ −

2

L
· L
2
(‖x1 − x∗‖2 − ‖y1 − x∗‖2) + ‖x1 − x∗‖2 = ‖x0 − x∗‖2 .

(we have used the fact thaty1 = x0 in the last step). Using the non-increasing property

of the{ 2
L
t2τvτ + ‖uτ‖2} sequence, we have

2

L
t2TvT ≤

2

L
t2TvT + ‖uT‖2 ≤

2

L
t21v1 + ‖u1‖2 = ‖x0 − x∗‖2 .

Therefore, we obtain the desired inequality by noting thattT ≥ T+1
2

.

RemarkB.4.4. The above sublinear convergence rate is consideredoptimal for general

non-smooth convex functions in the sense of Nemirovski and Yudin (1983) (consider

the case ofg ≡ 0 and we are left with the non-smooth parth).

B.4.2 Strongly convex functions

This section concerns the convergence rate of accelerated gradient projection algorithm

for strongly convex functions. The procedure is given in Algorithm 5. Notice it is

different from Algorithm 4 in providing the stepsize sequence{ατ}∞τ=0, and the update

formula for the auxiliary sequence{yτ}∞τ=1.

For strongly convex functions, Lemma B.2.6 can be strengthened.

Lemma B.4.5.Letg beµ-strongly convex and∇g is Lipschitz continuous with constant
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Algorithm 5 Accelerated gradient projection algorithm for strongly convexg.
Input: L=Lipschitz constant of∇g, µ=strongly convex parameter ofg.

1: Sety1 = x0.
2: repeat
3: xτ = pL(yτ ),
4: Solveα2

τ = (1− ατ )α
2
τ−1 +

µ
L
ατ for ατ .

5: yτ+1 = xτ +
ατ−1(1−ατ−1)

α2
τ−1

+ατ
(xτ − xτ−1),

6: τ = τ + 1,
7: until convergence.

Output: xτ is the solution.

L. Then for anyx,y ∈ R
n, we have

f(x)− f(pL(y)) ≥
µ

2
‖x− y‖2 + L

2
‖pL(y)− y‖2 + L〈pL(y)− y,y − x〉. (B.25)

Proof. We simply note that we can now replaceg(x) − g(y) − 〈∇g(y),x− y〉 ≥ 0

with g(x)− g(y)− 〈∇g(y),x− y〉 ≥ µ
2
‖x− y‖2 in (B.10).

Theorem B.4.6(Improved linear convergence rate for strongly convex functions). Let

g beµ-strongly convex and∇g is Lipschitz continuous with constantL. Let{xτ}∞τ=0 be

the solution estimated by Algorithm 5. Then for anyT ≥ 1, we have

f(xT )− f(x∗) ≤ L

(

1−
√

µ

L

)T

‖x∗ − x0‖2 .

Proof. We construct the following sequence ofquadraticfunctions:

φ0(x) = f(x0) +
ξ0
2
‖x− x0‖2 ,

φτ+1(x) = (1− ατ )φτ (x) + ατ [f(pL(yτ+1)) +
L

2
‖pL(yτ+1)− yτ+1‖2

+ L〈pL(yτ+1)− yτ+1,yτ+1 − x〉+ µ

2
‖x− yτ+1‖2] for τ = 0, 1, . . . ,

whereατ ∈ (0, 1) for τ = 1, 2, . . . . We can write these functions equivalently in the



135

form of φτ (x) =
ξτ
2
‖x− vτ‖2 + φ∗

τ whereφ∗
τ = minx φτ (x) as:

ξ0 ≥ 0, v0 = x0, φ∗
0 = f(x0), (B.26)

ξτ+1 = (1− ατ )ξτ + ατµ, (B.27)

vτ+1 =
(1− ατ )ξτvτ + ατ (L(pL(yτ+1)− yτ+1) + µyτ+1)

ξτ+1

, (B.28)

φ∗
τ+1 = (1− ατ )φ

∗
τ + ατ

[

f(pL(yτ+1)) +
L

2
‖yτ+1 − pL(yτ+1)‖2

]

− α2
τL

2

2ξτ+1

‖yτ+1 − pL(yτ+1)‖2

+
ατ (1− ατ )ξτ

ξτ+1

[µ

2
‖yτ+1 − vτ‖2 + L〈yτ+1 − pL(yτ+1),vτ − yτ+1〉

]

(B.29)

We now prove some properties of this sequence recursively.

Property 1. For τ = 0, 1, . . . , we havef(xτ ) ≤ φ∗
τ .

The case forτ = 0 is trivial. Now assumef(xτ ) ≤ φ∗
τ holds. Invoking Lemma B.4.5

with (x = xτ ,y = yτ+1) gives

f(xτ ) ≥ f(xτ+1)+L〈yτ+1 − xτ+1,xτ − yτ+1〉+
L

2
‖yτ+1 − xτ+1‖2+

µ

2
‖xτ − yτ+1‖2 .

Then in view of (B.29), we have

φ∗
τ+1 ≥ (1− ατ )f(xτ+1) + (1− ατ )L〈yτ+1 − xτ+1,xτ − yτ+1〉

+
(1− ατ )L

2
‖yτ+1 − xτ+1‖2 +

(1− ατ )µ

2
‖xτ − yτ+1‖2

+ ατ

[

f(xτ+1) +
L

2
‖yτ+1 − xτ+1‖2

]

− α2
τL

2

2ξτ+1

‖yτ+1 − xτ+1‖2

+
ατ (1− ατ )ξτ

ξτ+1

[µ

2
‖yτ+1 − vτ‖2 + L〈yτ+1 − xτ+1,vτ − yτ+1〉

]

≥ f(xτ+1) + (
L

2
− α2

τL
2

2ξτ+1

) ‖yτ+1 − xτ+1‖2

+ (1− ατ )L〈yτ+1 − xτ+1,xτ − yτ+1 +
ατξτ
ξτ+1

(vτ − yτ+1)〉, (B.30)
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where we have dropped squared terms of‖xτ − yτ+1‖ and‖vτ − yτ+1‖ to obtain the

last inequality. Thus, we can choose

ξτ+1 = (1− ατ )ξτ + ατµ = Lα2
τ , (B.31)

yτ+1 =
1

ξτ + ατµ
(ατξτvτ + ξτ+1xτ ), (B.32)

to ensure the second term and the third terms vanish in (B.30) and we are left with

φ∗
τ+1 ≥ f(xτ+1). We can ensure (B.31) recursively as follows: we set

ξ0 ≥ µ, and ξ1 = (1− α0)ξ0 + α0µ = Lα2
0,

and updateατ such that forτ = 1, 2, . . . ,

ξτ+1 = (1− ατ )ξτ + ατµ = (1− ατ )Lα
2
τ−1 + ατµ = Lα2

τ ,

or equivalently

α2
τ = (1− ατ )α

2
τ−1 +

µ

L
ατ .

By substituting (B.32) into (B.28), we get

vτ+1 =
1

ξτ+1

[

1− ατ

ατ

(−ξτ+1xτ + (ξτ + ατµ)yτ+1) + ατ (L(xτ+1 − yτ+1) + µyτ+1)

]

=
ατ − 1

ατ

xτ +
ατL

ξτ+1

xτ+1 + (
1

ατ

− ατL

ξτ+1

)yτ+1

= xτ +
1

ατ

(xτ+1 − xτ ),

where we have usedξτ+1 = Lα2
τ in the last step. By substituting this relation into

(B.32), we have

yτ+1 = xτ +
ατ−1(1− ατ−1)

α2
τ−1 + ατ

(xτ − xτ−1).

So far, we have explained the construction of the sequence{xτ}∞τ=0 and{yτ}∞τ=1 (the

sequence{ξτ}∞τ=0 and{vτ}∞τ=0 have been effectively eliminated) and established the

property thatf(xτ ) ≤ φ∗
τ for τ = 1, 2, . . . . We now show the error bound provided by



137

sequenceφ(x).

Property 2. Define{λτ}∞τ=0 recursively asλ0 = 1, andλτ+1 = (1 − ατ )λτ for τ =

0, 1, . . . . Then we have

φτ (x) ≤ (1− λτ )f(x) + λτφ0(x), for τ = 0, 1, . . . .

To see this, we just need to notice the recursive definition ofφτ (x) satisfies

φτ+1(x) ≤ (1− ατ )φτ (x) + ατf(x)

≤ (1− ατ )[(1− λτ )f(x) + λτφ0(x)] + ατf(x)

= (1− (1− ατ )λτ )f(x) + (1− ατ )λτφ0(x).

This property is the defining property ofestimate sequence. Clearly, we haveλT =
∏T−1

τ=0 ατ → 0 asT →∞.

Property 3. For τ = 0, 1, . . . , we havef(xτ )− f(x∗) ≤ λτ [φ0(x
∗)− f(x∗)]→ 0.

This is a straight-forward consequence of Property 1 and Property 2:

f(xτ ) ≤ φ∗
τ = min

x
φτ (x) ≤ min

x
[(1−λτ )f(x)+λτφ0(x)] ≤ (1−λτ )f(x

∗)+λτφ0(x
∗).

With the above properties, we are able to estimate the convergence speed off(xτ ) using

the convergence speed of the{λτ} sequence.

Property 4. For τ = 0, 1, . . . , we haveλτ ≤ (1−
√

µ
L
)τ .

Notice we have setξ0 ≥ µ. Assumeξτ ≥ µ, then by induction

ξτ+1 = Lα2
τ = (1− ατ )ξτ + ατµ ≥ µ.

Therefore we haveξτ ≥ µ andατ ≥
√

µ
L

for τ = 0, 1, . . . .
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We can now prove the desired convergence rate. Using Lemma B.2.1 at(x = x0,y =

x∗), we have

f(x0) ≤ f(x∗) +
L

2
‖x∗ − x0‖2 .

Therefore,

φ0(x
∗) = f(x0) +

L

2
‖x∗ − x0‖2

≤ f(x∗) +
L

2
‖x∗ − x0‖2 +

L

2
‖x∗ − x0‖2

= f(x∗) + L ‖x∗ − x0‖2 ,

or equivalentlyφ0(x
∗)− f(x∗) ≤ L ‖x∗ − x0‖2. Using Property 3 and 4, we obtain

f(xτ )− f(x∗) ≤ L

(

1−
√

µ

L

)τ

‖x∗ − x0‖2 .

RemarkB.4.7. The above convergence rate has indeed improved over TheoremB.3.3

because the geometric rate in which the error decreases is now (1 − 1/
√
κ), bounded

further away from1.

RemarkB.4.8. For weakly convex functions, i.e.,µ = 0, we can derive from (B.31) that

ξτ+1 = (1− ατ )ξτ = (1− ατ )Lα
2
τ−1 = Lα2

τ ,

or equivalently
1

ατ

(
1

ατ

− 1) = (
1

ατ−1

)2.

In other words, we recover exactly the same update formula for tτ in Algorithm 4 by

making the identificationtτ = 1
ατ

. In this sense, the procedure of Beck and Teboulle

(2009) (Algorithm 4) is a simplification of Nesterov’s work on estimate sequence, their

theoretical contribution is in giving an elementary proof of the algorithm.

RemarkB.4.9. A remarkably simple stepsize rule for Algorithm 5 is obtained by choos-

ing ξ0 = µ andα0 =
√

µ
L

. It is easy to see that this leads to constant stepsizeατ =
√

µ
L

for τ = 0, 1, . . . .
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Ehsan Elhamifar and René Vidal. Sparse subspace clustering. InProc. of the 2009 IEEE

Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’09), pages

2790–2797, Miami, FL, June 20–26 2009.

Ehsan Elhamifar and Rene Vidal. Sparse manifold clustering and embedding. In

J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. Pereira, and K. Q.Weinberger, editors,

Advances in Neural Information Processing Systems (NIPS), volume 24, pages 55–

63. MIT Press, Cambridge, MA, 2011.
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Alvina Goh and Reńe Vidal. Clustering and dimensionality reduction on Riemannian

manifolds. InProc. of the 2008 IEEE Computer Society Conf. Computer Vision and

Pattern Recognition (CVPR’08), Anchorage, AK, June 23–28 2008.

Dian Gong, Fei Sha, and Gerard Medioni. Locally linear denoising on image manifolds.

In Yee Whye Teh and Mike Titterington, editors,Proc. of the 13th Int. Workshop on

Artificial Intelligence and Statistics (AISTATS 2010), pages 265–272, Chia Laguna,

Sardinia, Italy, March 21–24 2010.

Peter Grassberger and Itamar Procaccia. Measuring the strangeness of strange attractors.

Physica D, 9(1–2):189–208, October 1983.

Trevor J. Hastie, Robert J. Tibshirani, and Jerome H. Friedman. The Elements of Statis-

tical Learning—Data Mining, Inference and Prediction. Springer Series in Statistics.

Springer-Verlag, second edition, 2009.

Matthias Hein and Markus Maier. Manifold denoising. In Bernhard Scḧolkopf, John
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