
UNIVERSITY OF CALIFORNIA, MERCED

Large-Scale Methods for Nonlinear Manifold Learning

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering & Computer Science

by

Maksym Vladymyrov

Committee in charge:

Professor Miguel Á. Carreira-Perpiñán, Chair
Professor Ming-Hsuan Yang
Professor Florin Rusu
Professor Jaakko Peltonen

2014



Copyright

Maksym Vladymyrov, 2014

All rights reserved.



The dissertation of Maksym Vladymyrov is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, Merced

2014

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Entropic Affinities . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Some properties of entropic affinities . . . . . . . . . . . 12
2.3 Computation of entropic affinities . . . . . . . . . . . . . 15

2.3.1 Reformulation in logarithmic scale and bounds for
the root . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Using sparse distance matrix . . . . . . . . . . . . 17
2.3.3 Choice of the root-finding algorithm . . . . . . . . 18
2.3.4 Warm-start initialization . . . . . . . . . . . . . . 22

2.4 Experimental evaluation . . . . . . . . . . . . . . . . . . 27
2.4.1 Bounds quality. . . . . . . . . . . . . . . . . . . . 27
2.4.2 Order comparison. . . . . . . . . . . . . . . . . . 27
2.4.3 Root-finding comparison. . . . . . . . . . . . . . . 30
2.4.4 Evaluation of β for different datasets. . . . . . . . 30

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Partial-Hessian Strategies for Fast Learning of Nonlinear Em-
beddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 A General Embeddings Formulation . . . . . . . . . . . . 39
3.3 Partial-Hessian Strategies . . . . . . . . . . . . . . . . . . 42
3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 45

3.4.1 Small dataset: COIL-20 image sequences . . . . . 46
3.4.2 Large dataset: MNIST handwritten digit images . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4 Locally Linear Landmarks . . . . . . . . . . . . . . . . . . . . 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Solving Spectral Problems with Locally Linear Landmarks 59
4.4 Choice of Parameters . . . . . . . . . . . . . . . . . . . . 63
4.5 Reusing Z for model and algorithm selection . . . . . . . 66
4.6 Case studies: LLL for spectral manifold learning . . . . . 68

4.6.1 Laplacian Eigenmaps . . . . . . . . . . . . . . . . 68
4.6.2 Principal Component Analysis . . . . . . . . . . . 68
4.6.3 Linear discriminant analysis . . . . . . . . . . . . 70
4.6.4 Kernel PCA and LDA . . . . . . . . . . . . . . . 71

4.7 Case studies: LLL for Spectral Clustering . . . . . . . . . 72
4.7.1 Accelerating the k-means clustering step. . . . . . 72
4.7.2 Algorithm Analysis . . . . . . . . . . . . . . . . . 74

4.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . 75
4.8.1 Laplacian Eigenmaps . . . . . . . . . . . . . . . . 75
4.8.2 PCA . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8.3 LDA . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8.4 Spectral Clustering . . . . . . . . . . . . . . . . . 84

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 5 Linear-time Training using N -Body approximations . . . . . . 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Review of N -Body Methods . . . . . . . . . . . . . . . . 93

5.2.1 Tree-based Methods . . . . . . . . . . . . . . . . . 93
5.2.2 Fast Multipole Methods . . . . . . . . . . . . . . 95
5.2.3 Related Work . . . . . . . . . . . . . . . . . . . . 98

5.3 Applying N -body Methods to Embeddings . . . . . . . . 98
5.4 Analysis of the Effect of Approximate Gradients in the

Optimization . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6 Conclusions and Future Work Directions . . . . . . . . . . . . 110
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . 112

v



Appendix A Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.1 COIL-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 MNIST handwritten digits dataset . . . . . . . . . . . . 115
A.3 infiniteMNIST . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



LIST OF FIGURES

Figure 1.1: Typical progression of dimensionality reduction algorithms . . . 2
Figure 1.2: Comparison of the methods for COIL-20 dataset . . . . . . . . 4
Figure 1.3: Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1: Embedding of COIL-20 dataset with different affinities . . . . . 10
Figure 2.2: Examples of affinity matrices . . . . . . . . . . . . . . . . . . . 11
Figure 2.3: Runtime to compute the entropy . . . . . . . . . . . . . . . . . 13
Figure 2.4: Linear vs. logarithmic scale for the entropy . . . . . . . . . . . 16
Figure 2.5: Using limited number of neighbors to compute the entropy . . . 17
Figure 2.6: Examples of root-finding algorithms . . . . . . . . . . . . . . . 18
Figure 2.7: Comparison of root-finding initialization . . . . . . . . . . . . . 22
Figure 2.8: Example of local order for entropy initialization . . . . . . . . . 23
Figure 2.9: Example of density order for entropy initialization . . . . . . . 26
Figure 2.10: Quality of the bounds for the entropy . . . . . . . . . . . . . . 28
Figure 2.11: Example of different orders for cameraman image . . . . . . . . 29
Figure 2.12: The effect of changing κ on the quality of the orders . . . . . . 30
Figure 2.13: Convergence speed of different root-finding algorithms . . . . . 31
Figure 2.14: Learned β for Lena dataset . . . . . . . . . . . . . . . . . . . . 31
Figure 2.15: Runtime and number of iterations for Lena, MNIST and Grolier’s

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 2.16: Number of iterations needed for points to converge . . . . . . . 34

Figure 3.1: Optimization of COIL-20 with fixed initial and final points . . . 47
Figure 3.2: Optimization of COIL-20 run for 50 different initializations . . 49
Figure 3.3: Comparison of homotopy optimization of COIL-20 . . . . . . . 49
Figure 3.4: Runtime and number of iteration of optimization for 20 000

points from MNSIT dataset . . . . . . . . . . . . . . . . . . . . 52
Figure 3.5: Embedding of 20 000 points from MNIST dataset using SD and

FP with EE and t-SNE . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.1: Comparison of affinity matrices: exact one, between landmarks
and learned with LLL . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.2: Using too few landmarks . . . . . . . . . . . . . . . . . . . . . . 64
Figure 4.3: Example of accelerated k-means . . . . . . . . . . . . . . . . . . 73
Figure 4.4: Approximation of eigenvectors with LLL . . . . . . . . . . . . . 75
Figure 4.5: Comparison of LLL and Nyström . . . . . . . . . . . . . . . . . 76
Figure 4.6: The embedding of MNIST dataset using LE with LLL . . . . . 77
Figure 4.7: Model selection of LE with LLL for swiss roll dataset . . . . . . 79
Figure 4.8: Model selection of dimensionally reduction using LE with LLL

and 1-nn classification . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 4.9: Embedding of infiniteMNIST using LE with LLL . . . . . . . . 82

vii



Figure 4.10: PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 4.11: LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 4.12: Image segmentation of cameraman image . . . . . . . . . . . . 85
Figure 4.13: Leading eigenvectors and their approximation for cameraman

image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 4.14: Model selection for spectral clustering . . . . . . . . . . . . . . 87
Figure 4.15: Image segmentation using LLL for 512× 512 house image . . . 88
Figure 4.16: Spatio-temporal segmentation using LLL . . . . . . . . . . . . . 89

Figure 5.1: Example of quadtree build for Barnes-Hut approximation and
the effect of changing θ in that approximaition . . . . . . . . . 94

Figure 5.2: Different ways to apply FGT approximation . . . . . . . . . . . 97
Figure 5.3: The effect of the curvature of the objective function on the

approximation error . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 5.4: Exact vs. inexact gradient . . . . . . . . . . . . . . . . . . . . . 104
Figure 5.5: Different ways to change the accuracy of the approximation . . 105
Figure 5.6: Runtime and the error of FGT and BH approximations . . . . . 106
Figure 5.7: Speedup of BH and FGT for MNIST dataset . . . . . . . . . . 107
Figure 5.8: Runtime, number of iterations and the embedding of the in-

finiteMNIST using Barnes-Hut and FMM . . . . . . . . . . . . 108
Figure 5.9: Out-of-sample extension with FMM approximation . . . . . . . 109

Figure A.1: Example COIL-20 . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure A.2: Example infiniteMNIST . . . . . . . . . . . . . . . . . . . . . . 116

viii



LIST OF TABLES

Table 2.1: Comparison of different root-finding methods . . . . . . . . . . . 18

Table 3.1: Total number of error function evaluations and runtime for ho-
motopy optimization of EE for COIL-20 dataset. . . . . . . . . . 50

ix



ACKNOWLEDGEMENTS

Many people directly or indirectly contributed to this dissertation, and I am ex-

tremely grateful for their support. My parents and grandparents always fostered an

intellectual environment in the house, where books and knowledge were always the

ultimate source of wisdom. In high school, I was lucky enough to be educated by

people of great intellect and sagacity that taught me persistence and humility. My

undergraduate professors taught me the ability to be adaptive and quickly acquire

new knowledge. I thank all those people who have contributed to my education. I

would like to specifically mention my friends and mentors from Ukraine: Alexandra

Jigulina, Nikolai Bahmetiev, Anastasia Nosich, Vladimir Elovsky, Kseniia Verbin-

ina, Denis Oleynik, Irina Zaretskaya, Igor Illin, Nikolai Isaev and Maina Levina.

Each of those people made a profound impact on my life and without them I would

not be where I am today.

Next, I want to thank my advisor, Miguel Á. Carreira-Perpiñán, whose passion

for science and knowledge in something that has always inspired me. I’m also

thankful to my committee members Ming-Hsuan Yang, Florin Rusu and especially

to Jaakko Peltonen for finding time and making important comments to the draft of

this dissertation. I would like to thank Jeff Shrager, David Noelle, Shawn Newsam,

Sergey Kirshner and Chris Kello for their encouragement and support.

Special thanks to my friends Marco Valesi, Alicia Ramos Jordan, Carlo Cam-

poresi, Aki Ohdera, Ankur Kamthe, Varick Erickson, Erin Gaab, Megan Schill,

Lisa Neubauer, Joe Torres, Paola Di Giuseppantonio, Fabrizio Galeazzi, Martyna

Citkowicz, Mapi Asta, Karen Sachs, Clement Otu and many others. You all know

that I love you and this dissertation would not have been possible without you!

I would also like to acknowledge the following funding sources that have financially

supported my research for this dissertation: NSF CAREER award IIS-0754089.

Last but not least, I would like to thank my beautiful family Nina, Marina, Oleksii

and Lubov’ Vladymyrov. This dissertation is dedicated to them.

San Francisco, 2014

x



VITA

2007 Bachelor of Science in Applied Mathematics, Kharkiv Na-
tional University, Ukraine

2008 Bachelor of Science in International Relations, Kharkiv Na-
tional University, Ukraine

2008 Master of Science in Computer Science, Kharkiv National
University, Ukraine

2009 Master of Science in International Economic Relations, Kharkiv
National University, Ukraine

2014 Ph. D. in Electrical Engineering and Computer Science, Uni-
versity of California, Merced

PUBLICATIONS

Max Vladymyrov and M.Á. Carreira-Perpiñán (2014): “Linear-time training of
nonlinear low-dimensional embeddings”, 17th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS 2014), pp. 968–977.

Max Vladymyrov and M.Á. Carreira-Perpiñán (2013): “Locally linear landmarks
for large-scale manifold learning”. 24th European Conference on Machine Learning
(ECML 2013), pp. 256–271.

Max Vladymyrov and M.Á. Carreira-Perpiñán (2013): “Entropic affinities: prop-
erties and efficient numerical computation”. 30th International Conference on
Machine Learning (ICML 2013), pp. 477–485.

Max Vladymyrov and M.Á. Carreira-Perpiñán (2012): “Partial-Hessian strategies
for fast learning of nonlinear embeddings”. 29th International Conference on Ma-
chine Learning (ICML 2012), pp. 345–352.

xi



ABSTRACT OF THE DISSERTATION

Large-Scale Methods for Nonlinear Manifold Learning

by

Maksym Vladymyrov

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2014

Professor Miguel Á. Carreira-Perpiñán, Chair

High-dimensional data representation is an important problem in many different

areas of science. Nowadays, it is becoming crucial to interpret the data of varying

dimensionality correctly. Dimensionality reduction methods process the data in

order to help visualize the data, reduce its complexity, or find latent representation

of the original problem. The algorithms of nonlinear dimensionality reduction (also

known as manifold learning) are used to decrease the dimensionality of the problem

while preserving the general structure of the data. Both spectral methods (such

as Laplacian Eigenmaps or ISOMAP) and nonlinear embedding algorithms (NLE,

such as t-SNE or Elastic Embedding) have shown to provide very good nonlinear

embedding of high-dimensional data sets. However, those methods are notorious

xii



for very slow optimization, practically preventing them from being used when a

data set is bigger than few thousand points.

In my thesis we investigate several techniques to improve different stages of nonlin-

ear dimensionally algorithms. First, we analyze the entropic affinities as a better

way to build a similarity matrix. We explore its properties and propose a nearly-

optimal algorithm to construct them. Second, we present a novel faster method to

optimize NLE by using second-order information during the optimization. Third,

for spectral methods, we investigate landmark-based optimization that cleverly

substitutes original large-scale problem with a much smaller easy-to-solve sub-

problem. Finally, we apply Fast Multipole Methods approximation that allows

fast computation of the gradient and the objective function of NLE and reduces

their computational complexity from O(N2) to O(N).

Each of the proposed methods accelerate the optimization dramatically by one or

two orders of magnitude compared to the existing techniques, effectively allowing

corresponding methods to run on a dataset with millions of points.

xiii



Chapter 1

Introduction

Dimensionality reduction is an important problem in machine learning. It is often

used to explore the structure of high-dimensional datasets, to identify useful infor-

mation such as clustering, or to extract low-dimensional features that are useful for

classification, search or other tasks. More generally, given a high-dimensional data

Y = (y1, . . . ,yN) consisting of N points in D-dimensional space, dimensionality

reduction algorithms try to obtain a projection of that data X = (x1, . . . ,xN)

onto some low-dimensional space d (with d < D, ofter d ≪ D) that somehow

preserves the structure of that data. In addition, different methods can also return

the following:

• a reduction mapping F : RD → R
d that maps any point (not just the ones

from the training set Y) to a low-dimensional space,

• a reconstruction mapping f : Rd → R
D that returns a point in the original

space given the point in the projection space,

• joint probability density p(x,y),

• an estimate of the intrinsic dimensionality d.

In case when the mappings F and f are defined explicitly in a parametric form (e.g.

by using real-basis functions or a neural network), the optimization is done over

the parameters of those mappings and the method is called parametric. Otherwise,

the optimization is performed over the low-dimensional projection points X and

1



2

Input Y Affinity matrix W Output X

⇒

1000 2000 3000 4000

1000

2000

3000

4000

⇒

Figure 1.1: Typical progression of embedding algorithms based on pairwise affini-
ties. First the dataset Y is encoded as N×N affinity matrix W. Then, the output
X is found such that affinities W are best preserved.

the method is called non-parametric. In the latter case, the method returns only

the projection of the training set X and it becomes an important problem to find

a projection of a new test point y. This problem is called out-of-sample projection

problem.

In this thesis we are going to focus on a class of nonparametric dimensionality

reduction methods, where the goal is to find the projection X of the training set

Y. However, for some of the problems, we are going to mention out-of-sample

projection as well.

More specifically, we focus on the class of embedding algorithms based on pairwise

affinities. Here, we first encode Y as a weighted affinity graph W, where each

data point is a vertex and weighted edges indicate similarity or distance between

objects. Then, the goal is to find a low-dimensional projection X whose Euclidean

distances optimally preserve these similarities (see fig. 1.1).

There are generally three big group of methods that deal with this problem: linear

methods, spectral methods and nonlinear embedding methods. Below we are going

to describe each of those groups in detail.

Linear methods such as Principal Component Analysis (PCA), factor analysis,

classical Multidimensional Scaling (cMDS, Cox and Cox, 1994; Borg and Groenen,

2005), Locality Preserving Projections (LPP, He and Niyogi, 2004) etc. These

methods restrict the mapping to be of a linear form (i.e. of the form Y = AX,



3

where A ∈ R
D×d is the mapping). However, the manifold underlying the data Y

is rarely linear and these kind of methods often do not give a good representation

of the data. In addition, the assumptions of the methods are different and it is

not clear which of the method give better result. For example, PCA selects the

components along the direction of largest variance, which may not give the best

performance.

Spectral methods such as Laplacian Eigenmaps (LE, Belkin and Niyogi, 2003),

Locally Linear Embedding (LLE, Roweis and Saul, 2000), ISOMAP Tenenbaum

et al., 2000 and Maximum Variance Unfolding (MVU, Weinberger and Saul, 2006)

are more general and able to capture nonlinear structure of the original data.

Spectral methods have become very popular because they have a unique solution

that can be efficiently computed by an eigensolver, and yet they are able to unfold

nonlinear, convoluted manifolds. That said, their embeddings are far from perfect,

particularly when the data has nonuniform density or multiple manifolds.

Nonlinear embeddings (NLE) such as stochastic neighbor embedding (SNE;

Hinton and Roweis, 2003), symmetric SNE (s-SNE, Cook et al., 2007), t-SNE

(van der Maaten and Hinton, 2008), neighbor retrieval visualizer (NeRV, Venna

et al., 2010) and elastic embedding (EE; Carreira-Perpiñán, 2010), do not have

any restriction on a form of the objective function and therefore are the most

general. They produce embeddings that are much better than those of linear

or spectral methods, especially when the high-dimensional data have a complex

cluster and manifold structure. However, the objective function of NLE is non-

convex, which means that we have to retrieve to iterative optimization methods

that could potentially be trapped in local minima.

In fig. 1.2 we compare the typical results of running different methods for a case

of finding a 2D embedding of a simple dataset of three objects from COIL-20 (see

Appendix A for a description of the dataset). Although we do not know how

the ideal embedding should look like (it is unsupervised problem with not labeled

data), we can say that to reveal the structure of the data the successful method

should at least be able to (1) separate all three objects one from another and (2)



4

PCA LE EE

Figure 1.2: Example of 2D embedding of three objects from COIL-20 dataset
obtained with linear method (PCA, left plot), spectral method (LE, central plot)
and nonlinear method (EE, right plot). The quality of the embedding improves as
we go from left to right.

separate the images of the same objects, such that the points that corresponds

to the similar rotation sequence appear closest to each other and (3) separate the

images of the same objects, such that the points that corresponds to the different

rotation sequence appear far from each other. Ideally, we would like to see three

separated concentric loops that capture the rotational sequence of the photos. On

the left plot we have the result of PCA, which is a linear method. Although, it

does give somewhat meaningful results (for example, the criteria (2) and (3) above

are generally satisfied), it appears that the linear assumption is too restrictive to

separate the manifolds one from another. In the central plot, we show the result

obtained with a spectral method, LE. It shows much clearly the structure of the

data comparing to the linear case, however, it still has problems. In particular,

the embeddings of the ducks and the cream cheese package are collapsed on top of

each other (criterion (3) is violated). Finally, the right part of the figure shows the

embedding obtained using an NLE method, EE. It shows much better separation

between the objects comparing to the previous two cases and also more accurately

display the rotational structure of the images of each object. It is clear from the

results, that the embedding quality improves as we go from linear methods to

spectral to nonlinear embedding.



5

replacemen

Nonlinear Dimensionality Reduction

Entropic affinities

Spectal

methods
SNE s-SNE t-SNE EE

Nonlinear Embeddings (NLE)
Locally Linear

Landmarks (LLL)

Optimization using

partial-Hessian information

Large-scale approximation using N -Body methods

Barnes-Hut Fast Multipole Methods (FMM)

ch. 2

ch. 4

ch. 3

ch. 5

Figure 1.3: Outline of the dissertation

In this thesis we have the following contributions (see fig. 1.3 for the outline).

In Chapter 2 we concentrate on the problem of the affinity matrix construction.

For most of the dimensionality reduction algorithms we deal with in this thesis,

the affinity matrix is the only piece of information available to the algorithm and

therefore it is of critical importance to construct this matrix such that it encodes

the data as accurately as possible. We would concentrate on the entropic affinities,

that were first introduces by Hinton and Roweis (2003), as a better way to con-

struct a Gaussian affinity matrix that takes into account the whole distribution of



6

points. This gives very good affinities that adapt locally to the data but are harder

to compute. We study the mathematical properties of these affinities and show

that they implicitly define a continuously differentiable function in the input space

and give bounds for it. We then devise a fast algorithm to compute the widths and

affinities, based on robustified, quickly convergent root-finding methods combined

with a tree- or density-based initialization scheme that exploits the slowly-varying

behavior of this function. This algorithm is nearly optimal and much more accu-

rate and fast than the existing bisection-based approach, particularly with large

datasets, as we show with image and text data.

Chapter 3 puts more emphasis on the nonlinear embedding methods and their

properties. We start by showing the connection between different nonlinear em-

bedding methods in a common generic simple framework. Then, we show the

relations of those methods with spectral methods and graph Laplacians. This al-

lows us to define several partial-Hessian optimization strategies, characterize their

global and local convergence, and evaluate them empirically. We achieve up to

two orders of magnitude speedup over existing training methods with a strategy

(which we call the spectral direction) that adds nearly no overhead to the gradient

and yet is simple, scalable and applicable to several existing and future embedding

algorithms.

In Chapter 4 we concentrate on the fast approximation of the spectral methods.

With large datasets, the eigendecomposition is too expensive, and is usually ap-

proximated by solving for a smaller graph defined on a subset of the points (land-

marks) and then applying the Nyström formula to estimate the eigenvectors for the

rest of the points. This has the problem that the affinities between landmarks do

not benefit from the remaining points and may poorly represent the data if using

few landmarks. We introduce a modified spectral problem that uses the informa-

tion from all the data by constraining the latent projection of each point to be a

local linear function of the landmarks’ latent projections. This constructs a new

affinity matrix between landmarks that preserves manifold structure even with few

landmarks, which allows one to reduce the eigenproblem size, and defines a fast,

nonlinear out-of-sample mapping. We show the application of this technique to



7

speeding up dimensionality reduction (laplacian eigenmaps) and clustering (spec-

tral clustering) methods.

In Chapter 5 we come back to the nonlinear embedding methods and address

the main computational bottleneck of those algorithms which is quadratic cost of

the objective function and the gradient. We propose to deal with this problem

by formulating the optimization as an N -body problem and using fast multipole

methods (FMMs) to approximate the gradient in linear time. We study the effect,

in theory and experiment, of approximating gradients in the optimization and show

that the expected error is related to the mean curvature of the objective function,

and that gradually increasing the accuracy level in the FMM over iterations leads

to a faster training. When combined with standard optimizers, such as gradient

descent or L-BFGS, the resulting algorithm beats the O(N logN) Barnes-Hut

method and achieves reasonable embeddings for one million points in around three

hours’ runtime.

In Chapter 6 we draw conclusions and summarize potential future directions.

Appendix A describes the datasets used for the experimental evaluation.

For all the algorithms proposed in this thesis, we made the code publicly available

for everyone to try at http://eecs.ucmerced.edu/.

Throughout we write pd (psd) to mean positive (semi)definite, and nd (nsd) to mean

negative (semi)definite.



Chapter 2

Entropic Affinities

2.1 Introduction

Many machine learning algorithms rely on the choice of meta-parameters that govern

their performance. These parameters depend on the data and good values are often hard

to find. One such meta-parameter is the bandwidth σ that is used in the construction

of affinities in many machine learning problems. These include dimensionality reduction

methods such as LLE (Roweis and Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi,

2003), ISOMAP (de Silva and Tenenbaum, 2003), SNE (Hinton and Roweis, 2003), and

the elastic embedding (Carreira-Perpiñán, 2010); clustering methods such as spectral

clustering (Ng et al., 2002) and mean-shift algorithms (Carreira-Perpiñán, 2006); semi-

supervised learning (Zhou et al., 2003; Belkin et al., 2006); and many others. In some

of those algorithms σ is the only parameter to tune and a user has to try several values

until the desired quality of the algorithm is achieved. When the dataset is large, such a

process is not interactive and can lead to frustration and ultimately to the user refusing

to use a potentially good algorithm. On top of that, the best results of the algorithm

may not be achieved for a single value of σ for all the points, but rather for a separate

bandwidth for every datapoint, in which case the existence of automatic procedure is

vital.

In their spectral clustering algorithm, Ng et al. (2002) suggest to set σ to the value giving

This chapter is an extended version of Vladymyrov and Carreira-Perpiñán (2013a).

8



9

least distorted clusters, but this requires running the algorithm, which is expensive. In

a supervised setting, Er et al. (2002) select the bandwidth per cluster of data as the one

that captures the variation between points in each cluster, but minimizes the overlapping

of nearest neighbors in different classes. The method requires tuning some parameters

that depend on the mean and variance of the clusters. Bchir and Frigui (2010) estimate

one σ per cluster in an unsupervised manner using a fuzzy logic framework. The objective

function of this method maximizes the scaling parameter per cluster up until the clusters

start to overlap. There also exist classic rules of thumb, such as setting σ separately for

each point to the distance dk to the kth nearest neighbor of that point, where k is a user

parameter (set to 7 in Zelnik-Manor and Perona, 2004). This has the odd behavior that

σ would change proportionally to changes in dk, but would ignore any changes to the

rest of the distances, no matter how large, as long as dk remained the kth distance; or

else it would change discontinuously.

Additionally, metric learning algorithms (Kaski and Peltonen, 2003; Globerson and

Roweis, 2006; Weinberger and Saul, 2009) preprocess the data in the way that it em-

phasizes the structure of the classes. This approach is quite different from ours, since

it effectively changes the whole distribution of neighbors for each point and, also, it

includes additional supervised label information that we don’t consider in our problem.

Comparing to this, entropic affinities build an single isotropic metric that is different for

each point, without labels.

In this chapter, we study a previously proposed way to set per-point bandwidths that

takes into account the whole distribution of distances and is a continuous, differentiable

function of them. For a given point y ∈ R
D, consider the posterior distribution of an

isotropic kernel density estimator of width σ defined on a finite set of points y1, . . . ,yN ∈
R
D. Thus we have a discrete distribution p(y;σ) with probabilities for n = 1, . . . , N

pn(y;σ) =
K
( ∥∥y−yn

σ

∥∥2 )
∑N

k=1K
( ∥∥y−yk

σ

∥∥2 ) =
K
(
(dnσ )2

)
∑N

k=1K
(
(dkσ )2

) (2.1)

where dn = ‖y − yn‖. We focus on the case where K(‖(y − yn)/σ‖2) is the Gaussian

kernel. We set σ individually for point y to a value such that the entropy of the dis-

tribution p(y;σ), considered as a function of σ for fixed d1, . . . , dN , equals logK, where

K is a user-set perplexity parameter. The perplexity, widely used in natural language

processing (Manning and Schütze, 1999), has an intuitive interpretation. A perplexity of

K in a distribution p over N neighbors means p provides the same surprise as if we were



10

200 400 600
19

20

21

N

K

200 400 600
0

35

70

N
200 400 600

0

250

500

N

Figure 2.1: Top plots : embeddings of COIL dataset with the elastic embedding
algorithm, using (from left to right): entropic affinities with perplexity K = 20;
unique σ = 9 obtained by averaging σs with perplexity K = 20; σn = distance to
7th nearest neighbor. Bottom plots : value of the perplexity K for each point yn

of the dataset. The color corresponds to different COIL manifolds.

to choose among K equiprobable neighbors. Having set σ in this way, the resulting value

pn(y;σ) can be used as an affinity between y and yn. We call them entropic affinities.

These affinities were introduced by Hinton and Roweis (2003) as a better way to define

the local scaling of the Gaussian distribution in their stochastic neighbor embedding

(SNE) method. Their definition of p(y;σ) was particularized to y being one of the

data points, but our generalization simplifies things later. The affinity pnm between

points yn and ym is then pn(ym;σ). If we consider an affinity matrix W with entries

K(yn,ym) and degree matrix D = diag
(∑N

n=1wnm

)
, then p defines the random-walk

matrix P = D−1W, where each row is our distribution p(yn;σ). Thus, the entropic

affinities seek a matrix P(σ1, . . . , σN ) as a function of the kernel widths for each data

point so that each row of P has perplexity K. To compute each σn, Hinton and Roweis

(2003) performed a search to find a bracket for the solution, initialized at [0, 1], and then

used bisections. This becomes noticeably slow with large datasets.

Fig. 2.1 illustrates how the entropic affinities indeed improve over using a single σ or

simple rule-of-thumb adaptive σn (the distance to the 7th nearest neighbor; Zelnik-

Manor and Perona, 2004). We applied the elastic embedding dimensionality reduction



11

 

 

0

0.5

1

1.5

2

2.5

3
x 10

−3

 

 

0

0.5

1

1.5

2

2.5

3

x 10
−3

 

 

0

1

2

3

x 10
−4

 

 

0

1

2

x 10
−4

Figure 2.2: Affinity matrices for 2 objects from COIL-20 dataset build using
different choice for bandwidth. From left to right: (1) bandwidth chosen with EA
using perplexity K = 10, (2) fixed σ = 4, (3) fixed σ = 10, (4) σn for yn equals to
the distance to 7th nearest neighbor of yn.

(Carreira-Perpiñán, 2010) to the COIL-20 dataset (see Appendix A for the description).

The left plot clearly shows the separation between the manifolds and the sequential

structure of each manifold. The embedding resulting from a single σ or σn from the 7th

neighbor does not show such a structure. The bottom plots show the σ values in the

latter two cases result in a wide range of perplexity values.

Fig. 2.2 explains the result above from the affinity viewpoint. Points are ordered ac-

cording to the rotational sequence of two objects and overall there are 144× 144 points

in the matrix. The plot of the left shows the entropic affinity matrix for two objects

from COIL-20 dataset. Bright values along the diagonal correspond to large similarity

between objects that have similar rotational position. Bright colors in the middle of

each of the sides means that the rotational sequence “loops over” and last images of

the sequence are similar to the first images. Finally large blue regions in the rest of

the affinity matrix means that there is almost no connection between different objects

and images of the same object that correspond to different rotations. Other plots show

affinity matrices given by fixed σ values or by distance to the 7th neighbor. None of the

choices give good affinity matrix. For σ = 4, the affinity does not connect the points of

the first object. For σ = 10, it is now the second object that has large interconnection

between all the images and thus does not show the rotational structure of that object.

Using σ from 7th neighbor also fails to show that rotational structure of both objects.

Overall, mostly due to high-quality affinity matrix, like the one from the entropic affini-

ties, we were able to achieve a good results of the elastic embedding that we observe on

the left of Fig. 2.1. While, the entropic affinities still require a user variable K to be set,

this is much more intuitive, since it defines the information theoretic quantity (effective

number of neighbors), rather than spatial (measured in the distance between points). In



12

addition, setting a single K parameter gives a vector of bandwidth parameters one per

datapoint, which would be impossible to set manually for even a medium-size dataset.

In this chapter we will investigate the entropic affinities and their numerical computation.

Section 2.2 proves useful properties, in particular that the function σ(y) is well defined

and continuously differentiable, and give simple bounds for it. Based on this, section 2.3

describes fast, scalable algorithms that compute σ and the entropic affinities themselves

in very few iterations to almost machine precision, by processing points in a certain

order. Section 2.4 shows experimental results with image and text datasets.

2.2 Some properties of entropic affinities

The entropy of the distribution (2.1) is defined as

H(y, σ) = −
N∑

n=1

pn(y, σ) log(pn(y, σ)) (2.2)

= −
N∑

n=1

pn(y, σ) logK(‖(y − yn)/σ‖2) + log
∑

n

K(‖(y − yn)/σ‖2).

In particular, for the Gaussian kernel it becomes

H(y, β) = β

N∑

n=1

pn(y, β)d
2
n + log

N∑

n=1

exp(−d2nβ), (2.3)

where the probabilities are defined for the Gaussian kernel as

pn(y, β) =
exp(−d2nβ)∑N

m=1 exp(−d2mβ)
, (2.4)

with the precision parameter β = 1/2σ2. We can express (2.3) and its derivatives

wrt β using the partition function Z(β) =
∑N

n=1 exp(−d2nβ) and moments mk(β) =
∑N

n=1 pnd
2k
n as follows:

H(y, β) = βm1 + logZ,

H ′
β(y, β) = −β(m2 −m2

1),

H ′′
β(y, β) = β(m3 − 3m2m1 + 2m3

1) +m2
1 −m2. (2.5)

In turn, mk can be expressed as a function of Z and its derivatives using the following

recursive definition:

m1 = −
1

Z

∂Z

∂β
; mk+1 = m1mk −

∂mk

∂β
, for k > 1. (2.6)



13

This reformulation also simplifies the evaluation of the entropy and its derivatives. To

get the entropy value we need to compute Z and m1. For each of the derivatives we

need to compute one additional moment and reuse elements that we computed on the

previous stages. Each of those operations takes O(N), however computing Z is roughly

4× slower than computing the moments (due to exponentiation). Thus, the evaluation

of the entropy takes approximately five times as long as evaluating its derivatives. In

fig. 2.3 we show the typical example of the runtime calculation of the entropy and its

first two derivatives for a 100 points with respect to a different number of neighbors.

10
2

10
4

10
610

−6

10
−4

10
−2

10
0

 

 

N

R
u
n
ti
m
e

H(y, β)
H ′

β(y, β)

H ′′
β(y, β)

Figure 2.3: Runtime needed to
compute the entropy and its deriva-
tives for different neighborhood size.

We now consider the problem of searching for

σ (or β), which is implicit given the perplexity

K:

F (y, β,K) := H(y, β) − logK = 0. (2.7)

This is a 1D root-finding problem or an inver-

sion problem if H(y, β) is invertible over β.

Proposition 2.2.1. The entropy function for

Gaussian kernel is monotonically decreasing

function of β that decreases from logN for

β = 0 to 0 for β →∞.

Proof. The first derivative of the entropy can

be rewritten as

∂H(β)

∂β
= β

N∑

n

∂pn
∂β

dn = β
(( N∑

n=1

pndn
)2 −

N∑

n=1

pnd
2
n

)
= −β

N∑

n

N∑

m>n

pnpm(dn − dm)2.

(2.8)

It is negative for β > 0 given that the points are not equidistant from y.

From Proposition 2.2.1, the problem (2.7) is well defined for any value of β > 0 and has

a unique root β(y) for any K ∈ (0, N) in the same interval.

Next, notice that H(y, β) is continuously differentiable in an open neighborhood of

(y0, β0) for some fixed β0 > 0 and y0 ∈ R
D and that H ′

β(y, β0) 6= 0. Thus, we can

apply the implicit function theorem to show the existence of a uniquely defined local

continuously differentiable function β(y) that satisfies β(y0) = β0. Moreover, since

H(y, β) is invertible, the function β(y) is also a global function defined for all y. The



14

same argument can be applied to F (y, β,K), leading to the existence of a continuously

differentiable global function β(y,K) defined for all K ∈ (0, logN) and y ∈ RD.

Finally, we give bounds [βL, βU ] for β(y,K), i.e., satisfyingH(y, βL) > logK > H(y, βU )

for every y and K, that are easy to compute and reasonably tight. Assume w.l.o.g. the

squared distances are sorted increasingly: d21 < d22 < · · · < d2N . Define d2 = 1
N

∑N
n=1 d

2
n,

d4 = 1
N

∑N
n=1 d

4
n, ∆

2
N = d2N − d21 and ∆2

2 = d22 − d21.

Theorem 2.2.2. The lower and the upper bounds for β can be found using the formulae:

βL = max

(
N

N − 1

log N
K

∆2
N

,

√
log N

K

d4N − d41

)
, (2.9)

βU =
1

∆2
2

log
( p1
1− p1

(N − 1)
)
, (2.10)

where p1 is the only solution in the interval [3/4, 1] of the equation:

2(1 − p1) log
N

2(1− p1)
= log

(
min(

√
2N,K)

)
. (2.11)

The proof of this theorem can be found in Vladymyrov and Carreira-Perpiñán (2013a).

Practically, to obtain bounds, we can solve (2.11) using e.g. Newton’s method and needs

be done only once for all the points in the dataset, since p1 depends only on K and N .

Thus, the computation of the bounds is O(1) for each data point, since they only need

d1, d2 and dN . Tighter bounds can be obtained by using all distances d1, . . . , dN , but at

a cost O(N) per point, which defeats the purpose.

Sometimes the distances d21, d
2
2, . . . , d

2
N may be equal to each other, which violates the

assumption of increased distances d21 < d22 < · · · < d2N . While, this should not violate

the general results of the theorem above, special care should be taken to make sure that

∆2
2 6= 0 (otherwise we cannot compute the upper bound (2.10)). We can avoid this

problem by including self-affinities, in which case d21 is always d22. However, this will

change the definition of the affinities that was proposed originally Hinton and Roweis

(2003). Alternativelly, when d21 = d22 we can either (1) increase the distance to the second

neighbor by a little bit or (2) take ∆2
2 = d2k − d21, where dk is the first neighbor that is

located father than the first neighbor.

Rescaling the data (or the distances) rescales σ as well, i.e. H−1(K;αd) = αH(K; d) for

any α > 0. This suggests that rescaling the data should rescale the bounds correspond-

ingly, which indeed happens for our bounds.

Our results carry over, suitably modified, to some variations of our problem. The for-

mulation (2.1) implies pnn 6= 0. It is also possible to set self-affinities pnn to 0 (as is



15

sometimes done) by defining p over the distances d2 to dN instead. One can also use

sparse affinities if defining p(y;σ) on the k nearest neighbors of y rather than all N

points. This means setting N = k with points sorted in increasing distance to y. We

will analyze this variation in the next section.

2.3 Computation of entropic affinities

To compute the entropic affinities we need to solve the root-finding problem (2.7) as

efficiently as possible for every point in the dataset. As we show above, the solution

is uniquely defined, but is difficult to find in a closed-form, thus we have to retrieve to

iterative root-finding algorithms.

There exist many one-dimensional root-finding algorithms with different convergence or-

ders both derivative-free and derivative-based. Some of the most popular derivative-free

methods include the bisection method, Brent’s method (1973) and Ridders’ method (1979).

These methods have universal convergence guarantees and take as an input an interval

bracketing the root, which they iteratively shrink. The problem of those methods is that

they convergence rate is usually slower that the one of the derivative-based methods.

Derivative-based methods such as Newton’s, Halley’s and Euler’s methods (Traub, 1982)

start with a single initialization point and construct a sequence of iterates that, hopefully,

converge. The next iterate is found based on the value of the function and its derivatives

at the current iterate. These methods usually do not have global convergence guaran-

tees unless the function has some very specific form (Melman, 1997). However, their

convergence order is usually higher than that of derivative-free methods.

In this section we discuss the most efficient ways to find the solution to the root-finding

problem (2.7) to a high accuracy. First we show that it is more efficient to reformu-

late (2.7) to solve for log β, rather than β. Then, we show that using sparse distance

matrix leads to larger speed-up almost without compromising the accuracy. Next, we dis-

cuss different root-finding algorithms and show how we can efficiently employ the bounds

derived in the previous section to propose a simple modification to any derivative-based

algorithm to achieve universal convergence guarantees. Finally, we are going to analyze

different warm-start initializations that allows us to initialize the problem very close to

the root.



16

Clusters Lena image

0 1000 2000
0

5

 

 

Entropy
Bounds

β

H
(β
)

−10 −5 0 5
0

5

log β

0 20 40
0

5

10

β

H
(β
)

−15 −10 −5 0 5
0

5

10

log β

Figure 2.4: The entropy function (in red) with its bounds (in blue) for linear and
log scale of β. The solid blue lines indicate the lower and the upper bound obtained
using the formulae (2.9) and (2.10) for different values of K. The dashed blue line
indicates both functions inside the minimum in (2.9). The entropy is computed for
a typical point from two separated clusters with 50 uniformly distributed points
in each (left two plots), and lena 512× 512 image (right two plots).

2.3.1 Reformulation in logarithmic scale and bounds for

the root

Although we can employ any root-finding methods to solve (2.7), solve it in the β domain

is very impractical. As we show in fig. 2.4 the entropy changes very dramatically for

small values of β. Large β, on the contrary, results in the small values of the entropy

that are numerically challenging. Thus, we propose to reformulate the problem in the

logarithmic domain rather than linear (i.e. solve for log β instead of β). This changes the

domain of the problem from (0,+∞) to (−∞,+∞). The steep section on the left that

previously was bounded by 0, now spans infinitely to −∞, expanding the region where

the entropy changes dramatically. Because of the continuity and bijection properties of

the logarithm, we can always retrieve β once we have the solution for log β. For the

same reason, the analysis from the section 2.2, including the formula for bounds and

monotonic decrease of the entropy with respect to log β still hold in case of logarithmic

scale.

This reformulation slightly modifies the expressions for the derivatives of the entropy

and its derivatives (cf. (2.2)):

F (y, α,K) = eαm1 + logZ − logK,

∂F (y, α,K)

∂α
= e2α(m2

1 −m2),

∂2F (y, α,K)

∂α2
= 2e2α(m2

1 −m2) + e3α(m3 − 3m1m2 + 2m3
1).

In fig. 2.4 we show few examples of such reformulation. The region corresponding to the



17

−20 −15 −10 −5 0 5
0

1

2

3

4

5

 

 

k= 50
k=100
k=150
k=200

H
(β
)

log β
−20 −15 −10 −5 0 5
0

2

4

6

8

10

12

 

 

k=  1000
k= 10000
k=100000
k=262144

log β

Figure 2.5: Number of nearest neighbors used in computing the entropy. Left:
two separated clusters with 50 uniformly distributed points in each. Right: Lena
512× 512 image.

points in the second cluster is impossible to see in the β domain, but is clearly visible in

the log β domain. The right flat section, on the contrary, got shrank and becomes less

problematic for the root-finding methods. The bounds also underline the structure of

the entropy much better in case of logarithmic scale. They are quite tight and, except for

the small region near the upper bound, do not include the flat, numerically challenging

region of the function. Given that those bounds are computed in a constant time, this

gives very good advantage to our algorithm.

2.3.2 Using sparse distance matrix

Because of the exponential decay in the entropy sum (2.7), distant points do not influence

the entropy when log β is large. Therefore, when given perplexity K is small, we don’t

need to use distant neighbors, whose contribution to the entropy is almost 0. This allows

sufficient decrease in runtime, as computing the entropy becomes O(k), instead of O(N),

where k is a number of nearest neighbors that we keep. In fig. 2.5 we show how entropy

changes with respect to log β for different values of nearest neighbors k. While k affects

the solution when perplexity K is similar to k, when K ≪ k, the solution is almost

exactly equals to the case when k = N . Practically, we found that using k ≈ 5K gives

very good speed up with almost same quality of the affinities as in the full case.



18

−10 −5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

desired K
Entropy

Newton
Euler
Halley

H
(β
)

log β
−10 −5 0 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

desired K
Entropy

Newton
Euler
Halley

log β

Figure 2.6: Examples of a step of different gradient-based root-finding algorithms
initialized at β0 = −2 (left plot) or β0 = −9 (right plot).

Table 2.1: Comparison of different root-finding methods

Methods Conv. order Deriv. needed O(N) eval.

Derivative-free

Bisection linear 0 1

Brent linear 0 1

Ridder quadratic 0 2

Derivative-based

Newton quadratic 1 2

Euler cubic 2 3

Halley cubic 2 3

2.3.3 Choice of the root-finding algorithm

In this section we will focus mostly on the derivative-based methods, since they have

higher convergence rate. We first are going to describe three popular algorithms, namely

Newton’s, Euler’s and Halley’s methods and then propose a simple modification that

gives global convergence guarantees to those algorithm. All the algorithms are iterative

and for a given iteration log βk they use the current value of Fk, first derivative gk and,

possibly, second derivative Hk to find the next iteration log βk+1. In fig. 2.6 we illustrate

how the next iteration is computed for those methods.

Table 2.1 shows main properties of the root-finding methods described in this section.



19

Derivative-based root-finding algorithms

Newton’s method. Newton’s method is a second-order method that approximates

the function with a line (i.e., up to a first derivative) and the next iteration is found by

the intersection of the tangent of the current point with the x-axis. Newton’s method

approximates the function linearly, such that the line coincides with the current iteration

log βk in the function value value and its derivative. The next iteration is found using:

log βk+1 = log βk − Fk/gk. The method has quadratic rate of convergence and requires

only one derivative to be computed. In fig. 2.6 we show the iteration of the Newton

method with a cyan line. Notice, that the Newton’s iterates are the most aggressive

among the others root-finding techniques.

Euler’s method. This method uses first two derivatives and has a cubic rate of

convergence. It approximates the function with a parabola that coincides with the

current iteration log β in the function value and first two derivatives. The direction

comes from solving the parabolic equation for the direction pk:

Fk + gkpk +
1

2
Hkp

2
k = 0, (2.12)

whose solution is

pk =
−gk ±

√
g2k − 2HkFk

Hk
. (2.13)

If both roots are real, we should take the one that is closer to the initial point. If roots

are complex (i.e. when the parabola lies entirely above the root), we fall back to the

Newton method. In fig. 2.6 we show the iteration of the Euler method with a blue line.

Halley’s method. Similarly to Euler’s method, Halley’s method also uses first two

derivative and also has cubic rate of convergence. However, instead of parabola, it

approximates the function with a hyperbola that coincides with the current iteration in

the function value and first two derivatives (Scavo and Thoo, 1995). The direction is

given by

pk =
2Fkgk

2g2k − FkHk
. (2.14)

In fig. 2.6 we show the iteration of the Halley method with a magenta line. Halley’s

iterates are the most conservative among the other techniques.



20

Algorithm 1 Root-finding framework

Input: initial β, perplexity K, distances d21, . . . , d
2
N

compute bounds B using Theorem 2.2.2.

while true do

for k = 1 to maxit do

compute β using any derivative-based method

if tolerance achieved return β

if β 6∈ B exit for loop

update B
end for

compute β using bisection

update B
end while

Halley’s method can also be interpreted as an order two Householder’s method (with the

first order being a Newton’s method), that defines a direction pk as:

pk = −d(1/Fk)
(d−1)

(1/Fk)(d)
, (2.15)

where d is the order of the method.

Modification to achieve convergence

As we mention above, the derivative-based methods may converge slowly or may not

converge at all depending on the initialization. The most problematic are the flat regions

of the entropy, where the methods are making really long step that send the iteration

far away from the root. Another problem are cyclical iterations that bounce back and

forth between same values. Here we propose a simple modification to all derivative-based

methods that achieves a global convergence from any starting point.

We initialize the algorithm with an interval bracketing the root (obtained from the

bounds in Theorem 2.2.2) and a starting point within those bounds. The algorithm

consists of two nested loops: an outer loop with the bisection method, which is slow but

guarantees global convergence, and an inner loop with a derivative-based method, which

is fast but converges only locally. For each iteration of the inner loop, the algorithm

evaluates the function, updates the bounds based on a new function value, computes



21

the necessary derivatives and applies a derivative-based method. If the output of the

method falls outside of the current brackets or the number of iterations exceeds a certain

constant maxit, the inner loop terminates and the next point is computed using the outer

bisection loop. Thus the sequence of iterates contains a subsequence of bisection steps

(every maxit steps at most), which necessarily converges. Practically, we use a rather big

value of maxit = 20, since our good initialization (see below) makes it very infrequent

for the derivative-based method step to fail. Algorithm 1 shows the framework.

To connect the methods, Gander (1985) shows that many of the root-finding methods can

be described jointly using a simple framework. He proved that the iterative procedure

βk+1 = βk− f(βk)
f ′(βk)

H(t(βk)), where t(βk) =
f(βk)f

′′(βk)
f ′(βk)2

and H is some function, is of third-

order convergence if H(0) = 1, H ′(0) = 1/2. Indeed, the Halley’s method is recovered

with H(t) = (1− 1
2 t)

−1, the Euler’s method with H(t) = 2(1+
√
1− 2t)−1 and H(t) = 1

gives the Newton’s method.

Moreover, it appears that locally, close to the root, it is not essential which derivative-

based method is used, but how many of the derivatives it needs. Traub (1982) showed

that, for any p > 1, given p − 1 derivatives of the function there exists no method with

convergence order higher than p. Thus, if we use only one derivative, we cannot do better

than second order convergence and locally, close to the root, the behavior of Newton’s

method is optimal. Similarly, for two derivatives, both Euler’s and Halley’s methods

are optimal for third-order convergence methods. The differences between methods arise

mostly when the iterations are far from the root.

Fig. 2.7 shows the difference in number of iterations for different root-finding algorithms.

There, we initialized the three algorithms at different places within the bounds and

computed how many and what kind of iterations of the Algorithm 1 they need in order

to find the log β that corresponds to the perplexity K = 30 to an accuracy tol = 10−10.

We show two cases: a simpler one with nice behaving entropy for cameraman image

dataset and more complicated case for two uniformly distributed clusters with 100 points

each for perplexity K = 99. Notice that close to the root, Halley’s and Euler’ method

behave almost identically to each other, while for Newton’s method the region where the

number of iterations equal to 1 is a lot smaller. This is caused by a higher convergence

order of the former methods compared to the latter. However, in the region far from the

root, the methods behave quite differently. In the flat regions of the space, the initial

steps of Newton’s and Euler’s methods are too big and send the next iterate out of the



22

0

1

2

3

4

5

1

8

1

8

−5 −3 −1 1 3
1

8

 

 

log β

H
(β
)

H
al
le
y E
u
le
rN
ew

to
n

Normal iter.
Bisect. iter.

0

2

4

6

1

14

1

14

−10 −6.25 −2.5 1.25 5
1

14

 

 

log β

H
(β
)

H
al
le
y E
u
le
rN
ew

to
n

Normal iter.
Bisect. iter.

Figure 2.7: Top plot shows the entropy for different log β values and the bottom
three plots show the number of iteration needed for different methods to achieve
tolerance tol = 10−10 if initialized from a given log β value. Dotted black vertical
line corresponds to the desired log β value. Shaded region corresponds to the
area outside of the bounds. On the left: the entropy of the typical point from
cameraman image dataset, K = 30. On the right: more complicated example of
two clusters far away from each other with 100 points each, K = 99.

bounds, causing our algorithm to use a bisection. The region where bisection iterations

occur is smaller for Euler’s method compared to that of Newton’s method because the

parabolic approximation leads to smaller steps than the linear one. Away from the root,

Halley has this property of being conservative in the flat regions and having very small

steps. For the most part, this is a bad thing, because a single bisection step will get

much closer to the root (or even more importantly away from the flat region). The only

scenario for which I see Halley method being preferred is in very beginning of the flat

region, where even a small step can get us out from the flat part.

2.3.4 Warm-start initialization

We need to find a good initialization for the root-finding algorithm, i.e. as close as possible

to the root. One way to do it is to provide precomputed initialization values directly

to the algorithm. For example, we can initialize the algorithm from the middle of the

bounds given by Theorem 2.2.2, or initialize log β from the distance to the kth neighbor.

However, these initializations ignore the distances to most of the points, which affects the

entropy and so the root of F (y, β,K). On the other side, we also do not want to include



23

Final σ for K = 30 Distance to 30th neighbor

Figure 2.8: The order of points for different methods for 2 000 randomly dis-
tributed points in 2D. Left: MST order with κ = 30, right: MSP order with
κ = 100. The colors correspond to the true σ value.

more information in the initialization if its computational cost becomes commensurate to

evaluating the entropy function itself. Instead, we propose to capitalize on the correlation

that exists between log β and the structure of the dataset. We can then link the points

to each other based on some criterion and initialize the algorithm from the solution of

the points for which log β was already found. Linking the points can be sequential or,

more generally, based on a tree. In the sequential order each new point is initialized

from the solution to the previous one. In case of the tree, the order is not linear, but

forms a directed tree (or forest in general) with each point being a node. The points

are then processed in an order (such as given by breadth-first search) ensuring that the

root of a parent node is visited before the root of its children (which are initialized from

the parent). For both sequential and tree orders, starting point can be initialized, for

example, from the middle of the bounds. We now describe two different strategies for

choosing the order and show how they are correlated with β.

Local strategy

This strategy is based on the existence and continuity of the function β(y) defined

in section 2.2. As we show in that section, continuous changes in y lead to continuous



24

changes in log β, which means that nearby points should have similar log β values (except

where β(y) changes quickly). Therefore, it makes sense to initialize the points from their

local neighbors for which we already know the solution.

First, we define a graph (V,E) where V are the vertexes that correspond to the set of

data points and E are the edges that are represented by the matrix of square distances.

This matrix is given to us, at least partially, in the definition of the problem. If all

the distances are available, the graph is full, otherwise it is sparse. Below we propose

different ways to build a local order of this graph and fig. 2.8 compares first two of them

for a simple toy example.

Minimum Spanning Tree. By definition, Minimum Spanning Tree (MST) or more

generally Minimum Spanning Forest (in case of disconnected components) has a minimal

weight among all the possible spanning trees of the graph. Thus, traversing it we would

be moving along only the smallest distances, which gives a local traversal.

To build the MST we used Kruskal’s algorithm, which takes O(Nκ logN) time to con-

struct, where κ is the degree of each of the vertex. MST is faster to compute for smaller

κ, so it might be beneficial not to include far distances from the graph and use smallish

κ value. However, it should be not too small for a graph to lose its connectivity.

Once the tree is constructed we need to traverse it in a manner that initializes the points

from the parent that already been solved. This can be achieved by doing breadth-first

search (BFS) on the tree and solving for the points that we encounter along the way. If

we have multiple components we can either use initial starting point or initialize from

the solution of the last point in previous component. We observed that the choice of

the root point(s) for the tree does not critically affect the results. In fig. 2.8 we see that

the edges of the tree roughly follow the σ values for the points (i.e. there are no edges

between the points of drastically different color).

Minimum Spanning Path. However, building MST sometimes can be too expen-

sive. In this case we can create a faster, but less accurate solution by approximating a

minimum spanning path (the exact solution is TSP, witch is NP -complete). We can do

it in O(Nκ) by moving through the points, each time jumping to the closest unvisited

point among the available neighbors. In case when all the points in the neighborhood

are visited, we jump at random to some unvisited point. Although in most cases the sum

of the distances of the path is not optimal, as we show in the experimental section, the



25

Algorithm 2 Minimum Spanning Path

Input: graph G = {E,V}, root r ∈ V

i = r, P = ∅
add i to P and remove it from V

while true do

while exist neighbors of i in V do

set j as a closest neighbor of i in V

add j to P and remove it from V

i = j

end while

if V = ∅ then
return P

else

pick i at random from V

end if

end while

performance usually is very close to the one from MST. Similar to MSP, we can farther

sparsify the distance graph by leaving only κ nearest neighbor graph for some small κ.

Algorithm 2 shows the pseudocode. The cost is linear in the number of edges of the

graph: O(Nκ). Fig. 2.8 demonstrates that the order also gives local result and roughly

follows the σ values.

Raster order. For some specific domain, we can create an additional order that

leverages the neighborhood structure that might be given indirectly as a part of the

problem. For example, if the data points represent the pixels in the image (e.g. for image

segmentation using spectral clustering), it is common to decode the spatial coordinates

of the pixels as a parameters of that pixel (along with the range features such as pixel

intensity or its color). In this case we can create a raster order by zigzagging edge-to-

edge left to right and then right to left from the top to the bottom of the image. In this

order, the spatial features vary only by an offset of 1 and the range features also change

slowly (except at edges maybe). It is an example of local order with essentially no extra

computation cost.



26

Final σ for K = 30 Distance to 30th neighbor

 

 

2

3

4

5

6

 

 

6

8

10

12

Figure 2.9: The order of points for different methods for 2 000 randomly dis-
tributed points in 2D. Left: final σ values with perplexity K = 30, right: distance
to 30th neighbor of each point. The data is the same as in fig. 2.8.

Density strategy

Our second strategy, which we defined as DK , takes into account the density around the

points. If we make the region denser by moving the points closer to y, the distances

dk would become smaller and so will the entropy H(y, β). Therefore, for the entropy

to remain constant, the resulting log β must be larger in dense regions and smaller in

sparser ones. Indeed, β is related to a nonparametric density estimate of the dataset.

Estimating the density robustly in the first place is not trivial, but we can use a simple

estimate. First, we take the distance from the query point y to its kth neighbor. Then,

we can sort the points y1, . . . ,yN in increasing distance of its κth nearest neighbor,

which gives a sequential order. Note this is different from the rule-of-thumb strategy

of setting σ directly as the distance to kth neighbor (e.g. k = 7 in Zelnik-Manor and

Perona, 2004).

Fig. 2.9 shows the final σ vales as well as the distance to 30th neighbor for some toy

dataset. Notice that the right plot takes dramatically different values and therefore is

not good for the initialization of root-finding algorithm. However, the order of points

looks similar to the final case.



27

2.4 Experimental evaluation

2.4.1 Bounds quality.

We will start by evaluating the performance of the bounds. We have already shown

in fig. 2.4 that the bounds are quite tight and mostly omit challenging flat regions. In

addition to that experiment, in fig. 2.10 we show the upper and lower bound for two

datasets. First dataset is 128 × 128 image from cameraman. Each data point in this

dataset is a pixel represented by spatial and range features (i, j, L, u, v) ∈ R
5 where

(i, j) is the pixel location in the image and (L, u, v) the pixel value in a color image

(overall N = 16384 points in D = 5 dimensions). For this dataset we seek log β that

corresponds to the perplexity K = 50. As we see, both bounds are quite tight and also,

from the visualization of the bounds and the solution, we can see that the bounds vary

individually from point to point and the general structure of the bounds is related to

the structure of the solution. The second dataset that we tried is three clusters with 500

points each that were generated with different means and variances. Here we are after

finding the log β that corresponds to the perplexity K = 10. The tighter the points are

inside their clusters, the larger the final log β should be. We clearly see it on the right

plot. The final bounds are quite tight. Also, note that the upper bound follows the same

structure as the final log β.

2.4.2 Order comparison.

In order to have a benchmark for comparing the order, in addition to different local and

density orders that we described in the section 2.3.4, we are going to compare to two more

unrealistic orders. First, the random order, where the order comes from initializing each

new point randomly without replacement. This order can serve us as an upper bound of

our initializations. Second, the oracle order processes the points in the order of their true

log β values, which is optimal in terms of initializing the points closest to the solution

(although not practical, obviously). Finally, we are going to compare to the bounds

initialization, which is not technically an order, but an initialization from the middle of

the bounds. In fig. 2.11 we show different orders as a colormap for a cameraman image

dataset.

First, we are going to see how MST, MSP and Dκ are affected by the changes in κ. For

MST and MSP κ changes the number of nearest neighbors available for the construction



28

log β∗ Lower bound Upper bound

0 5000 10000 15000
−10

−5

0

5

10

lo
g
β

 

 

−5

0

5

0 500 1000 1500
−10

0

10

20

30

 

 

lo
g
β

H(β)
lower
upper

N (sorted by log β)
−20 0 20

−20

0

20

−20 0 20

−20

0

20

−20 0 20

−20

0

20

 

 

−5

0

5

10

15

Figure 2.10: Bounds and final log β∗ values for cameraman image dataset for
perplexity K = 50 (top plot) and three Gaussian clusters dataset with 500 points
each for K = 10 (bottom plot). From left to right: (1) lower, upper and final log β∗

sorted by the value of the log β∗; (2) final log β∗ for every point in the dataset (3)
lower bound for every point in the dataset (4) upper bound for every point in the
dataset.

of the order. For Dκ κ represents which nearest neighbor we take to measure the density

of points. As a measure of order quality we used the following metric. Assume that the

final log β are already given. Then, a good order will minimize the distance between the

final log β and the value where it has been initialized from, i.e. a previous log β value:

Sβ =
N∑

n=1

∣∣log βn − log βk(n)
∣∣ , (2.16)

where k(n) is the index of the parent of the element n along the path.

In fig. 2.12 we measure the quality of different orders as κ grows for a cameraman image

dataset as we look for β that corresponds to the perplexity K = 30. Apart from Sβ, as

a measure of the order distance in the log β space, we also show Sy, which measures the

path length but in the original Euclidean space: Sy =
∑N

n=1

∥∥yn − yk(n)

∥∥2. Last plot

shows the runtime needed to compute the order for different κ.

First, notice that the oracle order is much better in β space comparing to all the other

orders. Second, the MST order gives robustly good performance for a large range of κ

values. Given the linear runtime with respect to κ (see the last plot), this suggests using



29

Input image Oracle MST

MSP Dκ Bounds Initialization

Figure 2.11: Example of different orders for a cameraman image dataset. Col-
ormap in MST order corresponds to the initialization order of the points (BFS
traversal). Bounds initialization is given by sorting σ values given by the middle
of the bounds. For all the orders κ = 30.

MST with small κ to achieve larger speedups. Next, the MSP results in smaller path in

β space as we increase κ, while the runtime almost doesn’t change. Thus, we suggest

using largest κ possible that gives better performance with only small increase over the

runtime. For Dκ order the smallest path β space occurs for κ that is slightly larger than

K. In our experiments we would take κ = K as it gives reasonable performance. For the

other orders, as we expected we see that MST and MSP are both better than the raster

order, which in turn worse than initialization from the middle of the bounds, which is

worse than random. By looking at Sy plot we see that MST, MSP and raster also give

smaller path distance in the original Euclidean space, which make sense, because those

orders are local.



30

10
1

10
2

10
1

10
2

10
3

10
4

 

 

Oracle

MST
MSP
Dκ

Bounds

Raster

Rand.

κ

S
β

10
1

10
210

4

10
5

10
6

κ

S
y

10
1

10
2

10
−3

10
−2

10
−1

10
0

κ

R
u
n
ti
m
e,

s

Figure 2.12: Analysis of κNN orders for cameraman image for perplexity K = 30.
Left plot shows the path distance in the log β space for different orders, central
plot shows the path distance in the original space and right plot shows the runtime
needed to construct different orders.

2.4.3 Root-finding comparison.

We compare several different root-finding algorithms: Ridder’s, Brent’s and bisection for

derivative-free methods, and Euler’s, Halley’s and Newton’s for derivative-based meth-

ods. The former group of methods were run as is without any modification. The latter

group were incorporated into our globally convergent framework (Algorithm 1). First we

show how well those root-finding algorithms converge. In fig. 2.13 we show the number

of points converge to a certain tolerance at the initialization and after 2nd, 4th, 6th

and 20th iteration as we look for log β that corresponds to the perplexity K = 30 in

cameraman image dataset. For the order, we used MST local order. At the initializa-

tion, the derivative-based method are already give better solution than derivative-free

methods with more than half points already converged to 10−3 tolerance. After two

iterations, third order method (Euler and Halley) already have more than 99% of the

points already converged to the machine precision tolerance (we limit it to 10−14 because

the lower values are already too close to the machine precision and oscillations start to

occur because of precision loss). Second order methods converge a bit slower, Newton’s

method takes four iterations for 99% of the points converge to the tolerance ≤ 10−14 and

Ridder’s method – six iterations. Finally, for the first order methods, Brent’s method

needs around 20 iterations and bisection needs around 50 iterations.

2.4.4 Evaluation of β for different datasets.

All the user needs to do to obtain entropic affinities for a given dataset is to set the

perplexityK and possibly their sparsity level. For the experiments, we usedK = 30 and a



31

Initialization 2nd iter. 4th iter. 6th iter. 20th iter.

10
−14

10
−9

10
−4

10
1

10
1

10
2

10
3

10
4

 

 

#
of

p
oi
n
ts

Tolerance

Euler
Newton
Halley
Ridder
Brent
Bisect.

10
−14

10
−9

10
−4

10
1

Tolerance
10

−14
10

−9
10

−4
10

1

Tolerance
10

−14
10

−9
10

−4
10

1

Tolerance
10

−14
10

−9
10

−4
10

1

Tolerance

Figure 2.13: From left to right: tolerance achieved by different root-finding meth-
ods for every point in the dataset at initialization and after 2nd, 4th, 6th and 20th
iteration. The dataset is 128 × 128. cameraman image. Order is given by MST
algorithm.

 

 

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.14: Lena test image and the learned β values for every pixel for a
perplexity K = 30.

sparse distance matrix with nonzero elements corresponding to the 250 nearest neighbors.

This almost did not alter the final result, because the terms in (2.2) responsible for farther

distances are negligible due to the fast decay of the Gaussian tails. For all the algorithms

we set the convergence tolerance to 10−10. We chose such an accurate value because,

with quadratic or cubic convergence rate, one needs very few additional iterations to

achieve such accuracy, and the user need not worry about setting the tolerance (as we

show in fig. 2.13). We used three datasets from very different domains: pixels of a single

image, an image collection, and word-count vectors from documents.

The first dataset is the 512× 512 Lena image (fig. 2.14 left). Similar to the cameraman

in the experiment above, each data point in this dataset is a pixel represented by spatial

and range features (i, j, L, u, v) ∈ R
5 where (i, j) is the pixel location in the image



32

 

 

Euler Newton Halley Ridder Brent Bisect.

L
en

a

10
1

10
2

10
3

R
u
n
ti
m
e,

s

Avg.

O
ra
cl
e

M
ST

M
SP D κ

R
as
te
r

B
ou
nd
s

R
an
do
m

10
0

10
1

10
2

A
v
g.

it
er
at
io
n
s

O
ra
cl
e

M
ST

M
SP D κ

R
as
te
r

B
ou
nd
s

R
an
do
m

M
N
IS
T

10
1

10
2

R
u
n
ti
m
e,

s

O
ra
cl
e

M
ST

M
SP D κ

B
ou
nd
s

R
an
do
m

10
0

10
1

10
2

A
v
g.

it
er
at
io
n
s

O
ra
cl
e

M
ST

M
SP D κ

B
ou
nd
s

R
an
do
m

G
ro
il
er

10
0

10
1

R
u
n
ti
m
e,

s

O
ra
cl
e

M
ST

M
SP D κ

B
ou
nd
s

R
an
do
m

10
0

10
1

10
2

A
v
g.

it
er
at
io
n
s

O
ra
cl
e

M
ST

M
SP D κ

B
ou
nd
s

R
an
do
m

Figure 2.15: Runtime statistics for 3 different datasets, with 6 root-finding meth-
ods (color-coded as in the legend). From top to bottom: 512 × 512 Lena image,
60 000 MNIST digits, 30 991 articles from Grolier’s encyclopedia. runtime (left)
and average number of iterations (right) for different methods with different ini-
tializations. Note the log scale in many of the plots.



33

and (L, u, v) the pixel value in a color image (overall N = 262 144 points in D = 5

dimensions).

Fig. 2.14 (right) shows the resulting β. It preserves much information about the image,

in particular edges. β tends to change gradually from pixel to pixel; small values cor-

respond to dark regions of space and big ones to bright regions. The final β and the

corresponding affinity matrix can be used for segmenting the image using mean-shift or

spectral methods, for example.

For the second dataset we used 60 000 handwritten digits from the MNIST dataset.

Finally, the third dataset is a subset from Grolier’s encyclopedia dataset. There, each

datapoint represents the word count of the most popular 15 275 words from one of the

30 991 articles of the encyclopedia. Compared with the first two datasets (especially the

first one), where there are reasonably densely populated areas of input space, the third

dataset mostly consists of empty space. The points are located far away from each other

and β values of neighboring points are not similar anymore. This will be clearly visible

in the results. The affinities resulting from the MNIST and Grolier datasets can be used

for visualization using dimensionality reduction, spectral clustering or semi-supervised

learning, for example.

For each of the datasets, we present three statistics. Fig. 2.15 shows the total runtime

for different root-finding algorithms with different initializations and also the average

number of iterations per point required to achieve the tolerance. Fig. 2.16 we show the

number of the points that converged for a given number of iterations for different orders

and different datasets. For the derivative-based orders, most of the points need only one

or two iterations to converge. Comparing to that, derivative-free methods, such a Ridder

and Brent need anywhere from 5 to 15 iteration and Biseection method need 30 to 100

iterations.

First of all, notice that Halley’s and Euler’s methods have very similar performance

for all the datasets. Both methods require only two iterations for most of the points.

However, there is a small difference, in particular for the bounds initialization of the

MNIST dataset and for the MST, bounds initialization and random order in the Grolier

dataset. The reason is the initialization in the flat region for many of the points (note

that the result of those initializations is not good compared to e.g. the Dκ order). Similar

to what we see in the flat region of fig. 2.7, Halley’s method is more conservative and

moves slowly towards the solution, whereas Euler’s method uses steps that are too big



34

Oracle MST Dκ Bounds Random

L
en

a

10
0

10
1

10
20

1

2

3x 10
5

#
of

p
oi
n
ts

10
0

10
1

10
2
10

0
10

1
10

2
10

0
10

1
10

2
10

0
10

1
10

2

M
N
IS
T

10
0

10
1

10
20

2

4x 10
4

#
of

p
oi
n
ts

10
0

10
1

10
2
10

0
10

1
10

2
10

0
10

1
10

2
10

0
10

1
10

2

G
ro
il
er

10
0

10
1

10
20

1

2x 10
4

#
of

p
oi
n
ts

Iteration
10

0
10

1
10

2

Iteration
10

0
10

1
10

2

Iteration
10

0
10

1
10

2

Iteration
10

0
10

1
10

2

Iteration

 

 

Euler Newton Halley Ridder Brent Bisect.

Figure 2.16: Cumulative number of points that converged for a given number of
iterations for different orders and different datasets. Notice the log plot for the
number of iterations.

and retreats to bisection, which moves away from the flat region in one iteration.

Compared to the other derivative-based root-finding methods, Newton’s method is a

second-order method and requires slightly more iterations than Halley’s or Euler’s meth-

ods. However, its runtime is lower because each iteration does not need to compute the

second derivative of the entropy, which costs O(N). For the derivative-free methods,

Ridder’s method is fastest, but is still approximately twice as slow as Newton’s method.

Brent’s method and the bisection are approximately 5× and 10−20× as slow as Newton’s

method, respectively.

For different initializations, MST and Dκ have very similar results for the MNIST and

Lena datasets, with Dκ being only slightly better (e.g. for Euler’s method in the Lena

dataset it takes 2.09 iterations on average for Dκ compared to 2.22 for MST ). However,

for the Grolier dataset the MST order does almost as badly as the random order. This

is due to the spatial emptiness that we described above. This does not seem to affect the

Dκ order, which is only 22% slower than the oracle order. The bounds initialization and

random order perform almost identical to each other and not terribly bad, only about



35

1–2 iterations more than the other initializations. However, for 50% of the points, the

extra iterations are the bisection iterations during the first steps of the algorithm when

the initial region is flat and the root-finding methods send us away from the bounds. This

also indicates that the bounds are quite tight and one or two extra iterations are able to

move very close to the root no matter where the initialization is. The raster order for

Lena dataset does almost as good as the MST order, suggesting it as an fast alternative

local order for image pixels. Finally, the oracle order achieves nearly 1 iteration per

point for Euler’s and Halley’s method on Lena and MNIST. For example, for Euler’s

method only 0.1% of all the points needed 2 iterations to converge. However, in terms

of the runtime the MST and Dκ orders achieve a speed that is only twice as slow as the

optimal one. For the Grolier dataset the average number of iterations per point is more

than one even for the oracle order. This is because, even in the best case, the σs are not

as close to each other as in the Lena and MNIST datasets.

2.5 Discussion

The entropic affinities can give high-quality results with many different machine learning

algorithms that are based on graphs (as illustrated in fig. 2.1), and only require the user

to set the perplexity K and possibly the sparsity level of the affinity matrix. However,

up to now they have not been in widespread use outside nonlinear embedding methods

such as SNE (Hinton and Roweis, 2003) or EE (Carreira-Perpiñán, 2010). Reasons for

this could be the lack of a closed-form expression for the bandwidth of each point given

the perplexity, and the (up to now) computational cost involved in solving for it. With

our numerical algorithms, there is now very little difference between applying a closed-

form formula and solving for the implicit bandwidths almost exactly. This is for two

reasons. First, even if a user is able to compute bandwidths very efficiently (e.g. with a

rule-of-thumb formula), computing the elements of the affinity matrix themselves is still

O(N2) or O(Nκ) in the full and sparse case, respectively. Each iteration of our root-

finding method has this same cost, but (1) we require just a few such iterations, and (2)

the affinities are produced for free in our last iteration. Thus, the cost of applying the

rule-of-thumb formula to compute the affinity values given the bandwidths is comparable

to that of computing entropic affinities and their bandwidths. Second, we can achieve

near-machine-precision at nearly no extra cost because of the high order of convergence



36

of the root-finding methods.

The bisection algorithm used by Hinton and Roweis (2003), although slow, was not much

of a problem up to now because the optimization in methods such as SNE was so costly

that the number of points N was limited to a few thousands, for which the bisection time

was acceptable. However, due to recent improvements in embedding optimization that

we are going describe in details in chapters 3,4 and 5 have significantly increased the

values of N that are practical: for example, using the spectral direction, the embedding

optimization takes 10 min for 20 000 MNIST images in a workstation, while the bisection-

based computation of the entropic affinities takes over 20 min and becomes a bottleneck.

With our algorithm, this time is reduced to 55 seconds.

It is interesting to problem to use entropic affinities for the problems other than manifold

learning, but that still require an affinity matrix. Such problems include, e.g. spectral

clustering Ng et al. (2002) and mean-shift clustering Carreira-Perpiñán (2006). In these

problems, instead of showing the underlying manifold, the problem is to emphasize the

clustering structure of the data. The latter can be formulated inside the affinity matrix

as having high affinity between points in the same cluster and no or small affinity for

the points in different clusters. The entropic affinities can produce the desired matrix as

long as the perplexity K is smaller than the number of points in each cluster. Otherwise,

the bandwidth would be too big and start affecting other classes.

2.6 Conclusion

By extending the entropic affinity function to the entire Euclidean space, we have been

able to characterize its behavior, show that it is a well-defined function and give explicit

bounds for its implicitly defined value. Based on these properties, we have analyzed

different algorithms for the computational problems involved: root-finding and ordering

points for best initialization. One of the best and simplest choices is a Newton-based

iteration, robustified with bisection steps, using a tree- or density-based order. This

achieves just above one iteration per data point on average, which is the optimally

achievable performance.

Entropic affinities work better than using a single bandwidth or multiple bandwidths set

with a rule of thumb, provide a random-walk matrix for a dataset, and only require a

user to set the global number of neighbors. The fact that they define the scale implicitly



37

and require an iterative computation may have prevented their widespread application,

but our algorithm makes the computation scale up almost as if they were given in explicit

form.



Chapter 3

Partial-Hessian Strategies for Fast

Learning of Nonlinear

Embeddings

3.1 Introduction

In this chapter we are going to consider the that the affinity matrixW ∈ R
N×N is already

given (e.g. using entropic Gaussian affinities set with an entropic affinities discussed in

chapter 2) and it corresponds to pairs of high-dimensional points y1, . . . ,yN , which need

not be explicitly given, and we want to obtain corresponding low-dimensional points

x1, . . . ,xN ∈ R
d whose Euclidean distances optimally preserve the similarities. As we

already discussed in the introduction, there exist many methods that are able to ob-

tain those images, such as linear methods (e.g. PCA or MDS), spectral methods (e.g.

LE or ISOMAP) and nonlinear embeddings (NLE; e.g. SNE, t-SNE, EE). We showed

that latter class of methods are able to give much better embedding quality comparing

to other methods. However, a fundamental problem with NLE has been their difficult

optimization. First, they can converge to bad local optima. In practice, this can be

countered by using a good initialization (e.g. from spectral methods), by simulated an-

This chapter is an extended version of Vladymyrov and Carreira-Perpiñán (2012).

38



39

nealing (e.g. adding noise to the updates; Hinton and Roweis, 2003) or by homotopy

methods (Memisevic, 2006; Carreira-Perpiñán, 2010). Second, numerical optimization

has been found to be very slow. Most previous work has used simple algorithms, some

adapted from the neural net literature, such as gradient descent with momentum and

adaptive learning rate, or conjugate gradients. These optimizers are very slow with ill-

conditioned problems and have limited the applicability of nonlinear embedding methods

to small datasets; hours of training for a few thousand points are typical, which rules

out interactive visualization and allows only a coarse model selection.

The goal of this chapter is to devise training algorithms that are not only significantly

faster but also scale up to larger datasets and generalize over a family of NLE algorithms

(SNE, t-SNE, EE and others). We do this not by simply using an off-the-shelf optimizer,

but by understanding the common structure of the Hessian in these algorithms and their

relation with the graph Laplacian of spectral methods. Thus, our first task is to pro-

vide a general formulation of NLE (section 3.2) and understand their Hessian structure,

resulting in several optimization strategies (section 3.3). We then empirically evaluate

them (section 3.4) and conclude by recommending a strategy that is simple, generic,

scalable and typically (but not always) fastest — by up to two orders of magnitude over

the existing methods.

3.2 A General Embeddings Formulation

CallX = (x1, . . . ,xN ) the d×N matrix of low-dimensional points, and define an objective

function:

E(X;λ) = E+(X) + λE−(X) λ ≥ 0 (3.1)

whereE+ is the attractive term, which is often quadratic psd and minimal with coincident

points, and E− is the repulsive term, which is often nonlinear and minimal when points

separate infinitely. Optimal embeddings balance both forces. Both terms depend on X

through Euclidean distances between points and thus are shift and rotation invariant.

We obtain several important special cases:

Normalized symmetric methods minimize the KL divergence between a posterior

probability distribution Q over each point pair normalized by the sum over all



40

point pairs (where K is a kernel function):

qnm =
K(‖xn − xm‖2)∑N

n′,m′=1 K(‖xn′ − xm′‖2)
, qnn = 0

and a distribution P analogously defined on the data Y (thus constant wrt X)

with possibly a different kernel and width. Notice that the probabilities Q are

defined explicitly with bandwidth σ = 1/
√
2. setting the bandwidth to some other

value just rescales the final embedding. This is equivalent to choosing

E+(X) = −
N∑

n,m=1

pnm logK(‖xn − xm‖2),

E−(X) = log

N∑

n,m=1

K(‖xn − xm‖2)

and λ = 1 in eq. (3.1). Particular cases are s-SNE (Cook et al., 2007) and t-SNE,

with Gaussian and Student’s t kernels, respectively. We will call pnm = w+
nm from

now on.

Normalized nonsymmetric methods consider instead per-point distributions Pn and

Qn, as in the original SNE (Hinton and Roweis, 2003). Their expressions are more

complicated and we focus here on the symmetric ones.

Unnormalized models dispense with distributions and are simpler. For a Gaussian

kernel, in the elastic embedding (EE; Carreira-Perpiñán, 2010) we have

E+(X) =
N∑

n,m=1

w+
nm ‖xn − xm‖2, E−(X) =

N∑

n,m=1

w−
nme−‖xn−xm‖2 ,

where W+ and W− are symmetric nonnegative (with w+
nn = w−

nn = 0, n =

1, . . . , N).

Spectral methods such as Laplacian eigenmaps or LLE define

E+(X) =

N∑

n,m=1

w+
nm ‖xn − xm‖2, E−(X) = 0, (3.2)

with nonnegative affinities W, but add quadratic constraints to prevent the trivial

solution X = 0. So E+ is as in EE and SNE.



41

This formulation suggests previously unexplored algorithms, such as using an Epanech-

nikov kernel, or a t-EE, or using homotopy algorithms for SNE/t-SNE, where we follow

the optimal path X(λ) from λ = 0 (where X = 0) to λ = 1. It can also be extended to

closely related methods for embedding (kernel information embedding; Memisevic, 2006)

and metric learning (Peltonen and Kaski, 2005; Goldberger et al., 2004), among others.

However, this formulation is not complete. For example, it does not cover NeRV Venna

et al. (2010), which propose to have a sum of two divergences, P over Q and Q over P ,

that are weighted by some user parameter.

We express the gradient and Hessian (written as matrices of d×N and Nd×Nd, resp.)

in terms of Laplacians, following Carreira-Perpiñán (2010), as opposed to the forms used

in the SNE papers. This brings out the relation with spectral methods and simplifies

the task of finding pd terms. Given an N ×N symmetric matrix of weights W = (wnm),

we define its graph Laplacian matrix as L = D −W where D = diag (
∑N

n=1wnm)

is the degree matrix. Likewise we get L+ from w+
nm, Lq from wq

nm, etc. L is psd

if W is nonnegative (since uTLu = 1
2

∑N
n,m=1wnm(un − um)2 ≥ 0). The Laplacians

below always assume summation over points, so that the dimension-dependent Nd×Nd

Laplacian Lxx (from weights wxx
in,jm) contains N×N Laplacian for each pair of dimensions

indexed by (i, j). All other Laplacians are dimension-independent, of N ×N . Using this

convention, we have for normalized symmetric models:

∇E = 4XL (3.3)

∇2E = 4L⊗ Id + 8Lxx − 16λ vec (XLq) vec (XLq)T

where Id is the d × d identity matrix and we define the following scalar functions (′, ′′

are derivatives):

K = kernel, K1 = (logK)′ = K ′/K, K2 = K ′′/K

K21 = (logK)′′ = (KK ′′ − (K ′)2)/K2 = K2 −K2
1

and weights (K1 means K1(‖xn − xm‖2), etc.)

wnm = −K1 (pnm − λqnm) wq
nm = K1 qnm

wxx
in,jm = − (K21 pnm − λK2 qnm) (xin − xim)(xjn − xjm).

In particular, for s-SNE the weights are as follows:

wnm = pnm − λqnm wq
nm = −qnm

wxx
in,jm = λqnm(xin − xim)(xjn − xjm)



42

and for t-SNE they are (K means 1/(1 + ‖xn − xm‖2)):

wnm = (pnm − λqnm)K wq
nm = −qnmK

wxx
in,jm = −(pnm − 2λqnm)(xin − xim)(xjn − xjm)K2.

For the elastic embedding (an unnormalized model):

∇E = 4XL ∇2E = 4L⊗ Id + 8Lxx (3.4)

wnm = w+
nm − λw−

nme−‖xn−xm‖2

wxx
in,jm = λw−

nme−‖xn−xm‖2(xin − xim)(xjn − xjm).

Note the Hessian of the spectral method (i.e., for λ = 0, with constant weights w+
nm) is

constant: ∇2E = 4L+ ⊗ Id.

3.3 Partial-Hessian Strategies

Our goal is to achieve search directions that are fast to compute, scale up to larger

N , and lead to global, fast convergence. This rules out computing the entire Hessian.

Carreira-Perpiñán (2010) derived pd directions for EE by using splits of the gradient such

as ∇E = 4X(D+ +(L−D+)) = 0 (where D+ is the degree matrix of L+ = D+−W+),

then deriving a fixed-point iterative scheme (à la Jacobi) such as X = X(D+−L)(D+)−1

and a search direction X(D+ − L)(D+)−1 −X. Here we use a more general approach

that illuminates the merits of each method, by directly working with the Hessian ∇2E.

We define directions pk ∈ R
Nd of the form Bkpk = −gk where gk is the gradient at

iteration k and Bk is a pd matrix (this ensures a descent direction: pT
k gk < 0), and use

a line search on the step size αk > 0 satisfying the Wolfe conditions to obtain the next

iterate xk+1 = xk + αkpk (Nocedal and Wright, 2006). This defines a range of methods

from Bk = I (gradient descent, very slow) to Bk = ∇2E(Xk) (Newton’s direction, which

would require modification to ensure descent but is too expensive anyway). We construct

Bk as a psd part of the Hessian at xk (our partial Hessian). Inspection of the very special

structure of ∇2E in eqs. (3.3) and (3.4) immediately shows what parts we can use. Our

driving principle is to use as much Hessian information as possible that is psd, fast to

compute and leads to an efficient solution of the pk linear system (e.g. sparse or constant

Bk). Note computing E or ∇E is O(N2d), but solving a Hessian nonsparse linear system

is O(N3d3).



43

Search directions For normalized symmetric (and nonsymmetric) models (3.3), we

consider functions K with a nonnegative argument t ≥ 0 and satisfying K(t) > 0 and

K ′(t) < 0, i.e., positive and decreasing. The term on L contains a psd part −K1pnm

(which is constant for SNE and EE) and a nsd part λK1qnm; the term on Lxx is only

guaranteed to contain a psd part for i = j and depending on the signs of K2 and K21;

and the term on Lq is always nsd. These psd parts can be used to construct descent

directions. Two important existing cases are s-SNE (K(t) = e−t, K1 = −1, K2 = 1,

K21 = 0) and t-SNE (K(t) = 1
1+t , K1 = −K, K2 = 2K2, K21 = K2). For EE (an

unnormalized model with K(t) = e−t), we follow an analogous but simpler process: the

Hessian lacks some of the nsd parts in normalized models, e.g. the vec (·) term, so it

should afford better psd Hessian approximations.

The Spectral Direction (SD) We have found that in most cases a particular par-

tial Hessian strikes the best compromise between deep descent and efficient computation,

and yields what we call the spectral direction (SD). It is constructed purely from the at-

tractive Hessian ∇2E+(X) = 4L+ ⊗ Id, which as noted earlier is psd, and consists of d

identical diagonal blocks of N×N . For EE and s-SNE this amounts to taking λ = 0 and

so using the Hessian of the spectral method, thus it would achieve quadratic convergence

in that case. We find it works surprisingly well for λ > 0. Effectively, we “bend” the

exact gradient of the nonlinear E using the curvature of the spectral E+.

This basic direction is refined as follows. (1) Owing to the shift invariance of E, the

resulting linear system is not pd but psd. To prevent numerical problems we add a

small µkI to it (µk = 10−10 min (L+
nn) works well). (2) Instead of Bkpk = −gk (which

is O(N3d)) we solve two triangular systems RT
k (Rkpk) = −gk (which is O(N2d)) where

Rk is the upper triangular Cholesky factor of Bk; it can be computed in place in O(13N3)

with standard linear algebra routines, and is sparse if Bk is sparse. This is crucial for

scalability. For Gaussian kernels (SNE, EE) L+ is constant and it need only be factorized

once in the first iteration. If L+ depends on X, as in t-SNE, scalability is achieved by

taking it constant (e.g. L+ at X = 0). (3) We allow the user to sparsify L+ through (say)

a κ-nearest-neighbor graph, which is often available as part of the data (the affinities

wnm or probabilities pnm). This establishes a family from κ = N (no sparsity), which

The functions K that result in the simplest Hessians would have K21 = 0 or K2 = 0, which
imply the Gaussian or Epanechnikov kernels, respectively. The functions K that result in the
Hessians having most pd parts would have K1 ≤ 0 (always satisfied), K21 ≤ 0 and K2 ≥ 0; the
Gaussian or Epanechnikov kernels also satisfy these conditions.



44

yields Bk = L+, to κ = 0 (most sparsity), which yields Bk = diag (L+) = D+ (the

diagonal fixed-point method of Carreira-Perpiñán, 2010).

We explored further variations in the experiments, such as updating the diagonal of Rk

with the pd diagonal part of the full Hessian, with little improvement. Using the tech-

nique of Carreira-Perpiñán (2010) of fixed-point iteration from gradient splits, van der

Maaten (2010) derives a nonsparse spectral direction for t-SNE, but he overlooks the

fact that the resulting linear system is psd. In order to introduce spectral information

during the optimization, Memisevic and Hinton (2005) use a search direction where B−1
k

(rather than Bk) is the Laplacian. This can improve over the gradient but, as one would

expect, experimentally it is not competitive with our spectral direction.

From the user point of view this yields a simple recipe that, given the gradient of E,

does not need the more complex Hessian of E−. The only user parameter is the sparsity

level κ (number of neighbors) to tune the speed of convergence; convergence itself is

guaranteed for all κ by th. 3.3.1. κ should be simply tuned to as large as computation

will allow, while thresholding otherwise negligible values. The cost of computing the

direction is O(N2d), the same order (less if sparse) than computing the gradient or E

in the line search, and we find its overhead negligible in practice. This affords directions

that descend far deeper than gradient or diagonal-Hessian at the same cost per iteration.

In summary, the spectral direction works as follows. Before starting to iterate, compute

the attractive Hessian ∇2E+(X) = 4L+ ⊗ Id, sparsified to κ nearest neighbors, add the

small µI to it, and cache its sparse Cholesky factor R. At iteration k, given the gradient

gk, do two backsolves RT (Rpk) = −gk to obtain the spectral direction pk.

Convergence The following theorem guarantees global convergence (to a stationary

point from any initial x0). It can be derived from Zoutendijk’s condition and exercise

3.5 in Nocedal and Wright (2006, p. 39,63) and is proved in Vladymyrov and Carreira-

Perpiñán (2012).

Theorem 3.3.1. Consider the iteration xk+1 = xk + αkpk where pk = −B−1
k gk, gk is

the gradient, Bk is symmetric pd and αk satisfies the Wolfe conditions for k = 0, 1, 2 . . .

If E is bounded below in R
Nd and continuously differentiable in an open set N containing

the level set of x0, ∇E is Lipschitz continuous in N , and the condition number of Bk is

bounded in N , then ‖∇E(xk)‖ → 0 as k →∞.

In our case, we can ensure the condition number is bounded by simply adding µkI to Bk



45

with µk ≥ µ > 0 (since ∇2E is bounded), which we do in practice anyway since some of

our Bk are psd. The other conditions hold for the E functions we use. From eq. (10.30)

in Nocedal and Wright (2006) and with bounded condition number, it follows that

‖xk + pk − x∗‖ . r ‖xk − x∗‖+O(‖xk − x∗‖2)

where x∗ is a minimizer of E, H(x∗) and B(x∗) its Hessian and matrix B, and r =
∥∥B−1(x∗)H(x∗)− I

∥∥. Thus the iterations have locally linear convergence with rate r if

we use unit step sizes (which we see in practice). The better the Hessian approximation

B the smaller r and the faster the convergence. This is quantified in the experiments.

Other Partial-Hessians Bk These typically need to solve a nontrivial linear system

Bkpk = −gk. This can be accelerated in several ways: (1) by solving the system in an

inexact way using linear CG initialized at the previous iteration’s solution, exiting the

solver after a certain tolerance ǫ > 0 is achieved. (2) By updating Bk and its Cholesky

factor every T ≥ 1 iterations. The user has control on the exactness of the solution

through ǫ or T . The gradient is always updated at each iteration. For the experiments

in this chapter we will focus on strategies with T = 1.

3.4 Experimental Evaluation

We have explored a number of partial Hessians as well as different strategies for efficient

linear system solution, in datasets with s-SNE, t-SNE and EE. Here we report a repre-

sentative subset of results, including what we consider the overall winner (the spectral

direction). We compare the following methods: gradient descent (GD), used in SNE

(Hinton and Roweis, 2003) and t-SNE (van der Maaten and Hinton, 2008); fixed-point

diagonal iteration (FP), used in EE (Carreira-Perpiñán, 2010), much faster than GD; the

diagonal of the full Hessian (DiagH); nonlinear conjugate gradients (CG), used in NeRV

(Venna et al., 2010) and L-BFGS (typical choice for large problems); spectral direction

(SD), possibly sparsified and caching the Cholesky factor before the first iteration; and a

partial Hessian 4L++8λLxx
i∗,i∗ (which we call SD–). The latter consists of positive block-

diagonal elements of 8λLxx corresponding to entries associated with the same dimension

(i = j in wxx
in,jm). This ensures a psd approximation and adds information about the

Hessian of the repulsive term E−(X). Except for GD, FP and CG, all the other methods

have not been applied to SNE-type methods that we know. Several of these methods



46

require the user to set parameter values. For L-BFGS we tried several values for its user

parameter m (the number of vector pairs to store in memory) and found m = 100 best.

For SD–, we solve the linear system with linear CG, exiting early when the relative toler-

ance ǫ drops below 0.1 or we reach 50 linear CG iterations. Generally, these parameters

are hard to tune and there is little guidance on which values are the best. This is an

important reason why the spectral direction, which requires no parameters to tune and

performs very well, is our preferred method.

We also tried other methods that were not generally competitive. For example, adding

to the SD Hessian the diagonal of the full Hessian (which depends on X and so varies

over iterations), and solving the linear system by approximately updating the Cholesky

factorization or by using CG.

Once the direction is obtained for a given method, we use a backtracking line search

(Nocedal and Wright, 2006) to find a step size satisfying the first Wolfe condition (suffi-

cient decrease). As initial step size we always try the natural step α = 1 (recommended

for quasi-Newton updates). However, we observed that some methods (in particular SD)

tend to settle to accepted step sizes that are somewhat less than 1. For such cases we

used an adaptive strategy: the initial backtracking step at iteration k equals the accepted

step from the previous iteration, k− 1. This is a conservative strategy because once the

step decreases it cannot increase again, but it compensates in saving line searches with

require expensive evaluations of the error E. For nonlinear CG, we use Carl Rasmussen’s

implementation minimize.m, which uses a line search that is more sophisticated than

backtracking, and allows steps longer than 1.

We evaluated these methods in a small dataset in three conditions (converging to the

same minimum, converging to different minima, and homotopy training), and in a large

dataset. For EE we used λ = 100.

3.4.1 Small dataset: COIL-20 image sequences

The COIL-20 dataset contains rotation sequences of objects every 5 degrees, so each

data point is a grayscale image of 128× 128 pixels. We selected sequences of ten objects

for a total of N = 720 points in D = 16384 dimensions, corresponding to ten loops

(1D closed manifolds) in R
D. In all the experiments we used the entropic affinities with

available e.g. at http://http://learning.eng.cam.ac.uk/carl/code/minimize/

minimize.m



47

10
0

10
1

10
2

10
3

10
4

1

1.2

1.4

1.6

1.8

O
b
je
ct
iv
e
fu
n
ct
io
n
,
E
E

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10.15

10.2

10.25

10.3

10.35

Number of iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
,
s-
S
N
E

10
−1

10
0

10
1

10
2

 

 

Runtime (seconds)

GD
FP
DiagH
SD
SD–
L-BFGS
CG

Figure 3.1: COIL-20 dataset, optimization with fixed initial and final points, for
EE (top) and s-SNE (bottom). Learning curves as a function of the number of
iterations (left) and runtime (right).

perplexity K = 20 and reduced dimension to d = 2, so visual inspection could be used

to assess the quality of the result. For SD we used no sparsification (κ = N).

Convergence to the same minimum from the same initial X We deter-

mined embeddings X0 and X∞ such that X∞ is a minimum of E(X) and X0 is close

enough to X∞ that all methods converged to X∞ when initialized from X0. Thus, all

methods have the same initial and final destination. This allows us to reduce effects due

to different local minima of the error E having possibly different characteristics. Fig. 3.1

shows learning curves for EE and s-SNE as a function of the number of iterations and

the runtime. In decreasing runtime, the methods can be roughly ordered as GD ≫
(FP,DiagH) > (CG,SD–) > (L-BFGS,SD), with GD being over an order of magnitude

slower than FP, and FP about an order of magnitude slower than SD (note the log X



48

axis). The runtime behavior and the number of iterations required agrees with the intu-

ition that the more Hessian information the better the direction, as long as the iterations

are not too expensive. Note how the method using most Hessian information, SD–, uses

the fewest iterations (left panels), but these are also the slowest, which shifts its runtime

curves right. For all the other methods, computing the direction costs less than comput-

ing the gradient itself. FP is very similar to DiagH. GD was the only method that did

not reach the convergence value even after 10 000 iterations (20 minutes runtime).

L-BFGS is a leading method for large-scale problems. It estimates inverse Hessian in-

formation through rank-2 updates, which gives better directions than the gradient, and

obtains the direction from a series of outer products rather than solving a linear system,

which is fast. The main problems of L-BFGS (Nocedal and Wright, 2006, p. 180,189) are

that it converges slowly on ill-conditioned problems and that, with large Nd, it requires

an initial period of many iterations before its Hessian approximation is good. While for

the small problem of fig. 3.1 L-BFGS is almost competitive with the SD, in the larger

problem of fig. 3.4 it is not: 70 iterations (for EE) give a rank-140 approximation to a

40k× 40k Hessian matrix, which fails to decrease the error.

Nonlinear CG is generally inferior to L-BFGS and this is seen in the figure too. (Our

results unfairly favor CG because its minimize.m implementation uses a better line

search than in our implementation of the other methods.)

From the beginning, the SD has an exact part of the Hessian that is pd, and obtains the

direction from triangular backsolves (same cost as matrix-vector product, and dominated

by the cost of computing the gradient). The only overhead is in the initial Cholesky

decomposition of L+ (done only once, since L+ is a constant for a Gaussian kernel and

is set to constant by using X0 for other kernels), which is small, and progress thereafter

is consistently fast.

Convergence from random initial X to possibly different minima We

generated 50 random points X0 (with small values) and ran each method initialized

from each X0, stopping after 20 seconds runtime. Fig. 3.2 shows the error E and num-

ber of iterations for each initialization, for EE and s-SNE. They confirm the previous

observations, in particular SD and L-BFGS achieve the lower errors, but SD does so

more reliably (less vertical spread). GD (outside the plot) barely moved from the initial

X0.



49

0 100 200 300 400 500

1

1.2

1.4

1.6

 

 

GD
FP
DiagH
SD
SD–
L-BFGS
CG

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

Number of iterations, EE
0 100 200 300 400 500

10.1

10.2

10.3

10.4

10.5

Number of iterations, s-SNE

Figure 3.2: COIL-20 dataset, optimization ran for 20 s from 50 random initial-
izations, for EE (left) and s-SNE (right).

−5 0 5
−10

−5

0

5

10

x1

x
2

10
−2

10
−1

10
0

10
1

10
210

0

10
1

10
2

10
3

10
4

λ

N
u
m
b
er

of
it
er
at
io
n
s

10
−2

10
−1

10
0

10
1

10
210

−2

10
−1

10
0

10
1

10
2

10
3

 

 

λ

T
im

e,
s

GD
FP

DiagH

SD
SD–
L-BFGS
CG

Figure 3.3: COIL-20. Homotopy optimization of EE. Left : final convergence
point for nearly all methods. Right two plots : number of iterations and runtime
required to achieve the target tolerance for each λ.

Homotopy optimization for EE The EE error function E(X;λ) can be optimized

by homotopy, by starting to minimize over X at λ ≈ 0, where E is convex, and following

a path of minima to a desired λ by minimizing over X as λ increases (Carreira-Perpiñán,

2010). This is slower than directly minimizing at the desired λ from a random initial X,

but usually finds a deeper minimum. We used 50 log-spaced values of λ from 10−4 to

102 and minimized E at each λ value until the relative error decrease was less than 10−6

or we reached 104 iterations. Tracking the path X(λ) so closely, we were able to have

all methods converge to essentially the same embedding (shown in fig. 3.3), except for

GD, whose embedding was still evolving (it would have required many more iterations



50

Table 3.1: Total number of error function evaluations and runtime for homotopy
optimization of EE for COIL-20 dataset.

Method GD FP DiagH SD SD– L-BFGS CG

E evals 143 237 26 219 26 235 5 183 2 775 6 816 16 600

Time, s 9 291 2 015 2 016 402 703 756 2 154

to converge). Fig. 3.3 shows the runtime and the number of iterations for each λ value

and Table 3.1 shows the total number of the function evaluations and the total runtime

for the whole homotopy optimziation.

The results again demonstrate a drastic improvement of our SD over existing methods

(GD and FP from Carreira-Perpiñán, 2010), and confirm that more Hessian information

results in fewer iterations and function evaluations required. Also, we observe that the

SD step sizes decrease from 1 for λ < 0.02 to 0.1 for the final λ (even though we reset

to 1 the initial backtracking step every time we increase λ). Presumably, as λ increases,

so does the effect of the term E−(X), which the SD Hessian ignores.

3.4.2 Large dataset: MNIST handwritten digit images

While more Hessian information enables deeper decreases of the error per iteration, this

comes at the price of solving a more complex linear system. To see how the different

optimization methods scale up, we tested them on a dataset considerably larger than

those in the literature (N = 6000 points in van der Maaten and Hinton, 2008). We used

N = 20000 MNIST images of handwritten digits (each a 28× 28 pixel grayscale image,

i.e., of dimension D = 784). We used entropic affinities with perplexity K = 50 and

reduced dimension to d = 2. All our experiments were run in a 1.87 GHz workstation,

without GPUs or parallel processing. We ran several optimization methods (GD, FP,

L-BFGS, SD, SD–) for 1 hour each, for both EE and t-SNE. For the SD we used a sparse

L matrix with κ = 7.

As noted in section 3.3, for EE and s-SNE the Hessian of E+(X) (i.e., the matrix L+)

is constant, so we cache its Cholesky factor before starting to iterate. For t-SNE, this

Hessian depends on X, and recalculating it and solving a linear system (even sparse and

using linear CG) at each iteration is too costly. Thus, we fix it to the Hessian at the

initial X and cache its Cholesky factor just as with EE. This still gives descent directions



51

that work very well.

Fig. 3.4 shows the resulting learning curves for EE and t-SNE as a function of the number

of iterations and the runtime. Some methods’ deficiencies that were already detectable in

the small-scale experiments become exaggerated in the larger scale. The SD– direction,

while still able to produce good steps, now takes too much time per iteration (even

though it is solved inexactly by CG), and is able to complete only 37 iterations for EE

and 13 for t-SNE within the allotted time (1 hour). Note SD– does worse than SD in

number of iterations even though it uses more Hessian information; this is likely due

to the inexact linear system solution. In general, all methods run more iterations for

EE than for s-SNE and t-SNE, indicating EE’s simpler error function E is easier to

minimize. GD is omitted, because it showed no decrease of the objective function. For

both EE and t-SNE we never observe any decrease with L-BFGS within 1 hour, although

we have tried various values m for the numbers of recent updates to store in the Hessian

approximation (m = 5, 50, 100); it does decrease a little after 3 hours. This is due to the

long time needed to approximate the enormous Hessian. Nonlinear CG does decrease

the objective function for EE, but most of the computational resources are spent on the

line search. Thus CG did least number of iterations compared to other methods. Our

SD has mostly converged already in 15 minutes. SD has a reasonable setup time of 5

min. in both EE and t-SNE to compute the Cholesky factorization (this time can be

controlled with the sparsification κ), and it is amply compensated for by the speed of

the sparse backsolves in computing the direction at each iteration (which are essentially

for free compared to computing the gradient). SD decreases the objective consistently

and efficiently from the first iterations. FP does scale up in terms of cost per iteration,

but, as in the small dataset, each step makes considerably less progress than a SD step.

In summary, FP, SD– and L-BFGS are clearly not competitive with SD, which is able

to scale its computational requirements and still achieve good steps.

Fig. 3.4.2 also shows the resulting embeddings for FP from Carreira-Perpiñán (2010)

(itself much better than GD) and SD at an intermediate stage (after 20 runtime for

EE and 1 hour for t-SNE). The difference is qualitatively obvious. The SD embedding

already separates well many of the digits, in particular zeros, ones, sixes and eights. The

FP embedding shows no structure whatsoever.



52

Elastic Embedding (EE)

10 20 30 40 50 60 70
3.13

4.6

6.76

9.93

14.59

21.44

31.51

46.3

68.05

100

 

 

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

FP
SD
SD–
L-BFGS
CG

0 5 10 15 20 25 30 35 40 45 50 55 60

t-Stochastic Neighbor Embedding (t-SNE)

5 10 15 20 25 30

16.68

17.04

17.41

17.79

18.18

18.57

18.97

19.39

19.81

 

 

Number of iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

FP
SD
SD–
L-BFGS
CG

0 5 10 15 20 25 30 35 40 45 50 55 60

Runtime (minutes)

Figure 3.4: Optimization of MNIST dataset, 20 000 points, for EE (left) and
t-SNE (right). Learning curves for different methods as a function of the number
of iterations (left panels) and runtime (right panels).

3.5 Discussion

Given the exceedingly long runtimes of the gradient descent, we suspect some of the

embeddings obtained in the literature of SNE using gradient descent could be actually

far from a minimum, thus underestimating the power of SNE. The optimization methods

we present, in particular the spectral direction, should improve this situation.

Experimentally, no single method is always the best. If we weigh efficiency, robustness

(to user parameters) and simplicity (of implementation using existing linear algebra

code and of user parameter setting), we believe that the spectral direction with cached



53

EE t-SNE

F
ix
ed
-p
oi
n
t
it
er
at
io
n

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

S
p
ec
tr
al

d
ir
ec
ti
on

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−40 −30 −20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

40

Figure 3.5: Comparison of the embeddings of 20 000 points from MNIST dataset
optimized using fixed-point iteration and the spectral direction. Left: EE opti-
mization after 20 min., right: t-SNE optimization after 1 hour.

Cholesky factor, possibly sparsified, is the preferred strategy. It achieves good steps and

can be computed in less time than the gradient and objective function E. However, in

really large problems even computing E and ∇E may be too time consuming. Note

that, for SNE and t-SNE, even if pnm are sparse in the attractive term, the negative

term is still a full N × N matrix (though the matrix itself need not be stored for E

or ∇E to be computed). One solution to this is to use there a sparse graph W− as



54

in EE. However, the quality of the resulting embedding may be affected depending on

the sparsity level. (Note this would not affect the construction of our spectral direction,

since it does not depend on E−.) In Chapter 5 we would explore another strategy to

accelerate the computations of sums of many Gaussians, needed in E and ∇E, using

fast multipole methods (Greengard and Strain, 1991; Raykar and Duraiswami, 2006a),

which can reduce the time to O(N) if the dimension d is low (which is the case e.g. for

visualization purposed).

3.6 Conclusion

We have provided a generalized formulation of embeddings resulting from the competi-

tion between attraction and repulsion that includes several important existing algorithms

and suggests future ones. We have uncovered the relation with spectral methods and the

role of graph Laplacians in the gradient and Hessian, and derived several partial-Hessian

optimization strategies. A thorough empirical evaluation shows that among several com-

petitive strategies one emerges as particularly simple, generic and scalable, based on the

Cholesky factors of the (sparsified) attractive Laplacian. This adds a negligible overhead

to the computation of the gradient and objective function but improves existing algo-

rithms by 1–2 orders of magnitude. The quadratic cost of the gradient and objective

function remains a bottleneck which we will address in Chapter 5.



Chapter 4

Locally Linear Landmarks

4.1 Introduction

In this chapter we would concentrate specifically on a spectral manifold learning methods

(Saul et al., 2006). The input to these algorithms is a symmetric positive (semi)definite

matrix AN×N (affinity matrix, graph Laplacian, etc.) that contains information about

the similarity between pairs of data points Y ∈ R
D×N , and a symmetric positive definite

matrix BN×N that sets the scale of the solution. For example, for Laplacian Eigenmaps

(Belkin and Niyogi, 2003), A is equal to the graph Laplacian matrix L = D −W and

B is the degree matrix D. In case of ISOMAP (Tenenbaum et al., 2000) the similarity

matrix is the matrix of geodesic distances between pairs of points in the dataset.

Given these two matrices, the generalized spectral problem seeks a solution X ∈ R
d×N

to the following optimization problem:

min
X

tr
(
XAXT

)
s.t. XBXT = I. (4.1)

Within this framework it is possible to represent manifold learning methods such as

Principal Component Analysis, Linear discriminant analysis, Laplacian Eigenmaps (LE)

(Belkin and Niyogi, 2003), Kernel PCA (Schölkopf et al., 1998), MDS (Cox and Cox,

1994), ISOMAP (Tenenbaum et al., 2000), SDE (Weinberger and Saul, 2004) and LLE

(Saul and Roweis, 2003), as well as spectral clustering (Ng et al., 2002).

This chapter is an extended version of Vladymyrov and Carreira-Perpiñán (2013b).

55



56

The solution of the spectral problem (4.1) is given by X = UT
dB

− 1

2 , where Ud =

(u1, . . . ,ud) are d trailing eigenvectors of the matrix C = B− 1

2AB− 1

2 . In large problems

(large N), the computational cost means the matrices A, B and C have to be sparse, and

these eigenvectors are found with numerical linear algebra techniques such as restarted

Arnoldi iterations (Lehoucq and Sorensen, 1996). However, the resulting cost is still large

when N and d are large. The primary goal of this chapter is to find fast, approximate

solutions to the spectral problem (4.1) (and thus the solution of LE, spectral clustering,

etc.). We propose a method we call Locally Linear Landmarks (LLL), based on the idea

of selecting a subset of L≪ N landmarks ỸL×N from the data, approximating the data

manifold by a globally nonlinear but locally linear manifold around these landmarks,

and then constraining the solution X to follow this locally linear structure. The locally

linear mapping is given by a projection matrix Z ∈ R
L×N that satisfies

Y ≈ ỸZ (4.2)

in the high-dimensional space (the approximation error will be defined as a minimization

problem 4.6), and by enforcing it in the low-dimensional space, we can re-express the

problem (4.1) as a new spectral problem on a smaller number of variables L. This reduces

the cost of the eigendecomposition dramatically and, as we will show, constructs affinity

matrices that preserve much manifold information because the problem still involves

the entire dataset. Note that LLL is not a new manifold learning method, but a fast,

approximate way to solve an existing methods of the form (4.1).

The LLL algorithm can be used for purposes beyond fast solutions of spectral problems.

First, it is particularly useful for model selection. The similarity matrices A and B are

usually constructed using some meta-parameters, such as a bandwidth σ of Gaussian

affinities and a sparsity level KW (number of neighbors). In practice, a user has to

tune these parameters to the dataset by hand by solving the spectral problem for each

parameter value (for example, in spectral clustering (Ng et al., 2002) one can choose

the bandwidth σ that gives the least distorted clusters). This is extremely costly with

large datasets. As we will show, we can run LLL with very few landmarks so that

the shape of the model selection curve (especially its minimum) is preserved well. This

way we can identify the optimal meta-parameters much faster and then solve the spectral

problem (possibly using more landmarks). Second, LLL solves the out-of-sample problem

for the spectral problem (4.1) (which projects only the training points) by providing a

natural, explicit mapping to project new points, which does not exist in the original



57

spectral problem. Finally, we observe that the gain of LLL is much bigger when the

number of eigenvectors d is large that makes it very attractive as a preprocessing step

for classification to other machine learning tasks (e.g. see fig. 4.8 where we used LLL for

Laplacian Eigenmaps as a preprocessing before 1-nearest neighbor classification).

Apart from the use in dimensionality reduction, we will also show the application of

the method to a problems where spectral clustering can be used, including clustering

of handwritten digits dataset as well as image and motion segmentation. It gives much

faster yet still accurate solution with respect to the exact spectral clustering and com-

pares favorably to the Nyström extension. For the large-scale experiment we applied

the algorithm for a motion segmentation problem using spatio-temporal affinities with

N = 787 200 variables. It took the algorithm just under 10 minutes to get meaningful

solution, while for Nyström we were not able to get good results at all, because the

subset needed to approximate the problem is too big.

4.2 Related work

The most widespread method to find an approximate, fast solution of the spectral prob-

lem is the Nyström method (Williams and Seeger, 2001; Bengio et al., 2004b; Drineas

and Mahoney, 2005; Talwalkar et al., 2008). It approximates the eigendecomposition of a

large positive semidefinite matrix using the eigendecomposition of a much smaller matrix

of landmarks. It can be seen as an out-of-sample extension where we first solve for the

landmarks separately from the non-landmark points, and then use it to project the rest

of the points. Since, during the projection of the landmarks, the Nyström method does

not use the data from the non-landmark points, which is available from the beginning,

it can result in large approximation errors if the number of landmarks is low.

It is possible to redefine the affinities between landmarks so that they use information

from all points, for example by using a commute distance (the expected time it takes a

random walk to travel from the first to the second node and back). For example, van der

Maaten and Hinton (2008) use the affinity graph between all the points in the data set

and define random walk on the graph that starts at the landmark point and finishes at

one of the other landmark locations. Then the similarity between two given landmarks is

proportional to the probability that random walk started in the first landmark will finish

in the second. However, besides the fact that this solves a different spectral problem,



58

computing these distances is costly, it provides no out-of-sample mapping, and commute

distances have been shown to be problematic with large datasets in high dimensions

(von Luxburg et al., 2010). As we will show, in LLL the affinities between landmarks

use naturally the information in non-landmarks without us having to define new affinities.

Other landmark-based methods can be seen as forms of a Nyström approach. De Silva

and Tenenbaum (de Silva and Tenenbaum, 2004) suggested to run the metric MDS

algorithm on a subset of the data, while the rest of the points can be located through

a distance-based triangulation process. The same idea can be applied to a graph of

geodesic distances (instead of Euclidean ones) which leads to the Landmark Isomap

algorithm (de Silva and Tenenbaum, 2003). This algorithm is able to give better results

due to its ability to deal with nonlinear manifolds. It has been showed (Bengio et al.,

2004b; Platt, 2005) that those approaches are no more than a Nyström approximation

combined with classical MDS or Isomap.

The idea of representing points by linear coding as in eq. (4.2) has been used in many

different domains of machine learning, such as image classification (Gao et al., 2010;

Wang et al., 2010), manifold learning (Roweis and Saul, 2000; Weinberger et al., 2005;

Yu et al., 2009), supervised (Ladický and Torr, 2011) and semi-superwised (Liu et al.,

2010) learning. In addition to linearity, many of above algorithms try to find local, sparse

representations of the data, so that points are reconstructed using only nearby landmarks.

An early work is the LLE method for manifold learning (Roweis and Saul, 2000), which

computes the matrix Z that best reconstructs each data point from a set of nearby

points. Variations exist, such as using multiple local weight vectors in constructing Z

in the MLLE algorithm (Zhang and Wang, 2007). Weinberger et al. (2005) also used

representation of the points using a small landmark subset in order to approximate the

Maximum Variance Unfolding algorithm. However, these works use local linear mappings

to define a new spectral problem, while LLL uses them to approximate an existing one.

Zhou et al. (2009); van Gemert et al. (2008); Liu et al. (2011) evaluate linear approxi-

mation matrix Z using a sort of kernel regression. However, as pointed out by Liu et al.

(2010), kernel-defined weights are sensitive to the parameters, such as kernel bandwidth,

and also lack meaningful interpretation.

The AnchorGraph algorithm (Liu et al., 2010) uses the local coding in the graph Lapla-

cian regularization term of a semi-supervised learning problem and also in the construc-

tion of the affinities. The problem that they solve is very different from (4.1). Chen and



59

Cai (2011) uses the AnchorGraph idea to speed-up the spectral clustering technique in

a similar way it is done in LLL. However, they do not show how the rest of the points

(non-landmarks) are clustered. Apart from that, the last two approaches do not gener-

alize beyond Laplacian regularizer and the spectral clustering respectively compared to

the more general approach that we propose here. Landmark SDE (Weinberger et al.,

2005) proposes to reconstruct kernel matrix using much smaller matrix of inner products

between the landmarks only. This problem is also different to ours.

Two approaches exist to construct out-of-sample mappings for spectral problems such as

Laplacian eigenmaps: Bengio et al. (2004a) apply the Nyström formula using the affinity

kernel that defined the problem. Carreira-Perpiñán and Lu (2007) augment the spectral

problem with the test point and solve it subject to not changing the points already

embedded. The resulting formula turns out to take the form of a Nadaraya-Watson

estimator jointly constructed on the feature vectors and embedding projections. For

both of these formulas the approximation error decreases as the number of landmarks

L increases and becomes zero when L = N . In LLL, the out-of-sample mapping is a

natural subproduct of assuming each low-dimensional point to be a local linear mapping

of the landmark projections associated with it.

Random projection algorithm (Halko et al., 2011; Boutsidis et al., 2011) constructs an

approximation by projecting the data onto a low-dimensional random subspace, com-

puting the eigendecomposition in that space and then re-projecting them back to the

original space.

Fergus et al. (2009) proposes a method that is able to calculate clusters for semi-

supervised learning with complexity that is independent from the number of points.

The method estimates density around the manifold by generalizing the eigenvectors to

the eigenfunction on the whole space, thus, creating the density estimation.

4.3 Solving Spectral Problems with Locally Lin-

ear Landmarks

The fundamental assumption in LLL is that the local dependence of points on landmarks

that occurs in high-dimensional space, eq. (4.2), is preserved in the low-dimensional

space:

X ≈ X̃Z. (4.3)



60

Dataset All points Landmarks (subset) Landmarks (LLL)

−10 −5 0 5
−10

−5

0

5

10

 

 

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

 

 

5 10 15 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

 

 

5 10 15 20

5

10

15

20
0

0.5

1

1.5

Figure 4.1: Affinity matrices for landmarks from the spiral dataset. From left to
right : 100 points along the spiral (in red) with 20 landmarks selected uniformly
(in blue); the affinity matrix W used by LE constructed using all the points; the
affinity matrix W built using just landmarks; learned affinity matrix C of LLL
using the whole dataset.

This assumption is related to the manifold assumption that the data lie approximately

on low-dimensional manifold that spectral methods are seeking.

Substituting this into the spectral problem (4.1) gives the following reduced spectral

problem (on dL parameters):

min
X̃

tr
(
X̃ÃX̃T

)
s.t. X̃B̃X̃T = I, (4.4)

where the matrices

Ã = ZAZT , B̃ = ZBZT . (4.5)

are of size L×L. The solution for the reduced problem is given by X̃ = ŨT
d B̃

− 1

2 , where

Ũd are d trailing eigenvectors of the matrix C̃ = B̃− 1

2 ÃB̃− 1

2 . After the solution for the

landmarks is found, the values of X can be recovered by applying the formula (4.3) once

again. Algorithm 3 shows the flow of the method.

We can see the reduced problem (4.4) as a spectral problem for just the landmark points

using a similarity matrix Ã that incorporates information from the whole dataset. For

example, in the Laplacian Eigenmaps the spectral problem (see Section 4.6.1) A is

given by a matrix W of affinities (typically Gaussian). Using LLL we can dramatically

improve the quality of W over that of constructing W using the landmarks only by

including additional information from the whole dataset. From (4.5) individual elements

of the reduced affinities are ãij =
∑N

n,m=1 zinanmzjm. The points i and j in the reduced

affinities are connected through a path i ←→ n ←→ m ←→ j. Even if the landmarks

are far apart, they sill can be connected along the manifold.



61

Algorithm 3 Locally Linear Landmarks

Given a spectral problem minX tr
(
XAXT

)
s.t. XBXT = I for a dataset Y ∈

R
D×N .

Pick L landmarks Ỹ ∈ R
D×L at random from Y.

Compute reconstruction matrix Z ∈ R
L×N for each point wrt its nearest KZ =

d+ 1 landmarks.

Compute the reduced affinity matrices Ã = ZAZT and B̃ = ZBZT .

Solve reduced eigenproblem min
X̃
tr
(
X̃ÃX̃T

)
s.t. X̃B̃X̃T = I

Predict non-landmarks with out-of-sample mapping X = X̃Z.

Fig. 4.1 shows the affinity matrix constructed in the usual way for a spiral dataset in the

full case (using all 100 points) and using 20 landmark points versus the affinity matrix

learned using LLL. The latter one (right plot) is almost perfectly banded with uniform

entries. This means the connectivity pattern proceeds along the spiral rather than across

it, which happens when affinities are constructed directly on the landmarks that are quite

distant from each other.

Out-of-sample extension. Given a new point y0 ∈ R
D that is not a part of the

original dataset, we find its projection on the low-dimensional space by computing a new

projection vector z0 for that point using KZ landmarks around y0. The embedding of

y0 is found from a linear combination of the landmark projections x0 = X̃z0. The cost

of the out-of-sample is O(DK2
Z + Ld), which is linear for all the parameters except for

KZ , which is usually low.

Construction of the projection matrix Z. Let us define the landmarks as a

set Ỹ = (ỹ1, . . . , ỹL) ∈ R
D×L of L points in the same space as the high-dimensional

input Y. The particular choice of the landmark location will be discussed later in

section 4.4. Now each datapoint yn can be expressed as a linear combination of nearby

landmark points: yn =
∑L

k=1 ỹkznk where zn is a local projection vector for the point

yn. There are multiple ways to make this projection local. One can consider choosing

only few landmarks closest to yn or ǫ-balls centered around yn. Moreover, the choice of

landmarks can be different for every n. In our experiments, we keep only KZ landmarks

that are closest to yn and use the same KZ for all the points. Therefore, the projection



62

matrix Z = (z1, . . . , zN ) ∈ R
L×N has only KZ nonzero elements for every column.

This matrix intuitively corresponds to the proximity of the points in the dataset to the

nearby landmarks and it should be invariant to rotation, rescaling and translation. The

invariance to rotation and rescaling is given by the linearity of the reconstructing matrix

ỸZ with respect to Ỹ, whereas translation invariance must be enforced by constraining

columns of Z to sum to one. This leads to the following optimization problem:

min
Z
‖Y − ỸZ‖2, s.t. 1TZ = 1T . (4.6)

Following the approach proposed in LLE algorithm we introduce point-wise Gram matrix

G ∈ R
L×L with elements

Gij = (yn − ỹi)
T (yn − ỹj) (4.7)

for every n = 1, . . . , N . Now, the solution to the problem (4.6) is found by solving a

linear system
L∑

k=1

Gjkznk = 1 (4.8)

and then rescaling the weights so they sum to one.

Computational Complexity. Using this algorithm, we can drastically reduce the

computational cost of the eigendecomposition in (4.1). However, we also need to perform

some extra computations to evaluate Z, compute auxiliary matrices (4.5) and perform

the final multiplication (4.3) to recover the full embedding.

The computation of Z consists of computing point-wise Gram matrix G and solving

the linear system. G is sparse and has only KZ nonzero elements in each row, so

it takes O(NDK2
Z) to compute it. The linear system also should be solved just for

KZ unknowns, so it takes O(NK3
Z). Among the two, the computation of G matrix

dominates because as we will show below KZ < D. Notice that this step is independent

from the number of landmarks L. The cost of computing Ã and B̃ in case of dense

matrices is O(KZN
2). In case of sparse input, that computation is reduced to O(KZNc),

where c is some constant that depends on the sparsity of matrices A and B as well as

on the particular location of nonzero elements in Z. Computing C̃ and performing

eigendecomposition both take O(L3) and recovering the final embedding takes O(NLd).

Overall, the complexity of LLL is equal to O
(
KZN

2 + N(Ld + DK2
Z) + L3)

)
in case

of dense input and O
(
N(KZc + Ld + DK2

Z) + L3)
)
in case of sparse input, which is

asymptotically much faster than the cost of eigendecomposition given that L≪ N .



63

The computational cost of the out-of-sample is O(DK2
Z) to find a projection vector z0

and O(Ld) for a reprojection in the low-dimensional space. Overall O(DK2
Z+Ld) which

is linear for all the parameters, except for KZ which is usually quite low.

4.4 Choice of Parameters

Number of landmarks L. The users should use as many landmarks as they can

afford computationally, because the more landmarks the better the approximation. As L

increases, the results look more and more similar to the solution of the original spectral

problem, which is recovered when L = N .

Number of landmarks KZ around each point. Each point should be a local

linear reconstruction of nearby landmarks. Thus it is important that there are enough

landmarks around each point so that its nearest landmarks are chosen along the manifold.

These landmarks will have nonzero weights in the reconstruction, thus achieving locally

and linearity. Non-local weights do not work unless the manifold is globally linear.

Using weights that are nonzero only for the nearest KZ landmarks implies that the low-

dimensional space is partitioned into regions where X is piecewise linear as a function

of the corresponding subset of landmarks. Therefore, given that KZ landmarks are in

general position they span a linear manifold of dimension KZ − 1. Therefore, we need,

from one side, no more than D+1 landmarks, since KZ = D+1 of them reconstruct any

point in D dimensions perfectly. On the other size, using KZ > D+1 makes the weights

non-unique and we need to add regularization term to (4.7) to penalize the weight norm

by adding a small positive amount to the diagonal of the linear system. However, the

manifold learning assumption implies that the intrinsic dimensionality of the manifold is

lower than D. For example, if the manifold is linear with dimension d̂ then the number of

landmark needed to reconstruct any point is KZ = d̂+1 by the same argument as above.

However, if the manifold is nonlinear with local dimension d̂, then KZ = d̂+1 landmarks

reconstruct the point approximately (near its projection on the tangent plane). Thus,

overall the number of landmarks around each point should be between d̂ + 1 (which

may have a certain reconstruction error, particularly if the landmarks are not in general

position) and D + 1 (which achieves perfect reconstruction). If the reconstruction is

imperfect, we introduce an additional error on the embedding, by implicitly replacing

each original data point with its projection on landmarks. Thus, KZ is a user parameter



64

L=5

−10 −5 0 5
−10

−5

0

5

10

y1

y 2

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

N

x

L=15

−10 −5 0 5
−10

−5

0

5

10

y1

y 2

0 50 100 150 200
−0.15

−0.1

−0.05

0

0.05

0.1

N

x

Figure 4.2: The effect of choosing too few landmarks. The color corresponds
to two nearest landmarks assignment for each point. We show the original spiral
dataset and 1D dimensionality reduction using LLL for LE for L = 5 landmarks
(top plot) and L = 15 landmarks (bottom plot)

with values in [d̂+1,D+1]: the larger KZ the smaller the error with larger computational

cost. In practice, KZ can be estimated so a desired reconstruction error ||Y − ỸZ|| is
achieved, but it should not be much bigger than d̂ + 1. Notice that d̂ is this context

is an intrinsic local dimensionality of the manifold and not the dimensionally of the

low-dimensional output d that may or many not match d̂.

To illustrate this in fig. 4.2 each of the points along the spiral is reconstructed using two

landmarks that are closest to them. In the first two plots we show the results of using

L = 5 landmarks only (note that coordinate X is on the vertical axes). As you can see,

the number of landmarks is too small to capture the locality of the data, since the points

in the branches of a spiral are constructed using landmarks from different branch (see

e.g. green, brown and cyan). The resulting one dimensional curve is therefore consists

of seemingly independent peaces. In the right two plots we show same dataset, but



65

this time using L = 15 landmarks. In this case there is enough landmarks to capture

the locality of the data. Each point is reconstructed with landmarks along the same

brunch and the resulted one-dimensional curve is continuos and looks much better than

for L = 5.

Non-continuity of the result is due to the fact that some chosen landmarks are not located

along the manifold, but rather on different “branches” of the spiral.

The location of landmarks. Kumar et al. (2012) provide a formal analysis of dif-

ferent types of sampling and show that, at least for Nyström approximation, uniform

sampling works best. Our experiments confirm this as well. However, we cannot spend

too much resources on the landmarks selection in order to introduce as little computa-

tional overhead as possible. Based on this, we investigated three general methods on

how to compute the location of the landmarks.

First, we can always choose the landmarks at random from a set of existing points.

This method requires almost no computational resources. However, the result can vary

dramatically, especially when only a small number of landmarks is available. We can

apply additional heuristic to make the landmark location as close to uniform as possible.

First, we select K+M landmarks at random, findM pairs of closest landmarks and then

discard one landmark from each pair. This heuristic is useful also because the distances

are already given to us from the adjacency matrix. Even in the case when the adjacency

matrix is sparse, it is usually the largest distances that are missing. Thus, we can always

identify closest landmarks to each other.

Second, we can select the landmarks from running clustering algorithm with L clusters

and choose each landmark in the middle of the clusters. For instance, one can run

k-means algorithms and set landmarks as the points that are closest to the centroids

of the clusters. The problem of this approach is that the clustering is usually quite

expensive and requires additional computation resources. Also, using this approach the

landmarks can be identified just with centroids that generally do not coincide with the

points from the dataset. From one point of view, it can be an advantage because it can

potentially take into account outliers and regions with different densities. From another,

it can be problematic in case of highly convoluted manifolds, where placing landmark

in the middle of two “branches” can cause problems for the algorithm to unfold. In our

experiments we avoid dealing with landmarks that are not part of the dataset.

Finally, the landmarks can be also selected using other heuristic so that they span the



66

manifold as uniformly as possible. It has been proposed (de Silva and Tenenbaum, 2004)

to use MinMax algorithm which choses landmarks one by one in a way that maximizes

the mutual distance between new landmark and an existing set of landmarks. However,

the algorithm requires full graph of the mutual distances between the points available,

which in case of large number of points N is unavailable.

4.5 Reusing Z for model and algorithm selection

One of the benefits of LLL is that the reconstruction matrix Z depends only on the

topology of the data and not on the particular algorithm. Thus, constructing Z is

independent from the algorithm we choose to run in the next step. There are two ways

we can benefit reusing the same Z matrix.

Model selection. As a preprocessing step, spectral algorithms needs to have pro-

vided with carefully computed affinity matrix. This affinity matrix should be a good

representation of the underlying data, which requires careful parameter selection. For

example, for the Gaussian affinities, it is crucial to have good bandwidth parameter σ as

well as the number of neighbors KW that one wishes to preserve. There is no universal

rule that allows a user to pick the best values for the affinity matrix. Unfortunately,

in most cases there is no procedure to check the quality of the affinity matrix without

running the algorithm. Ng et al. (2002) simply suggest to chose those parameters by

trying several values up until some satisfactory results are achieved. Apart from that,

couple of heuristic has been proposed that can improve the results of affinity matrix

selection. Zelnik-Manor and Perona (2004) claim that the results can be improved by

setting bandwidth individually per each point of the dataset and computing the Gaus-

sian affinity between points yn and ym as wnm = exp(−‖yn−ym‖2

σnσm
). The paper suggests

to use distance to k nearest neighbor to set individual σn, for n = 1, . . . , N . Entropic

affinities, described in chapter 2 compute individual bandwidth for each point, such that

the perplexity, or the effective number of neighbors, is equal to some user-defined param-

eter K. While each of those methods above can result in a good affinity matrix, they all

depend on some parameter(s) that need to be tuned (nearest neighbor, perplexity etc.).

This can potentially lead to multiple restarts of the whole algorithms, which is expen-

sive. To reduce this cost, we can leverage the fast approximations of LLL to perform

the model selection. This has additional computational advantages, since the LLL can



67

reuse Z for all the model selection parameters. Moreover, in many of the algorithms we

can additionally precompute one of the reduced affinity matrices B̃ = ZZT that depends

only on Z.

Because LLL uses complete affinity matrix, its parameters are also shared between exact

method and LLL. Notice that it is not the case for the subset methods (e.g. Nyström),

that use smaller affinity matrix which may require different parameter settings for the

best performance. The algorithm that we propose is as follows: instead of running full

exact spectral clustering several times for different parameter values, we can do this

instead for LLL. Then, the best parameter for LLL will roughly correspond to the best

parameter for the exact spectral clustering.

Once the optimal parameters are found, we can either stop there with the approximate

solution, or run the exact algorithm with the parameters learned from the approximation.

In the experimental section we will demonstrate empirically that the optimal parameters

of LLL approximation are very close to the optimal parameters of the exact algorithm.

Algorithm selection. There exists many dimensionality reduction methods with

different assumptions, optimization criteria, number of parameters, etc. For example,

PCA is a linear method but does not require any parameters to tune. Comparing to it,

LE requires user to specify additional parameters, such as bandwidth σ and sparsity KW ,

however the results are usually better due to the non-linearity. A practitioner unfamiliar

with the intricacies of the algorithms often needs to run multiple algorithms to choose

a desired performance. In these cases, LLL approximation can be useful, since the same

reconstruction matrix Z can be used for all the algorithms above. Similar to the model

selection example above, once the desired algorithm and model parameters are found,

one can either finish here with the approximate solution or run the exact algorithm just

once with model parameters and the algorithm learned during the LLL step.



68

4.6 Case studies: LLL for spectral manifold learn-

ing

4.6.1 Laplacian Eigenmaps

A particular case of the spectral method for which we can apply LLL is Laplacian Eigen-

maps (LE) (Belkin and Niyogi, 2003). The general embedding formulation is recovered

using A as a graph Laplacian matrix L = D−W defined on a symmetric affinity matrix

W with degree matrix D = diag
(∑N

m=1 wnm

)
and using B as that degree matrix D.

The objective function is thus

min
X

tr
(
XLXT

)
s.t. XDXT = I, XD1 = 0. (4.9)

Note that adding the second constraint does not alter the general formulation of the

spectral solution, but just remove the first eigenvector, which is constant and equal to

D− 1

21 with eigenvalue 1.

Using (4.5) the coefficients of the model become:

Ã = ZLZT , B̃ = ZDZT . (4.10)

Similarly to the case of the original LE, the second constraint is satisfied by discarding

the first eigenvector. We can see this by noticing that Ã1 = 0 and looking at the

eigendecomposition of C̃:

B̃− 1

2 ÃB̃− 1

2 ũ1 = B̃− 1

2 Ãx̃T = λ1ũ1.

Therefore, the solution corresponding to the eigenvalue λ1 = 0 is trivial.

4.6.2 Principal Component Analysis

Principal Component Analysis (PCA) is an important tool that has almost ubiquitous

use in science. Generally, it has been used for preprocessing of the data. The original

version of the algorithm maximizes the following objective function

max
M

tr
(
MTCM

)
, s.t. MTM = I (4.11)

where C = YY
T

is data-covariance matrix and yi = yi − 1
N

∑N
n=1 yn is the dataset

Y shifted to get zero column mean. The solution M to (4.11) manifests itself also as



69

linear mapping and is given by an eigendecomposition of C. The final low-dimensional

embedding is equal to the projection of the original data on M:

X = MY. (4.12)

However, C is a dense D ×D matrix and for many applications where D is large (e.g.

image processing) this matrix is infeasible to store. On the other hand, the problem

(4.11) can be reformulated as:

max
P

tr
(
PKPT

)
, s.t. PPT = I (4.13)

Now the solution for P is given by the largest d eigenvectors of N ×N matrix of inner

products K = Y
T
Y and the mapping M can be restored using M = Λ−1/2PYT , where

Λ is a diagonal matrix of d largest eigenvalues of matrix K. Using this formulation

instead of (4.11) requires the eigendecomposition of N × N matrix K, which is more

efficient when N ≪ D (e.g. when we need to reduce the dimensionality of a series of large

images). However, in cases when N and D are large neither procedure is computationally

feasible both from the point of storage (covariance and inner product matrices are dense)

and runtime (eigendecomposition of dense matrix is O(N3)).

One way to deal with the complexity problem is to run the algorithm on a subset Ỹ and

then use a linear mapping M̃ learned for a subset: X = M̃Y. The problem is that the

mapping learned will not be representative for the whole dataset, since it will ignore the

points that are not part of the subset.

Alternatively, we can exploit the LLL framework to speed up the computation of PCA

as well. This may give better results than just using the linear mapping, because the

reduced affinities exploit the structure of the whole dataset, rather then using a subset.

The reduced affinities (4.5) become: Ã = ZY
T
YZT , B̃ = ZZT . Notice that LLL has

one additional advantage: dense N × N matrix K does not need to be computed or

stored. Instead we can precompute L × D matrix ZY
T
. Due to the sparsity of Z the

total complexity of computing the affinities is O(KZND+L2D), which is linear for both

N and D.

From the memory perspective, the main bottleneck is actually storing the actual data

matrix Y of D×N . However, the only place this matrix enters is in the computation of

temporary matrix ZY
T
, which can be done by loading Y into memory block by block.



70

4.6.3 Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised linear dimensionality reduction method

that is used as a data preprocessing when the labels are available. The main idea behind

the method is to preserve the largest variation of each cluster of the data (so that the

clusters retain their structure), but in the way that also minimizes the variance between

the classes (such that the clusters separate from each other).

Given a zero-mean dataset Y splited between C classes with Nk points in a class k and

li ∈ (1, . . . , C) as a label of a point yi define between-class affinities Sb ∈ R
D×D and

within-class affinities Sw ∈ R
D×D as:

Sb =

C∑

k=1

Nkµkµ
T
k , Sw =

C∑

k=1


∑

i:li=k

(yi − µk)(y
(k)
i − µk)

T


 , (4.14)

where µk is the mean of the points in class k.

The objective function of the LDA is to maximize the between-class affinities while

minimizing the within-class affinities:

max
M

tr

(
MTSbM

MTSwM

)
, (4.15)

The linear mapping M can be found as leading d eigenvectors to the generalized eigen-

problem SbM = ΛSwM and the final solution is found using the same projection (4.12)

as in PCA.

The solution requires the eigendecomposition of D ×D matrix, which can be expensive

to compute in practice. Similar to PCA, the problem can be converted into N × N

eigenproblem. Baudat and Anouar (2000) show that (4.15) can be equivalently expressed

as

max
P

tr

(
PHPT

PTPT

)
, (4.16)

where the new affinities are defined as

H = Y
T
(YQY

T
)Y, T = Y

T
(YY

T
)Y, (4.17)

and Qij =




1/Nk, if li = lj = k

0, if li 6= lj

.

Now P is found as a solution to generalized eigenvalue problem HP = ΛTP. From

there, the mapping can be recovered using M = PYT and the overall low-dimensional

solution is found using a linear projection (4.12).



71

Using LLL the reduced affinities become Ã = ZY
T
(YQY

T
)YZT , B̃ = ZY

T
YY

T
YZT .

Again, similar to PCA, we can precompute ZY
T
and thus avoid storing dense matrices H

and T. Computing the B̃ matrix from left to right and avoiding expensive computation

of YY
T
the complexity of computing the affinities is linear in L, N and D: O(LND).

As an alternative, we can compute a solution for a subset Ỹ using exact LDA and then

project the rest of the points using a learned mapping as X = M̃Y. However, the

projection computed this way learns the mapping only using the subset of points. The

labels of the rest of the points are simply ignored and do not affect the final solution.

Nyström method does not help here either for the same reason. LLL, on the contrary,

able to benefit from all the labels, while still working on a smaller L×L affinity matrix.

4.6.4 Kernel PCA and LDA

In kernel PCA (Schölkopf et al., 1998) and kernel LDA (Baudat and Anouar, 2000; Mika

et al., 1999), the inner product matrix K = Y
T
Y is replaced by a positive-definite

kernel, that, from the Mercer theorem, corresponds to an inner product between feature

vectors in some high-dimensional space. The feature vectors and the mapping are not

computed explicitly and enter the algorithm only through the inner product matrix K.

The method is still linear in the feature space, but due to a nonlinear transformation to

that space, it is able to recover more general nonlinear embeddings.

Removing the mean from the data Y works only with linear kernel. In case of an

arbitrary positive definite kernel, Schölkopf et al. (1998) follows a more general procedure

of centralizing the matrix K before the eigendecomposition:

K = K− 1NK−K1N + 1NK1N , (4.18)

where (1N )ij = 1/N .

The application of LLL is straightforward: the reduced affinities have the form Ã =

ZKZT , B̃ = ZZT and after solving the small subproblem (4.4) for X̃ the solution is

recovered using X = X̃Z. Notice, that, different from PCA, LLL needs to have an

N × N kernel matrix K as an input. However, for some kernels (e.g. Gaussian) this

matrix is sparse and thus can be fit in the memory.



72

4.7 Case studies: LLL for Spectral Clustering

There exist several formulations of spectral clustering, depending on what affinities are

used, whether the graph Laplacian is normalized, etc. Here we stick to the most common

one, which approximates the normalized cut criterion (Shi and Malik, 2000). We define

the spectral clustering as follows: given a (sparse) affinity matrix W ∈ R
N×N defined

on a set of data points Y = (y1, . . . ,yn) of D×N , we seek the solution for the following

problem:

1. Find spectral embedding using K dimensions:

min
X

tr
(
XLXT

)
, s.t. XDXT = I, XD1 = 0 (4.19)

where L = D−W is a graph Laplacian defined for a degree matrixD = diag
(∑N

m=1 wnm

)

and X ∈ R
K×N is a projection of the data into a K dimensional space.

2. Obtain the final clustering by running k-means on X, using the normalized pro-

jections X̂ij = Xij/(
∑

j X
2
ij)

1/2.

Similar to the LE, plugging (4.5) to the spectral embedding problem (4.19) gives

min
X̃

tr
(
X̃L̃X̃T

)
s.t. X̃D̃X̃T = I, (4.20)

with L× L matrices

Ã = ZLZT , B̃ = ZDZT . (4.21)

The solution is found by eigendecomposition of a small L× L matrix C̃ = D̃− 1

2 L̃D̃− 1

2 .

Thus LLL basically solves a smaller embedding problem for landmarks using small re-

duced affinities that incorporate the structure of the whole original affinity. After land-

marks are projected, the extension to the rest of the points can be found using recon-

struction (4.3). Using the landmarks projection we can also accelerate the second step

of the algorithm, which is k-means clustering.

4.7.1 Accelerating the k-means clustering step.

After LLL is finished we obtain the K-dimensional projections of the landmarks and the

K-dimensional projections x1, . . . ,xN of the non-landmark points (using (4.3)). We then

While it is possible to find an embedding in a dimension d 6= K, Ng et al. (2002) showed
that, in the ideal case (i.e. zero values in the affinity matrix for pairs of points from different
clusters), K dimensions exactly capture the variation between K clusters in the data.



73

have to run k-means on x1, . . . ,xN to obtain the final K clusters. There, the algorithm

iteratively reassigns the labels for each point, such that the sum of the distances from

the points with the same label to the centroid of that label is minimized. This objective

function is non-convex and, to avoid local optima and get better solution, a common

strategy is to use multiple restarts with different random initializations (either of points’

assignment or of centroids) and pick the result with the lowest error. The cost of this

algorithm is O(mNK2), where m is the number of repetitions.

5 10 15 20

10
5

10
6

 

 

full k-means
with warm-start

E
rr
or

Runtime

Figure 4.3: 20 runs of standard
k-means compared with a warm-
started k-means.

We can speed up the k-means step by capitalizing

on the fact that the landmarks themselves would

provide a reasonable clustering, and there are far

fewer landmarks than points. Instead of running k-

means for the whole dataset m times, we run it m

just on the landmarks, pick the best solution and

feed its centroids as an initialization to k-means on

the entire data. Thus, k-means is run just once

on the full problem, but with an initialization that

is much better than random. The complexity of

this method is O(mLK2 + NK2). When L ≪ N

the speed-up over the O(mNK2) cost of the naive

k-means step is essentially proportional to m. A

second benefit is that, since a k-means run on the

landmarks takes far less time than a single k-means iteration on the entire data, we

can afford to run many restarts and thus increase the likelihood of finding a good local

optimum.

This warm-start initialization helps to get good locations of centroids fast, but also quite

close to the final solution. Fig. 4.3 shows the decrease of k-means objective function for

the clustering N = 787 200 points to 6 classes using LLL (see motion segmentation ex-

ample in the experimental section below). Red curves correspond to randomly initialized

restarts of full k-means and green curve correspond to a single full k-mean initialized

from the best of 20 different restarts of k-means of landmarks. Overall it took 0.5 sec-

onds to run k-means on landmarks and 5.3 seconds for a single run of a full k-means.

In comparison, 20 restarts of k-means took 91.3 seconds. Notice also, that although the

results of both algorithms are the same, on the inset we can see that only one out of 20



74

runs of k-means converges to that solution. This means that using smaller number of

restarts m we could end up with some worse solution.

4.7.2 Algorithm Analysis

Comparing to the motivation of methods that use LLL for manifold learning, the desired

properties of spectral clustering in the projection space are different. For clustering,

we do not need to preserve the manifold structure, but rather separate the points into

clusters. To understand the performance of LLL, let us consider the following ideal clus-

tering situation with spectral clustering. The eigenvectors are piecewise constant with

same values for points in each cluster. Indeed, a clustering solution is also a piecewise

constant function. The approximate solution (from LLL) for the landmarks’ eigenvectors

are also piecewise constant, corresponding to the same clusters. The LLL out-of-sample

formula (4.3) is a linear combination of the nearest landmarks’ eigenvector value. Then

we have two cases: (1) if the nearest landmarks to the test point are in the same cluster,

their eigenvectors values (“cluster labels”) are equal and (4.3) will predict that same

eigenvector value, which is correct. This will happen with test points in the “interior”

of each cluster, i.e. “nearly everywhere” if the cluster boundaries are narrow. (2) if the

nearest landmarks to the test point are not all in the same cluster, their eigenvector

values (“cluster labels”) are not all equal and the formula will predict an “average” of

those values, giving more weight to the landmarks that are closer to the test point. The

resulting predicted eigenvector value will be smoothed out, since it averages different

labels. This will happen with test points in the “boundary” between different clusters.

How narrow are the cluster boundaries depends on the number of landmarks. The more

landmarks, the narrower the boundaries, because this is the region where points have

nearest neighboring landmarks from different clusters. Thus, the more landmarks, the

smaller the smoothing effect on the boundaries.

In fig. 4.4 we show the example of two cases above. The dataset on top plots consist of

two clusters along the line. Exact spectral clustering solves this problem given sufficiently

narrow bandwidth of the kernel, such that the points on the side of one cluster won’t be

affected by the points on the side of the other. For LLL, there is one more additional

constraint. If the test point is reconstructed by landmarks from different clusters (dark

red points in the left plot) the target eigenvector will be smoothed out. Good assignment

(as the one on the right), gives much better approximation.



75

0 5 10 15
−2

0
2

Y
2

Y1

0 5 10 15

Y1

0 10 20 30
−0.2

0
0.2

E
ig
en
ve
c.

Points
0 10 20 30

Points

Figure 4.4: Top: dataset Y with two
different landmark assignments. Bottom:
the approximation of the eigenvector by
LLL. The color corresponds to two near-
est landmark assignment for each point.

We might expect the LLL assumption (i.e.

a piecewise linear model) to match per-

fectly the piecewise constant clustering

model except at discontinuities (cluster

boundaries). Note that these points are

difficult for spectral clustering in the first

place, i.e. the exact eigenvector value at

them will be less “pure” than at points in

the interior of a cluster.

LLL might have troubles with small clus-

ters, because they will receive fewer land-

marks. However, spectral clustering tends

not to produce relatively small clusters,

because it approximates the Normalized

Cut objective function (Shi and Malik, 2000), which discourages small clusters so this is

likely not much of a problem.

4.8 Experimental Evaluation

4.8.1 Laplacian Eigenmaps

We compared LLL for LE to three natural baselines. (1) “Exact LE” runs LE on the full

dataset and gives the optimal embedding by definition, but the runtime is large. (2) “LE

(Z)” runs LE only on a set of landmark points and then projects non-landmark points

using the projection matrix Z, which gives a locally linear (but globally nonlinear) out-

of-sample mapping. (3) “LE (Nys.)” runs LE only on a set of landmark points and uses

the Nyström out-of-sample formula. The latter two Landmark LE baselines give faster

performance, but the embedding quality can be worse because non-landmark points are

completely ignored in solving the spectral problem. For all our experiments we used

Matlab’s eigs function to compute the partial eigendecomposition of a sparse matrix.

Role of the number of landmarks. We used 60 000 MNIST digits with sparsity

KW = 200 and bandwidth σ = 200 to build the affinity matrix and reduced the dimen-

sionality to d = 50. For LLL, we set KZ = 50 and increased the number of landmarks



76

10
2

10
3

10
410

−1

10
0

10
1

10
2

 

 

R
u
n
ti
m
e

Number of landmarks

Exact LE
LLL
LE (Z)
LE (Nys.)

10
2

10
3

10
40

0.2

0.4

0.6

0.8

Number of landmarks

E
rr
or

Figure 4.5: The performance of LLL (in green), Landmark LE with Z as an
out-of-sample (in blue) and Landmark LE with Nyström as an out-of-sample (in
cyan). Left: runtime as the number of landmarks changes. The green and blue
dashed lines correspond to the runtime that gives 10% error with respect to Exact
LE for LLL and Landmark LE using Z respectively. Right: The error with respect
to Exact LE. The black line corresponds to 10% error. Note the log scale in most
of the axes.

logarithmically from 50 to 60 000. We chose landmarks at random and repeated the

experiment 5 times for different random initialization to see the sensibility of the results

to the random choice of the landmarks. To quantify the error with respect to Exact LE

we first used Procrustes alignment (Cox and Cox, 1994, ch. 5) to align the embeddings

of the methods and then computed the relative error between aligned embeddings.

In Fig. 4.5 we show the error as well as the overall runtime for different algorithms as

the number of landmarks increases. Our first indicator of performance is to see which

algorithm can achieve the error of 10% faster. LLL needed 451 landmarks and 5.5 seconds

(shown by a dashed green line in the left plot). This is 14 times faster compared to Exact

LE which takes 80 seconds. Landmark LE with Z as an out-of-sample achieves the same

error with 23 636 landmarks and the runtime of 69 seconds (1.15 speedup, blue dashed

line in the right plot). Landmark LE with Nyström is not able to achieve the error smaller

than 50% with any number of landmarks. Notice that the deviation from the mean for

5 runs of randomly chosen landmarks is rather small, suggesting that the algorithm is

robust to different locations of landmarks.In Fig. 4.6 we show the embedding of Exact

LE and the embedding of LLL with 451 randomly selected landmarks. The embedding

of LLL is very similar to the one of Exact LE, but the runtime is 15 times faster (5.5



77

Exact LE LLL

LE (Z) LE (Nyström)

Figure 4.6: The embedding of 60 000 MNIST digits using first two dimensions.
From left to right:: Exact LE (t = 80 s.), LLL (t = 5.5 s., 451 landmarks),
Landmark LE with Z as out-of-sample (t = 5.5 s., 1 144 landmarks), and LE with
Nyström as out-of-sample (t = 5.5 s., 88 landmarks).



78

seconds compared to 80 seconds). Using bigger number of landmarks only decreases the

error further and for 3 000 landmarks, where the runtime of LLL matches the runtime

of Exact LE the mean error among 5 runs drops to 3%. Landmark LE with Z as an

out-of-sample achieved the same error only by using 23 636 landmarks and the runtime

of 69 seconds (1.15 speedup, blue dashed line in the right plot). Landmark LE with

Nyström is not able to achieve the error smaller than 50% for any number of landmarks.

Notice that the deviation from the mean for 5 runs of randomly chosen landmarks is

rather small, suggesting that the algorithm is robust to different locations of landmarks.

Model selection. We evaluated the use of LLL to predict the parameters of the

affinity matrix. We used 4 000 points from the swiss roll dataset and run the methods

varying different parameters of the algorithm. We run LLL and Landmark LE 5 times

using different random initializations to show the general behavior of the algorithm.

Experimentally we discovered that the best results are obtained with the bandwidth

σ = 1.6, the number of landmarks L no less than 300 and the sparsity level KW around

150. We then fixed two out of these three parameters and changed the third one to

see how the error curve changes. We show our results in Fig. 4.7. First, for different σ

values the error curve of Exact LE is much more similar to the one from LLL, but LLL is

able to achieve this results approximately 18 times faster (top plot). Compared to that

the Landmark LE definitely needs more landmarks in order to show similar behavior.

Second, the number of landmarks needed to achieve the same error as Exact LE is much

lower for LLL than for Landmark LE. Using 300 landmarks the error of LLL is about

3% and it is also 18 times faster than Exact LE. Landmark LE never able to achieve

10% error for any set of landmark up to a 1 000. Third, changing the sparsity level

parameter KW the error curve of LLL is again very similar to the one from Exact LE

and very different between Exact LE and Landmark LE. The speedup of LLL compared

to Exact LE varies between 2 for small values of KW to 40 for large KW . Notice that

although LLL is not able to match Exact LE for all the possible values of σ and KW

the minimum values of LLL and Exact LE match each other for both σ and KW . This

suggests a simple procedure for a user to set the parameters of Exact LE: use cheaper

LLL algorithm to obtain the minimum error for different values of σ and KW and then

initialize Exact LE with those values.



79

10
−4

10
−2

10
0

10
2

R
u
n
ti
m
e

10
0

10
110

−2

10
−1

 

 

σ

E
rr
or Exact LE

LLL
LE (Z)
LE (Nys.)

10
1

10
2

10
3

L
10

1
10

2
10

3

KW

Figure 4.7: The quality of the embedding with respect to the ground truth for
different values of bandwidth σ, number of landmarks L, and sparsity level KW .
The dataset is 4 000 points from swiss roll. Bottom row. From left to right: vary
σ for fixed L = 300, KW = 150; vary L for fixed σ = 1.6, KW = 150; vary KW for
fixed L = 300, σ = 1.6. The error of LLL and Exact LE has similar values for a
same parameters set. Top row: The runtime for different values of the parameters.

Classification. Here our goal was to find a good set of parameters to achieve low 1-

nearest neighbor classification error for full 70 000 MNIST digits dataset. We first split

the dataset into three independent sets: 50 000 digits as a training set, 10 000 digits as

a test set and 10 000 digits for an out-of-sample. We then projected training and testing

sets (overall 60 000 points) to 500 dimensions using LLL with 1 000 landmarks selected

using k-means algorithm with KZ = 50. We did it number of times for different values

of KW from 1 to 200 and σ from 4.6 to 1000. Notice that Z matrix is independent from

the affinities and depends only on the choice of landmark points, so we are able to save

30 seconds of runtime for each point by precomputing that matrix and using it for all

variation of parameters. Given the location of the embedding points X̃, we also computed

out-of-sample projection matrix Zoos to find the embedding of the out-of-sample set as

well. We used the fact that the solution of LE, as any spectral problem, is nested into

each other and computed the 1-nearest neighbor classification for different number of

dimensions separately and reported the smallest error. We did it for both the test and

the out-of-sample sets. Figure 4.8 shows the results. The smallest error is achieved for

very small values of KW . There is also little discrepancy between the error for test and

out-of-sample sets, which signify the quality of our out-of-sample projection technique.



80

LE (test) LLL (test) LE (out-of-sample)

R
u
n
ti
m
e

 

 

5

10

22

46

100

215

464

1000 1000

1500

2000

2500

3000

3500

4000

σ

 

 

65

70

75

80

85

90

0 100 200 300 400 500
0.04

0.05

0.06

0.07

Dimensions

E
rr
or

E
rr
o
r

 

 

1 2 3 6 11 19 34 62 111 200

5

10

22

46

100

215

464

1000 4

4.5

5

5.5

KW

σ

 

 

1 2 3 6 11 19 34 62 111 200
4

4.5

5

5.5

KW

 

 

1 2 3 6 11 19 34 62 111 200
4

4.5

5

5.5

KW

Figure 4.8: 1-nearest neighbor classification error for different values of σ and
KW of MNIST digits after applying LLL algorithm. See the text for a complete
description of the setup. Gray areas corresponds to unconverted optimization of
eigs routine. Top two plots show runtime for Exact LE and LLL. The color cor-
responds to the runtime is seconds. Bottom three plots show the error of Exact
LE, LLL and out-of-sample set respectively. The color corresponds to classifica-
tion error in percents. The runtime of out-of-sample is constant and equal to 30
seconds for all values of KW and σ. The top right plot shows 1-nearest neighbor
classification error for different dimensions for the test subset with σ = 10 and
KW = 1.

In the right top corner we show the error variation as we change the dimensionality. The

results are shown for σ = 10 and KW = 1, but the curve is very similar for other sets

of parameters as well. Notice that the runtime of LLL is less than two minutes for the

embedding of as many as 60 000 MNIST points.

We also tried to repeat the same experiment for Exact LE to compare the results with

LLL, but we found a lot of complications. First of all, it turns out that for small values of

KW the graph Laplacian is not connected and MATLAB eigs routine does not converge

(at least not all 500 requested eigenvalues). For the bigger values of KW the algorithm

converges, but requires a lot of iterations, which increase the runtime dramatically to

almost 4 000 seconds. Notice, that exactly for those values, both Exact LE and LLL

give the smallest error (in fact smallest error for LLL is achieved for KW = 1, for which



81

Exact LE didn’t even converge). Increasing KW improves the connectivity of the graph

Laplacian, but nevertheless the runtime didn’t decrease much lower than 1 000 seconds,

which means that LLL is 15–40× faster depending on the particular set of parameters.

Finally, the general pattern and values of error is almost the same for Exact LE, LLL

and out-of-sample set. The error is gradually increasing from the bottom left corner to

the the upper right for all three cases.

Large-scale experiment. We used infinite MNIST dataset (see Appendix A for

description) and reduced the dimensionality to d = 2 with 10 000 randomly selected

landmarks and KZ = 5 nearest landmarks. For LLL It took the algorithm 4.2 minutes

to compute the projection matrix Z and 14 minutes to compute the embedding. We

also run LE (Z) on the same 10 000 landmarks. The resulting embedding is available

in Fig. 4.9. For LLL embedding notice that zeros, sixes and ones are separated from

the rest of the digits, and nines, fours and sevens form their own group (all those digits

contain in them straight vertical line). For LE (Z) embeddings the result is not that

good. Only ones and a group containing sevens and nines can be separated. The rest of

the points are trapped in the center of the figure.

4.8.2 PCA

For PCA, the natural comparison point is to run a PCA on a subset of points and then

apply the learned linear mapping to the rest of points.

We used N = 20000 images from CIFAR dataset and apply PCA to find 10 largest prin-

cipal component. We used random location of landmarks and changed the number of

them logarithmically from 10 to N . We repeated the experiments 5 times to accommo-

date for randomness. For all number of landmarks we used KZ = L. Fig. 4.10 we show

the results. While LLL has much smaller error than the subset for any given number of

landmarks, it is worse with respect to the runtime. First, this can be explained by the

rapid decrease of the error for the subset. The linear mapping is easier to learn than the

nonlinear and even a subset of 1 000 landmarks (5% of the data) the subset already gives

a small error. Second, the subset does not involve any expensive additional operations

and thus can afford to use much more landmarks for the same runtime (notice that the

runtime for a subset almost does not grow for 10 to 1 000 landmarks).



82

Full embedding Only landmarks

L
L
L

L
E
(Z

)

Figure 4.9: Embedding of 1 020 000 points from infiniteMNIST dataset using LLL
with 10 000 landmarks. For LLL it took just 4.2 minutes to compute the projection
matrix Z and 14 minutes to find the embedding. Shown the results of embedding
of full dataset X and of the landmarks X̃ for LLL (top row) and LE (Z) (bottom
row).



83

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

E
rr
or

# of landmarks
10

1
10

2
10

3
10

410
−2

10
−1

10
0

10
1

10
2

10
3

# of landmarks

R
u
n
ti
m
e

10
−1

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

 

 

LLL
Subset

Exact

E
rr
or

Runtime

Figure 4.10: Results of PCA applied to the CIFAR dataset. Left and central
plot: the error and the runtime change as number of landmarks grow. Right plot:
error decrease as runtime grows. Solid red line corresponds to the exact run.

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

E
rr
or

# of landmarks
10

1
10

2
10

3
10

4

10
0

10
1

10
2

10
3

# of landmarks

R
u
n
ti
m
e

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

 

 

LLL
Subset

Exact

E
rr
or

Runtime

Figure 4.11: Results of LDA applied to the CIFAR dataset. Left and central plot:
the error and the runtime change as number of landmarks grow. Right plot: error
decrease as runtime grows. Solid red line corresponds to the exact run.

4.8.3 LDA

For the experiment we used the same subset of the CIFAR dataset and the same settings

as in the PCA experiment, however this time we used the label information. In fig. 4.11

we show the results. Clearly, this time the results are very different from PCA. LLL has

lower error against subset both for the same number of landmarks and, more importantly,

for the same runtime. The reason for this is that for the subset the linear mapping used

to project non-landmark points does not take into account the labels of those points. In

comparison to this, reduced affinities constructed by LLL use the information from all

the points.



84

4.8.4 Spectral Clustering

The solution of the spectral embedding (both exact and approximate) gives the matrix

X containing the N K-dimensional projections (on which k-means will be run). Since

the k-means solution is invariant to translations, rotations and scaling of x1, . . . ,xN we

can define a projection error between an approximate solution X̃ and the exact solution

X by first finding the optimal Procrustes alignment between them, and then computing

the Frobenius norm, normalized by the norm of the exact one:
∥∥∥procr(X̃)−X

∥∥∥
F
/ ‖X‖F ,

expressed as percentage. Moreover, as a general performance measure, we can compute

the clustering error with respect to the exact spectral clustering. For this, we align the

clusters using the Hungarian algorithm (Burkard et al., 2009) and report the fraction of

misclassified points.

Number of landmarks. In the first experiment, similar to LE, we computed the

runtime and the error for a different number of landmarks. We used random location

for landmarks and average over 5 different runs. For LLL, we set the number of nearest

landmarks to KZ = K + 1.

In fig. 4.12 we show the results of LLL and Nyström approximations for 128 × 128

cameraman grayscale image (N = 16384,D = 3). We used sparse Gaussian affinities

constructed using a sliding window over the pixels with a side r = 10 (1681 nearest

neighbors for each point) with bandwidth σ = 20. First of all, when the number of

landmarks is small, the subset used in Nyström has isolated components and thus is not

able to project all the points. The out-of-sample points connect to the subets only for

200+ landmarks. As number of landmarks grows, the error improves little-by-little, but

very slowly. We also observed that the location of landmarks plays important role for

this algorithm, since sometimes same number of landmarks can give very different errors,

depending on their location (e.g. there are few runs in lower left plot with low error that

are clearly separated from the others). In comparison, LLL gives results for any number

of landmarks, with both projection and clustring error consistently decreasing as the

number of landmarks grows. Notice that the error-bars averaging the runs are pretty

tight, which means that the algorithm is robust to different random initializations.

In fig. 4.13 we show the final clustering and the normalized eigenvectors ordered based

Another way to do it would be to compute the angle between the subspaces defined by the
eigenvectors. We observed that it gives very similar errors to the one we use



85

10
1

10
2

10
3

10
4

10
0

10
1

10
2

 

 

Number of landmarks

LLL
Nyström

Exact
R
u
n
ti
m
e

10
1

10
2

10
3

10
410

−4

10
−3

10
−2

10
−1

Number of landmarks

P
ro
je
ct
io
n
er
ro
r

10
0

10
1

10
210

−4

10
−3

10
−2

10
−1

P
ro
je
ct
io
n
er
ro
r

Runtime
10

0
10

1
10

2

10
−2

10
−1

10
0

C
lu
st
er
in
g
er
ro
r

Runtime

Figure 4.12: Image segmentation of 128×128 cameraman. Top plot: runtime and
projection error as the number of landmarks grow. Bottom plot: projection error
and clustering error with respect to exact spectral clustering as runtime grows.
LLL consistently outperforms Nyström method for any number of landmarks.

on eigenvalues. Top row shows the exact algorithm, then we show those runs LLL

and Nyström that were use fewest landmarks to achieve 10% and 1% clustering error.

Comparing the number of those runs, to achieve 10% LLL needed 7× fewer landmarks

than Nyström with 1.7× speed-up. For 1% accuracy, LLL needed 2.2× fewer landmarks

and 2.15× speed-up. With respect to the exact algorithm, clustering performance of LLL

is visually identical for both clustering and eigenvectors, but with LLL being almost 30×
faster.

Model selection. In fig. 4.14 we show the model selection search for the parameters

for simple Gaussian affinities for 10 000 digits from MNIST. Different from the exper-



86

Clustering 1st e-vec. 2nd e-vec 3rd e-vec 4th e-vec 5th e-vec

E
x
ac
t

e
=

0
t
=

6
6

N
=

1
6
3
8
4

L
L
L e

=
0
.0
9

t
=

1
.3
2

L
=

1
4
3

e
=

0
.0
0
7

t
=

2
.2
7

L
=

1
5
3
1

N
y
st
rö
m e

=
0
.0
8

t
=

1
.6

L
=

1
0
3
1

e
=

0
.0
0
6

t
=

4
.9

L
=

3
3
7
3

Figure 4.13: Clustering results and leading eigenvectors for exact spectral clus-
tering, LLL and Nyström. For each row, left columns give a clustering error e, the
runtime t and the number of landmarks L that were used to produce the results.

iment with LE (see fig. 4.8) in this experiment we can actually directly compare the

classification error of the k-means clustering output with respect to the ground truth

classes of MNIST letters, by predicting the majority class in each cluster, without need-

ing additional classification algorithms like k-nearest neighbor classifiers. To compare,

we run exact spectral clustering and LLL approximation with 1000 landmarks using 20

different values for σ and KW chosen on a logarithmic grid from 1 to 10 000. Left two

plots correspond to the classification error for the exact and LLL spectral clustering

respectively. Notice that the error has similar pattern for both exact and approximate

clustering. Also, for KW = 1 exact clustering fails, because the affinity matrix decouples

into many disconnected components which gives very high error. LLL reduced affinity

matrix brings those components together again and gives meaningful error. Right two



87

Class. error, exact Class. error, LLL Runtime, exact Runtime, LLL

 

 

1 10 100 1000 10000

1

10

100

1000

10000 0.2

0.4

0.6

0.8

σ

KW

 

 

1 10 100 1000 10000
0.2

0.4

0.6

0.8

KW

 

 

1 10 100 1000 10000

20

40

60

80

100

KW

 

 

1 10 100 1000 10000

2

4

6

8

10

KW

Figure 4.14: The result of model selection of the Gaussian affinities using exact
spectral clustering and LLL approximation with different values of bandwidth σ
and number of nearest neighbors KW . The first two plots show the classification
error with respect to ground truth classes and last two the runtime. Notice that
the error pattern in very similar for exact and LLL, but the runtime is an order of
magnitude smaller.

plots show the runtime of exact spectral clustering and LLL respectively with LLL being

more than 10× faster than the exact one (notice different ranges of the color bar).

Non-Gaussian affinity matrix. One of the benefits of LLL comes from the fact

that we can use it with any affinity matrix and with any explicit or implicit kernel

that generates it. In contrary, Nyström requires well defined data-independent kernel

function that generates the affinities, and, to our knowledge, was applied only to the

Gaussian kernel (Talwalkar et al., 2008; Fowlkes et al., 2004; Bengio et al., 2004a).

Not all affinities are Gaussian, however. For example, Carreira-Perpiñán and Zemel

(2005) define affinity as an ensemble of multiple affinities constructed using minimum

spanning tree on a neighborhood graph perturbed with noise. Constructed this way,

the affinities tend to be more robust to shortcuts between distant parts of the manifold.

In fig. 4.15 we show the results of the image segmentation for the 512 × 512 grayscale

image of the house using LLL for spectral clustering with 3 000 landmarks and KZ = 5.

First, we used a graph ensemble of 10 affinities constructed with MST with every point

perturbed using uniform random jitter with standard deviation 0.4d̄, where d̄ is a mean

distance to the available neighbors of that point. Second, we also show the results of

traditional Gaussian affinities (with bandwidth σ = 5). Both affinities take as an input

the neighborhood graph defined with sliding window over the spatial coordinates of side

10. Notice that the graph ensemble gives overall better results than Gaussian affinities.



88

Figure 4.15: Image segmentation of 512×512 house image (shown on the left) into
four clusters using graph ensemble affinities from (Carreira-Perpiñán and Zemel,
2005) (center plot) and Gaussian affinities (right plot). Notice that the former
segments the shadow in a separate cluster.

In particular, sky, windows and shadow of the house is better clustered using the former

affinities.

Motion segmentation. Apart from the image segmentation we can also apply spec-

tral clustering for motion segmentation in videos. We used a dataset of 41 video frames

of a person walking around a room. Each frame is represented as 120 × 160 RGB im-

age. Following Shi and Malik (1998), we can represent this dataset in both spatial and

temporal domains, where each point has six coordinates: two representing its location

on the plane, one for the number of the frame and three for color intensity. Overall, the

dataset has N = 787 200 points in D = 6 dimensions. We can define a neighborhood

graph for this dataset by connecting points along both spatial and temporal domain.

For spatial information, we used a sliding window with a side rs = 30. For temporal, we

connected each pixel with the pixel at the same location and its adjacent pixels of the

previous and the next frames. Overall it gives a neighborhood graph with 963 neighbors

for each point. We then build a Gaussian affinities with bandwidth σ = 15 for each pair

of neighbors. Altogether, building this affinity matrix takes 6.8 minutes.

For LLL, it took 3 minutes of runtime for 5 000 random landmarks with one minute

spent on computing the entries of matrix Z and one minute on computing the reduces

affinities (4.5). Thus, we can find a good solution in half a the time needed to compute

the affinity entries. Also, as we showed in the experiment with k-means in sec. 4.7,

Available at http://cmp.felk.cvut.cz/multicam/Demos/Students/BorrasJoan/



89

1st frame 11st frame 21st frame 31st frame 41st frame

In
p
u
t

L
L
L

N
y
s,
fu
ll

N
y
s,
sp
ar
se

Figure 4.16: Spatio-temporal segmentation of 41 frame video with resolution
120 × 160. Top row shows 4 frames from the original video. Each subsequent
row shows the clustering of those frames using LLL and Nyström methods that
approximate full or sparse affinities respectively.

k-means with 20 restarts would take 91 seconds by itself which is comparable to the

runtime of LLL. We also tried using larger number of landmarks, but the results did not

improve dramatically.

For Nyström we first used sparse affinities, but with so few non-zeros, it is almost impos-

sible to cover the entire dataset even with thousands of landmarks. We end up trying

10 000 landmarks before running out of memory. However, it still produced 35 singleton

points that we assign as “missing” and which we did not included in the clustering. We

also applied Nyström that approximates full affinities by computing the Gaussian kernel

between all the point in the subset. However, this requires computing eigendecomposi-

tion of full L×L matrix as well as evaluating a Nyström out-of-sample kernel for N −L

non-landmark points, which are both quite costly. For L = 3000 landmarks these two

steps already take more time than the runtime of the LLL, so we used this as comparison

point.

In fig. 4.16 we show several frames form the original movie as well as their segmentation



90

results for LLL and Nyström. Notice that the cluster assignment for LLL corresponds to

the meaningful objects (the floor, the person or the wall) and does not change from one

frame to another. Comparing to this, Nyström shows inferior performance. The version

approximating the full affinities does separate some meaningful information, such as

cluster assignments for the person’s torso, but generally the clusters does not represent

any feature of the space. Nystöm that uses sparse affinities does not show almost any

meaningful segmentation.

4.9 Discussion

LLL algorithm uses all the available information from the affinity matrix to construct re-

duced affinities that propagate . Nyström is restricted only to the subset of the affinities,

which is wasteful, particularly if collecting the data is costly. The reason why spectral

clustering works well is the neighborhood graph, which propagates label information

over points within a cluster, according to the edges between points. Using a small subset

of the vertices and the edges between those vertices coarsens the graph too drastically.

From this point of view, the reduced graph in LLL can be seen as a contraction of the

original graph that preserves more information about it.

A further speedup not explored here is the use of multiprocessors. The basic operations

required are: (1) the computation of the sparse affinity matrix (itself possibly involv-

ing constructing a nearest-neighbor graph and computing the affinity values); (2) the

computation of the weights Z; (3) the construction of the reduced spectral problem (in-

volving matrix products); (4) the computation of the landmark eigenvectors; (5) the

out-of-sample extension of the eigenvectors to the full data; (6) the random k-means

restarts on the landmarks; and (7) the final k-means on the entire data. Most of these

steps are easily parallelizable, in particular the more expensive ones that involve the

entire, O(N), dataset.

4.10 Conclusion

Spectral methods for manifold learning and clustering often give good solutions to prob-

lems involving nonlinear manifold or complex clusters, and are in widespread use. How-

ever, scaling them up to large datasets (large N) and nontrivial numbers of eigenvectors



91

(large d) requires approximations. The Locally Linear Landmarks method proposes a

reduced formulation of the original spectral problem that optimizes only over a small set

of landmarks, while retaining structure of the whole data. The algorithm is well defined

theoretically and has better performance than the Nyström method, allowing users to

scale up applications to much bigger sizes. LLL also defines a natural out-of-sample

extension that is cheaper and better than the Nyström method.

We show that the algorithm can be applicable to a wide range of spectral problems:

manifold learning, such as Laplacian Eigenmaps, PCA and kPCA; clustering, such as

Spectral Clustering; and supervised dimensionality reduction, such as LDA and kLDA.

There exist other methods not included in this version, such as LLL for metric learning

(Kulis, 2012), ISOMAP (Tenenbaum et al., 2000), MDS (Cox and Cox, 1994), MVU

(Weinberger and Saul, 2004) and LLE (Saul and Roweis, 2003). In most of the studied

cases (with exception of PCA) the algorithm shows robustly 10-20× speed up with small

approximation error.

The basic framework of LLL, where we replace the low-dimensional projections by a fixed

linear function of only a few of the projections, is applicable to any spectral method.

However, the best choice of the linear function is an interesting topic of future research.



Chapter 5

Linear-time Training using

N-Body approximations

5.1 Introduction

Although in chapter 3 we were able to significantly reduce the number of iterations of

NLE algorithms, each iteration is still quadratic on the number of points N , and this does

not scale to large datasets. In fact, no matter how fast we would make out optimization

routine, it would just decrease the number of iterations needed for convergence, while

each iteration is still going to be quadratic. This is prohibitively expensive for datasets

with more than few hundred thousand points. Stochastic gradient descent is not helpful,

because each step would only update a small subset of the O(N) parameters, becoming

a form of alternating optimization. In this chapter we are going to try to break the

quadratic cost of NLE iterations by approximating the gradient with N -body methods,

in particular fast multipole methods (FMM; Greengard and Rokhlin, 1987). N -body

problems arise when the exact computation involves the interaction between all pairs

of points in the dataset. They are of particular importance in particle simulations in

biology and astrophysics. Generally, there are two ways to speed up N -body problems:

using a tree structure (e.g. Barnes and Hut, 1986) or using a FMM expansion, and they

approximate the computations in O(N logN) and O(N) time, respectively. FMMs also

This chapter is an extended version of Vladymyrov and Carreira-Perpiñán (2014).

92



93

have known error bounds (Baxter and Roussos, 2002), while the Barnes-Hut algorithm

does not (Salmon and Warren, 1994). Unfortunately, both types of methods scale poorly

with the latent-space dimensionality d. However, they work well for d ≤ 3, which makes

them suitable for visualization applications, and we focus on that here.

In section 5.2 we are going to review two categories of N -Body methods: the ones based

on tree structure (most notably Barnes-Hut method) and the ones based on FMM. We

also going to review few papers that have already tried to use N -Body methods for the

fast training of NLE. Then, in section 5.2.3 we will show how we can approximate the

computation of the objective function and the gradient of NLE using N -Body methods.

In section 5.4 we will show an initial attempt to evaluate the quality of the approximation.

We evaluate the role of noisy gradients and propose the use of increasing schedules for

the accuracy parameter of N -body methods in order to speed up the optimization.

Section 5.5 will show the embedding results of MNIST dataset and show how FMM

compare with Barnes-Hut approximation and the exact evaluation. Finally, for large-

scale experiment we show that FMM approximation is able to find an embedding of

million-point infiniteMNIST dataset in three hours’ runtime. We will finish the chapter

with some conclusive remarks.

5.2 Review of N-Body Methods

All fast computation methods for N -body problems produce approximate, rather than

exact, values for sums of O(N2) interactions. They are generally based on tree structures,

such as the O(N logN) Barnes-Hut (BH) method; or on series expansions, such as the

O(N) fast multipole method (FMM) and fast Gauss transform (FGT), which besides

have bounds for the approximation error.

5.2.1 Tree-based Methods

Here, we build a tree structure around the points X, such as kd-trees, ball-trees or

range-trees (Friedman et al., 1977; Samet, 2006), and we query tree nodes rather than

individual points. Each node of the tree represents a subset of the data contained in

a d-dimensional cell, usually a box aligned with the coordinate axes. The root node

represents the whole dataset and each new level partitions the space into subsets (e.g.

in the middle of the largest-variance dimension) until there is only one point left in



94

xq

c

D

l

⇒

xq

c

D

l 10
−2

10
−1

10
0

10
110

−10

10
−5

10
0

10
−2

10
−1

10
0

10
110

−1

10
1

10
3

10
5

R
u
n
ti
m
e
sp
ee
d
u
p

R
el
at
iv
e
E
rr
or

θ

Figure 5.1: Left : for l/D > θ, the cell is subdivided into smaller subcells. Oth-
erwise, the interaction is computed approximately. Right : speedup and relative
error for different values of θ. The gray area corresponds to the region with no
speedup. Notice the log/log plot.

each leaf node. The tree can then be used to locate points within a given distance of

a query point without exhaustive search on the entire dataset. For faster, approximate

calculations, we replace many point-point interactions with point-node interactions, by

pruning nodes too far away or by subsuming all points in a small cell into one interaction.

In machine learning, this idea has been used to speed up various nonparametric models,

such as regression with locally weighted polynomials (Moore et al., 1997) or Gaussian

processes (Shen et al., 2006). Dual-trees (Gray and Moore, 2001) yield further speedups

by building trees for both target and query points, which allows node-node interactions

besides point-node ones.

We focus here on the Barnes and Hut (1986) (BH) method. This first constructs a

quadtree in 2D (octree in 3D) around the set of target points. Then, for every query point

xq, it traverses the tree down from the root until the cell can be considered approximately

as a single point because it is sufficiently small and far from xq, as follows. For a cell of size

l, let D be the distance between the cell’s center of mass c and xq (see fig. 5.1 left). If the

fraction l/D is smaller than a user-defined parameter θ, then all the interactions between

xq and the points inside that cell are approximated by a single interaction with c. If the

fraction is bigger than θ, the algorithm continues to explore the children of the node.

If we reach a leaf, the interaction is computed exactly, since it contains only one point,

otherwise an approximation error is incurred. As a function of N , the construction of the

tree costs O(N logN) and for each of the N query points, the interaction is computed

in expected O(logN) time. Thus, the overall cost reduces from O(N2) to O(N logN).



95

The user parameter θ controls the trade-off between the accuracy of the solution and

the runtime speedup. Increasing θ means we approximate cells that are bigger or closer

to the query point. This reduces the runtime because we prune the tree earlier, but

also increases the approximation error. Fig. 5.1(right) shows the relative error and the

speedup compared to the exact computation for different values of θ. Good speedups

with small relative error occur for θ ∈ [0.5, 2], roughly, but this region does vary with

each problem.

Tree-based algorithms have some limitations. Most crucially, the tree size grows exponen-

tially with the dimension d, thus limiting their use to problems with low dimensionality.

Second, the approximation quality declines when the interaction scale (e.g. the Gaussian

kernel bandwidth) is too big or too small. The hierarchical fast Gauss transform (Lee

et al., 2006) somewhat alleviates the second problem by combining dual trees with fast

multipole methods, but it still does not work well when d > 3. Finally, it is hard to

estimate the approximation error, which in fact can be unbounded (Salmon and Warren,

1994).

5.2.2 Fast Multipole Methods

Fast multipole methods (FMM) were initially used in astrophysics to compute gravita-

tional interactions between many particles (Greengard and Rokhlin, 1987) and have since

enabled large particle simulations in many areas. The idea of FMMs is to do a series

expansion of the interactions locally around every point such that the point pair decou-

ples in each term of the series. Truncating the series reduces the cost from quadratic

to linear. The fast Gauss transform (FGT; Greengard and Strain, 1991) applies this to

compute sums of Gaussian interactions

Q(xn) =
∑N

m=1 qm exp(−‖(xn − xm)/σ‖2) (5.1)

for a set of points xn, n = 1, . . . , N and a bandwidth σ. It has been applied to accelerate

problems such as kernel density estimation (Raykar and Duraiswami, 2006a) and matrix

inversion and eigendecomposition (de Freitas et al., 2006) in machine learning.

In the FGT, we start by normalizing the points to lie in the unit hypercube and dividing

the space into boxes of side
√
2σr, where r < 1/

√
2 is a user parameter. Defining

hn(t) = e−t2Hn(t) as Hermite functions with Hermite polynomials Hn(t), there exist

three different ways to compute the approximation to (5.1) (cf. fig. 5.2):



96

• We can use a Hermite expansion for each box B (with center sB) and evaluate it

for all target points t:

Q(t) =
∑

B

∑

α<p

AB
αhα

(t− sB

σ

)
+ ǫH(p), (5.2)

where AB
α = 1

α!

∑
sj∈B

qj(
sj−sB

σ )α and ǫH(p) is a known error term, defined below.

• For every source point in a box B we can form a Taylor series of the target points

t in the nearby boxes C with corresponding centers tC :

Q(t) =
∑

β<p

(
∑

B

CBC
β

)(t− tC

σ

)β
+ ǫT (p), (5.3)

where CBC
β = 1

β!

∑
sj∈B

qjhβ(
sj−tC

σ ) and ǫT (p) is a known error term, defined below.

• We can further approximate (5.2) by expanding hα(t) as a Taylor series to get

Q(t) =
∑

β<p

(
∑

B

ĈBC
β

)(t− tC

σ

)β
+ ǫTH(p), (5.4)

where ĈBC
β = 1

β!

∑
α<pA

B
α(−1)|α|hα+β(

sB−tC
σ ) and ǫTH(p) is a known error term,

defined below.

The approximation errors are given in Baxter and Roussos (2002) with an extended

derivation from Raykar (2006):

ǫH(p) ≤
∑N

m=1 qm
(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

, (5.5)

ǫT (p) ≤
∑N

m=1 qm
(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp√
p!

)d−k

, (5.6)

ǫTH(p) ≤ ǫT (p) +

∑N
m=1 qm

(1−
√
2r)2d




d−1∑

k=0

(
d

k

)
(1− (

√
2r)p)k

(
(
√
2r)p√
p!

)d−k



2

. (5.7)

Wan and Karniadakis (2006) give tighter bounds.

Computing multiindex sums over α and β scales as O(pdN), which is the bottleneck

computation. The rest of the computations add a linear cost to the algorithm and

depend of the number of boxes included around every source box B.
We use multi-index notation: α ≥ 0 ⇒ α1, . . . , αd ≥ 0; α! = α1! · · ·αd!; t

α = tα1

1
· · · tαd

d
for

α ∈ N
d, t ∈ R

d.



97

I: B C

NB sources MC targets

II: B C

NB sources MC targets

s0

III: B C

NB sources MC targets

t0

IV: B C

NB sources MC targets

s0 t0

Figure 5.2: Different FGT approximations. I: exact interaction (5.1) (few points
in both boxes); II: expansion around s0 (many source points); III: expansion around
t0 (many target points); IV: expansion around s0 and then Taylor expansion to
the Hermite functions (many points in both boxes).

The choice of the method depends on the number of source points NB in a given box

B and the number of target points MC in a given box C. The user provides two cutoff

parameters N̄B and M̄C . Now, one of the following can occur:

• If NB < N̄B and MC < M̄C use exact evaluation (5.1).

• If NB < N̄B and MC ≥ M̄C use Hermite expansion (5.2).

• If NB ≥ N̄B and MC < M̄C use Taylor expansion (5.3).

• If NB ≥ N̄B and MC ≥ M̄C use Hermite expansion followed by a Taylor expansion

(5.4).

To gain additional speedup we can use the fast decay of the Gaussian and compute the

interaction to target points that are located no further than K boxes away from the

box with the source point. However, note that the FMM is still O(N) with heavy-tailed

kernels such as the gravitational interaction.

The main drawback of FMMs and the FGT is that they are limited to small dimensions

d (due to the pd cost). The improved FGT (Yang et al., 2003) uses clustering and

other techniques to grid the data into data-dependent regions, and a modified Taylor

expansion so the cost is O(dpN). This allows for somewhat larger dimensions, but the

issue still remains, and the IFGT needs careful setting of various parameters (Raykar

and Duraiswami, 2006b), or otherwise the overhead is so large that computing the exact



98

interaction is actually cheaper. In this chapter, we focus on d ≤ 3 and the plain FGT

with parameters r = 1/2, N̄B = M̄C = 5, K = 4, so that the quality of the approximation

is controlled using just the order of the expansion p.

FMMs do have important advantages over BH: their cost is lower (O(N) vs O(N logN)),

they work well on a wide range of kernel bandwidths, and they have known bounds for

the approximation error as a function of p.

While in this chapter we concentrate on the Gaussian kernel (and the FGT), it is possible

to use FMMs for virtually any kernel, for example the “kernel-independent” FMM (Ying

et al., 2004; Fong and Darve, 2009) needs only numerical values of the kernel.

5.2.3 Related Work

N -body problems arise in the graph drawing literature, where the goal is to visualize

in an aesthetically pleasing way edges and vertices of a given graph, which is typically

unweighted and sparse (Battista et al., 1999). This is similar to dimensionality reduction

given an affinity (or adjacency) matrix. One of the most successful algorithms for graph

drawing are force-directed methods (Battista et al., 1999; Fruchterman and Reingold,

1991), which try to balance attractive and repulsive forces on the graph vertices in a

similar formulation to that of NLEs (eq. (3.1)). Each iteration of the force-directed

method requires the computation of interactions between every pair of points, which is

O(N2) for a graph with N vertices. Fast, approximate graph drawing is done with the

BH algorithm (Quigley and Eades, 2000; Hu, 2005) in O(N logN) runtime. Recently,

the BH algorithm has been used to speed up the training of NLEs (van der Maaten,

2013; Yang et al., 2013) in a similar way to the work in graph drawing. The use of dual

trees and FMMs to speed up gradient descent training of stochastic neighbor embedding

(SNE) was also proposed by de Freitas et al. (2006), as a particular case of their work

on N -body methods for matrix inversion and eigendecomposition problems in machine

learning. Our work provides a more thorough study of N -body methods and the FGT

for NLEs and demonstrates it in million-point datasets.

5.3 Applying N-body Methods to Embeddings

For NLEs the N -body problem appears in the computation of the objective function

and the gradient, where the interactions between all point pairs must be evaluated. In



99

particular, the objective function of NLE (3.1) involves two N -body problems, one for

each of the attractive and repulsive terms. The computation of the attractive term can

be mitigated by the nature of the matrix W: in most practical applications it is sparse

and thus can be computed in linear time. The repulsive term is not sparse and involves

an N -body problem as a sum of kernel similarities between all point pairs. For the

gradient, the first term involves the graph Laplacian L, which has the same sparsity

pattern as W and can be computed efficiently. The second term involves the graph

Laplacian L̃ = D̃− W̃, which depends on X through a kernel in W̃. Let us define the

following kernel interactions:

S(xn) =

N∑

m=1

K(‖xn − xm‖2), Sx(xn) =

N∑

m=1

xmK(‖xn − xm‖2). (5.8)

Now we can rewrite the objective function and the gradient of EE and s-SNE as follows:

E(X) =
N∑

n,m=1

wnm ‖xn − xm‖2 + λ
N∑

m=1

f(S(xm)),

∂E

∂X
= 4XL− 4λZ(X)Xdiag (S(X)) + 4λZ(X)Sx(xn),

where f(x) = log x, Z(X) = 1/
∑N

n=1 S(xn) for s-SNE and f(x) = x, Z(X) = 1 for EE.

Given S(xn) and Sx(xn) both the objective function and the gradient can be computed

in linear time.

The BH method can be applied to compute approximately the kernel interactions (5.8).

We get

S(xn) ≈
N̂∑

m=1

NmK
(
‖cm − xn‖2

)
, Sx(xn) ≈

N̂∑

m=1

NmcmK
(
‖cm − xn‖2

)
,

where Nm and cm for m = 1, . . . , N̂ are the number of points and the centers of mass of

the cells, respectively, for which we need to compute the interaction. For the weighted

kernel interaction Sx(xn) we require an additional approximation of each weight xm, due

to its dependence on m. Fortunately, when we compute the approximation between the

cell and the query point, the cell size is small (compared to the distance to the query

point) and thus can be approximated by its center of mass.

For the FGT, S(xn) can be obtained by taking σ = 1 and qn = 1 in (5.1) for all

n = 1, . . . , N . Sx(xn) is recovered by taking σ = 1 and qn = xkn and computing the

formula d times for k = 1, . . . , d.



100

For t-SNE we cannot apply the FGT, because the former uses the t-Student kernel.

However, a FMM approximation could be derived with a suitable series expansion, or

with a kernel-independent FMM method (section 5.2).

Out-of-Sample Mapping The N -body approximation can also be used to obtain a

fast out-of-sample mapping. Carreira-Perpiñán and Lu (2007); Carreira-Perpiñán (2010)

compute the projection of a new test point y by keeping the projection of the training

points X fixed and minimizing the objective function of the NLE wrt the unknown

projection x (the mapping of a new x point to y-space is defined analogously). For

example, for EE:

min
x

E′(x,y) = 2

N∑

n=1

(
w(y,yn) ‖x− xn‖2 + λ exp

(
− ‖x− xn‖2

))
. (5.9)

For M new test points the formula above can be approximated in O(M +N) using N -

body methods (iterating all M minimizations synchronously), instead of O(NM) with

the exact computation.

Optimization Strategy Since exact values of the objective function and gradient

are not available during the optimization, it makes sense not to use a line search (it

might be possible to use line searches with the FGT because it does give us an interval

for the true value). This also saves time, since the line search would require repeated

evaluations of the objective function. So the only N -body problem we need to solve per

iteration is the gradient.

Our problem has similarities with stochastic gradient descent, for which a convergence

theory exists (Spall, 2003, ch. 4.3), which leads to Robbins-Monro schedules that decrease

the step size over iterations in a specific way. However, NLE training is different in

that the number of parameters is proportional to the number of training points and

the characteristics of the “noise” in the gradient (the approximation error) are not well

understood. As far as we know, no convergence theory exists for NLEs. We provide an

initial study of the role of this noise in section 5.4.

In pilot runs, we found that schedules that decrease the step size over iterations can

improve the performance, but they are difficult to use in a robust way over different

problems. Thus, for our experiments we use a constant step size η, chosen sufficiently

small, which is simpler.



101

5.4 Analysis of the Effect of Approximate Gra-

dients in the Optimization

The parameters that quantify the trade-off between the accuracy and the speedup are

θ for BH and p for FGT. A higher value of p (or lower of θ) increases the accuracy,

but so does the runtime. Clearly, the speed at which the optimization progresses and

whether it converges depend crucially on these accuracy parameters. Here, we try to

gain some understanding of this by considering the iterate updates as noisy, where the

“noise” comes from the approximation error incurred and has a variance that grows with

p. In order to solve the mathematical derivations, we will assume zero-mean Gaussian

noise, which implies that the error is not systematic, as one might intuitively expect.

This will allow us to derive some expressions that seem to hold in experiments, at least

qualitatively.

At iteration k during the optimization of an objective function E(x) with x ∈ R
n, if using

exact gradient evaluations, we would move from the previous iterate xk−1 to the current

one xk without error (for example, for a gradient descent step, xk = xk−1−η∇f(xk−1)).

However, if using an inexact gradient, we would move to xk+ǫk, incurring an error ǫk. In

our case, ǫk is caused by using an approximate method and is a deterministic function

of xk−1 and the method parameters (θ for Barnes-Hut, p for fast multipole methods,

etc.). Let us model ǫk as a zero-mean Gaussian with variance ξ2 in each dimension.

The fundamental assumption is that, although ǫk is deterministic at each iterate, over

a sequence of iterates we expect it not to have a preferred direction (i.e., no systematic

error). The value of ξ corresponds to the accuracy level of the method, where ξ = 0

means no error (θ = 0, p → ∞). In practice, ξ will be quite small. Then we have the

following result.

Theorem 5.4.1. Let E(x) be a real function with x ∈ R
n. Call ∆E(x) and δE(x)

the absolute and relative error, respectively, incurred at point x ∈ R
d upon a pertur-

bation of x that follows a Gaussian noise model N (0, ξ2I). Call µ∆(x) = 〈∆E(x)〉,
v∆(x) =

〈
(∆E(x) − 〈∆E(x)〉)2

〉
, µδ(x) = 〈δE(x)〉 and vδ(x) =

〈
(δE(x) − 〈δE(x)〉)2

〉

the expected errors and their variances under the noise model. Assume E has deriva-

tives up to order four that are continuous and have finite expectations under the noise

model. Call g(x) = ∇E(x) and H(x) = ∇2E(x) the gradient and Hessian at that point,

respectively, and JH(x) the d×d Jacobian matrix of the Hessian diagonal elements, i.e.,



102

x

E(x)

x

E(x)

x

E(x)

Figure 5.3: The result of a Gaussian perturbation to a point x on the function
E(x) in 1D. With positive mean curvature (left), the perturbation is equally likely
to move x to the left or to the right, but points to the right have a larger, positive
error in E, while points to the left have a smaller, negative error in E, and the net
effect is that the perturbed E value is larger than E(x) on average. With negative
mean curvature (middle), the opposite is true. With zero mean curvature (right),
the perturbed E value is zero to first order.

(JH(x))ij = ∂hii/∂xj = ∂3E(x)/∂x2i ∂xj . Then, the expected errors and their variances

satisfy, ∀x ∈ R
d:

µ∆ =
1

2
ξ2 tr (H(x)) +O(ξ4) (5.10)

v∆(x) = ξ2 ‖g(x)‖2 + ξ4
(
1

2
‖H(x)‖2F + 1TJH(x)g(x)

)
+O(ξ6) (5.11)

µδ = µ∆/E(x) vδ = v∆/E(x)2. (5.12)

If ‖H(x)‖2 ≤M ∀x ∈ R
d for some M > 0, then ∀x ∈ R

n:

|µ∆| ≤
1

2
ξ2dM. (5.13)

The proof to this theorem is given in Vladymyrov and Carreira-Perpiñán (2014).

Note that the mean error in eq. (5.10) depends on the point x, i.e., the iterate where

we apply the approximate step, through the trace of the Hessian at that point (and the

accuracy level ξ, which we assume fixed by the user). It does not depend on the gradient

itself, because the linear term is an odd function that integrates to zero. The formula

for the mean error is accurate when ξ is small, which means the accuracy in the gradient

evaluation is high. If the function E is quadratic, the formulas are exact. The bound for

the mean error in eq. (5.13) is valid at any iterate (i.e., it does not depend on x), but

will typically be too coarse, and it also loses the information about the sign of the error.

The formula for the mean error in eq. (5.10) has a simple geometric interpretation (see

fig. 5.3): while a Gaussian perturbation is symmetric in x-space, the value of E(x + ǫ)

is not because of the curvature in E, so the average of the E-error is not zero.



103

The behavior of the variance of the absolute error during the optimization can be char-

acterized as follows. The variance is, to first order, proportional to the squared gradient,

so we expect large variations in the error in early stages of the optimization. Near a

minimizer, g(x) ≈ 0 and so the coefficient of variation of the absolute error is
√

v∆(x)

µ∆(x)
≈
√
2
‖H(x)‖F
tr (H(x))

=
√
2
‖λ(x)‖2
‖λ(x)‖1

∈
[√

2

d
,
√
2

]

since ‖x‖1 /
√
d ≤ ‖x‖2 ≤ ‖x‖1 ∀x ∈ R

d, tr (H(x)) =
∑d

i=1 λi and ‖H(x)‖2F =
∑d

i=1 λ
2
i ,

where λ(x) = (λ1, . . . , λd)
T ≥ 0 are the eigenvalues of H(x). Thus, the coefficient of

variation of the absolute error is independent of the accuracy level ξ and dependent only

on the curvature. The ends of the interval above occur when all the eigenvalues are equal

(
√

2/d) or at most one eigenvalue is nonzero (
√
2). In practice, if n is large we are likely

to have many nonzero eigenvalues and thus be closer to the
√

2/d end, so the coefficient

of variation will be very small. Hence, near a minimizer we expect to see absolute errors

with a near-constant value of µ∆(x) =
1
2ξ

2 tr (H(x)).

This allows us to characterize the behavior of the optimization near the minimizer.

Assume that, if using exact gradients, we converge linearly with rate 0 < r < 1, e.g.

Ek+1 = rEk where Ek is the exact value of the objective function E(xk) at iterate k

(and we assume w.l.o.g. that Ek → E∗ = 0). Using the approximate gradients, the

sequence of objective function values is instead ek+1 ≈ rek + µ∆(xk) ≈ rek + µ, where

µ = 1
2ξ

2 tr (H(x∗)) and x∗ is the minimizer. We assume a high enough accuracy ξ ≪ 1

so that µ ≪ 1 and convergence actually occurs. Then, we have that ek → e∗ = µ
1−r

linearly with rate r. Indeed, for the limit we have ek+1 = e∗ = re∗ + µ⇒ e∗ = µ
1−r . For

the rate, we have:
|ek+1 − e∗|
|ek − e∗| =

rek + µ− µ
1−r

ek − µ
1−r

= r.

This means that, when using approximate gradients, the sequence of objective function

values (ek) will seem to converge, but will do so to a value e∗ that is larger than the

optimal one E∗, and proportional to ξ2. The iterates xk will, of course, not converge

but oscillate around x∗. Fig. 5.4 illustrates this.

Fig. 5.5 shows the effect of different settings of the accuracy. We run EE (with λ =

10−4) using gradient descent with FMM approximation for 4 000 points from the Swiss

roll dataset. We fixed the step size to η = 0.3. First, we run the optimization for

100 iterations only (left two plots) and tried four different accuracy schedules: keep

the accuracy at p = 3, at p = 10, or decrease it every 10 iterations from p = 10 to



104

0 20 40 60
0

0.2

0.4

0.6

0.8

1

 

 

E
(x

k
)

k

Ek

ek

Figure 5.4: Illustration of the objective function sequences Ek and ek for the
optimization using exact and inexact gradients, respectively. We use r = 0.9,
µ = 0.01 and an initial E0 = e0 = 1. Ek converges to E∗ = 0 while ek converges
to e∗ = 0.1.

p = 1, or increase it from p = 1 to p = 10, respectively. Increasing the accuracy

gives almost the same decrease per iteration as the approximation with p = 10 terms,

however the runtime in the former case is faster. Both using a crude approximation

(p = 3) and decreasing the accuracy does not achieve the same decrease in the objective

function. Second, on the right plot, we used the same dataset, but now run it 10

times for 500 iterations with different p = 1, . . . , 10 (blue lines on the plot). After

each approximate step we also evaluate the exact gradient to see the difference between

exact and approximate steps (black dashed lines). First, as the gradient approximation

improves, the objective function decrease is greater. Second, the exact steps are always

better than the approximate ones, which agrees with theorem 5.4.1. Third, the error

between the exact and the approximate step becomes smaller as the approximation

improves. Eventually, it becomes identical to the exact run of the method (red line).

5.5 Experiments

In all experiments, we reduce dimension to d = 2. First, we show that the performance of

the methods matches the theoretical complexity. Fig. 5.6 shows the error and runtime of

the exact method compared to those of BH and FGT as the number of points grows. We

approximated the S(xn) sum for uniformly distributed xn ∈ R
2. The theory estimates



105

50 100 150 200

500

1000

1500

O
b
je
ct
iv
e
fu
n
ct
io
n

Iterations

1 2 3 4 5 6 7 8 9 10

p =
12345678910

0 10 20 30 40
 

 

Runtime, s

p = 3
p = 10
p = 10→ 1
p = 1→ 10

0 100 200 300 400 500
 

 

Iterations

p = 1
p = 2

p =∞

Approximate
Exact

Figure 5.5: Minimization of 4 000 points from the swiss roll dataset using EE with
gradient descent with different accuracy parameters. Left two plots : the number
of iterations is limited for 200 iterations. The green and red numbers specify the
p value change for dashed red and green curves. Right plot : we run FGT for
p = 1, . . . , 10 (blue lines) and run one exact step after each iteration of the FGT
(black lines). Compare with the exact run (red line).

that the logarithm of the runtime t should be O(2 logN) for exact methods, O(logN +

log logN) for BH and O(logN) for FGT. Thus, in the log/log plot, the exact method

and FGT should appear linearly with slopes 2 and 1 respectively and BH should appear

almost linear. Indeed, the slope of the exact method is 2.02, the slope of FMM is

0.89±0.08 (averaging over different p values) and the slope of BH is 1.17±0.06 (averaging

over θ), which as expected is slightly bigger than linear.

We compared the performance of the exact algorithms to FGT and BH for the EE algo-

rithm (with λ = 10−4) using gradient descent (GD), fixed point iteration (FP; Carreira-

Perpiñán, 2010) and L-BFGS algorithms. For BH, we used our own C++ implemen-

tation; for FGT, our code was based on the implementation available at www.cs.ubc.

ca/~awll/nbody_methods.html. We used fixed step sizes in the line search: η = 0.1

for GD, η = 0.05 for FP and η = 0.01 for L-BFGS. We tried several values and chose

the ones that gave greatest steady decrease of the objective function, without frequent

increases in the objective function. For the accuracy schedule, for BH we started with

θ = 2 and logarithmically decreased it to θ = 0.1 for the first 100 iterations. For FGT,

we started with p = 1 term in the local expansion and logarithmically increased it to

p = 10 terms after the first 100 iterations. We kept the last approximation parameter

fixed for subsequent iterations.

In the first experiment we used 60 000 digits from the MNIST handwritten dataset

(fig. 5.7). We use a sparse affinity graph with 200 nearest neighbors for each point. We

use entropic affinities with a perplexity K = 50. If we consider the decrease per iteration



106

10
−6

10
−4

10
−2

E
rr
or

w
rt

ex
ac
t

10
3

10
4

10
5

10
6

10
−3

10
1

10
5

 

 

R
u
n
ti
m
e,

s

N

FGT, p = 2
FGT, p = 3
FGT, p = 4

BH, θ = 1/2
BH, θ = 1
BH, θ = 2Exact

Figure 5.6: Error with respect to the exact computation (top) and runtime vs.
the number of points (bottom).

disregarding the runtime (left plot), the methods go down in groups of three: one for GD,

FP and L-BFGS respectively. This means the decrease per iteration is almost the same

for the exact methods compared to the approximations, suggesting that the optimization

follows a similar path. However, taking the runtime into account (right plot), we see

a clear separation of FGT (green) from BH (blue) and the exact computation (red).

Overall, BH is about 100× faster and FGT is about 400× faster than the exact method.

Note the objective function values shown in the plot are not needed in the optimization

and are computed exactly offline.

We used 1 020 000 points from infiniteMNIST dataset. For each digit the entropic affini-

ties were constructed from the set of neighbors of the original digit and their deformations

using perplexity 10. We run the optimization for 11 hours using GD, FP and L-BFGS for

EE with FGT and BH approximations. Fig. 5.8 shows the objective function decrease

per iteration and per second of runtime. Similarly to the previous experiment, BH and

FGT show similar decrease per iteration (right plot), but FGT is much faster in terms of

runtime (left plot). On average, we observe FGT being 5–7 times faster than BH. Below,

we show the embedding of the digits after 3 hours of L-BFGS optimization using FGT

and BH. The former looks much better than the latter, showing clearly the separation

between digits. We also tried the exact computation on this dataset, but after 8 hours

of optimization the algorithm only reached the second iteration.

We also generated 60 000 test digits and used the FGT approximation of the out-of-



107

10
0

10
1

10
2

10
3

10
4

0.5

1

1.5

2

2.5

3

3.5

x 10
5

 

 

O
b
je
ct
iv
e
fu
n
ct
io
n

Iterations

GD, FGT
GD, BH
GD, exact
FP, FGT
FP, BH
FP, exact
L-BFGS, FGT
L-BFGS, BH
L-BFGS, exact

10
0

10
1

10
2

10
3

Runtime, s

Figure 5.7: Speedup of the EE algorithm using BH and FGT for 60 000 MNIST
digits using gradient descent (GD), fixed point iteration (FP) and L-BFGS. Learn-
ing curves as a function of the number of iterations (left) and runtime (right). The
optimization follows almost the same path for the exact method and both approxi-
mations, however BH and FGT are about 100× and 400× faster respectively. Note
the log plot in the X axis and the inset showing the BH and FGT curves.

sample mapping (5.9). We used the result of L-BFGS after 3 hours of optimization as

the training data and initialized each test point to the training point that is closest to

it. The resulting embedding is shown in fig. 5.9. We obtained the embedding of the test

points in just 11 minutes and the embedding agrees with the structure of the training

dataset.

5.6 Discussion

An interesting way to create a tree-based approximation that would run in linear time

is to use a Barnes-Hut algorithm, but with a tree that has a maximum height. This way

the complexity of building and querying the tree is linear, but the error is higher, since

we don’t query the leaved all the way to the bottom and for some of them the condition

l/D ≤ θ will be violated. This means that this new algorithm will most likely perform

worse than FMM, that, for some dataset (see fig. 5.6), has both smaller computational

error and faster runtime.



108

10
0

10
1

10
2 10

3

106

10
7

Iterations

O
b
je
ct
iv
e
fu
n
ct
io
n

GD FGT

GD BH

FP FGT

FP BH

L-BFGS FGT

L-BFGS BH

1 2 3 4 5 6 7 8 9 10 11

Runtime, hours
FGT using L-BFGS after 3 hours BH using L-BFGS after 3 hours

E = 521 666, 221 iter. E = 1 079 357, 32 iter.

 

 

0
1
2
3
4
5
6
7
8
9

Figure 5.8: Embeddings of 1 020 000 digits from the infiniteMNIST dataset using
the elastic embedding algorithm with FGT and BH, optimized with gradient de-
scent (GD), fixed-point iteration (FP) and L-BFGS. Top: objective value change
with respect to the number of iterations and runtime. Bottom: embedding of
FGT and BH with L-BFGS after 3 hours of optimization. The inset shows that,
in addition to separating digits, the embedding has also learned their orientation.



109

Figure 5.9: Out-of-sample projection of 60 000 digits using the embedding of
1 020 000 digits from the infiniteMNIST plotted on the bottom left of fig. 5.8.

5.7 Conclusion

We have shown that fast multipole methods, specifically the fast Gauss transform, are

able to make the iterations of nonlinear embedding methods linear in the number of

training points, thus attacking the main computational bottleneck of NLEs. This allows

existing optimization methods to scale up to large datasets. In our case, we can achieve

reasonable embeddings in hours for datasets of millions of points. We have also shown

the FGT to be considerably better than the Barnes-Hut algorithm in this setting. Based

on theoretical and experimental considerations, we show that starting at low accuracy

and increasing it gradually further speeds up the optimization.

We think there is much room to design better algorithms that combine specific search

directions, optimization techniques and N -body methods with specific NLE models.

Another important direction for future research is to characterize the convergence of

NLE optimization with inexact gradients obtained from N -body methods.



Chapter 6

Conclusions and Future Work

Directions

6.1 Contributions

The main objective of this thesis was to extend the application of nonlinear dimensional-

ity reduction methods to large-scale real world dataset. It has already been known that

certain graph-based dimensionality reduction methods defined on a decently affinity ma-

trix are able to give good results in showing the structure of complicated high-dimensional

datasets. However, many things have prevented the applicability of these algorithms to

large datasets.

As a start, for the affinity matrix, single bandwidth or multiple bandwidths set with a

rule of thumb, often do not give satisfactory results since they don’t take into account the

whole distribution of distances in the dataset. Instead, in chapter 2 we proposed to use

entropic affinities that were originally introduced by Hinton and Roweis (2003). Through

the equation of entropy they connect the bandwidth, which is a spatial parameter, to

the perplexity (effective number of neighbors) which is information-theoretical statistics

and is much simpler to set. We analyze the properties of that equation and characterize

its behavior, by showing that it is a well-defined function and giving explicit bounds

for its implicitly defined value. Based on these properties, we have studied different

algorithms for the computational problems involved: root-finding and ordering points

for best initialization. One of the best and simplest choices is a Newton-based iteration,

robustified with bisection steps, using a tree- or density-based order. This achieves

110



111

just above one iteration per data point on average, which is the optimally achievable

performance.

However, even for a good affinity matrix, the applicability of existing nonlinear embed-

ding algorithms were limited, due to slow and complicated optimization. In chapter 3 we

showed that many of the methods (such as SNE, s-SNE, t-SNE and EE) can be described

with a simple, yet quite general framework. We have uncovered the relation with spec-

tral methods and the role of graph Laplacians in the gradient and Hessian, and derived

several partial-Hessian optimization strategies. A thorough empirical evaluation shows

that among several competitive strategies one emerges as particularly simple, generic

and scalable, based on the Cholesky factors of the (sparsified) attractive Laplacian. This

adds a negligible overhead to the computation of the gradient and objective function but

improves existing algorithms by 1–2 orders of magnitude.

Next, in chapter 4 we addressed the computational bottleneck of the spectral methods,

which is the expensive eigendecomposition of N × N matrix. Instead, we propose a

reduced formulation of the original spectral problem that optimizes only over a small

set of landmarks while retaining structure of the whole data. The algorithm is well de-

fined theoretically and has better performance than more conventional Nyström method,

allowing users to scale up applications to much bigger sizes. LLL also defines a natu-

ral out-of-sample extension that is cheaper and better than the Nyström method. We

showed an extensive evaluation of LLL applied to two specific spectral methods algo-

rithms: Laplacian eigenmaps and spectral clustering, we were able to achieve 10×–20×
speed up with small approximation error.

Finally, in 5 we came back to the problem of nonlinear embedding methods and propose

an approximation that is able to reduce the computational complexity of each iteration

of the methods from quadratic to linear on the number of points in the dataset. The

approximation is controlled by an accuracy parameter and we also provide a theoretical

and empirical evidence that starting at low accuracy and increasing it gradually further

speeds up the optimization.

All in all, the algorithms proposed in this thesis are able to accelerate most of the steps

in the process of finding the solution of many best nonlinear dimensionally reduction

algorithms such as spectral methods and nonlinear embedding methods. For all the al-

gorithms we proposed, we were able to show one or two orders of magnitude acceleration,

comparing to the methods proposed before us. Combining the methods together we can



112

get better affinity matrix fast (using entropic affinities), reduce drastically the number of

iteration needed for convergence (using spectral direction optimization) and make those

iterations fast (using FMM approximation). This will allow a practitioner to analyze a

large-scale datasets consisting in millions of points on a modern size workstation in just

a few hours.

6.2 Future Directions

Apart from noting some of the specific future direction in the end of each chapter, here

we propose couple more general direction for future research that are applicable generally

to the whole dissertation.

Nearest-neighbor graph. All the algorithms described in this thesis assume that

the neighborhood graph is given to us. Finding it is an important problem by itself that

we don’t deal with in this dissertation.

In some of the applications, the neighborhood graph may be trivially given to us from

the problem definition. For example, in the application of image or video segmentation

in Chapter 4 we can define a neighborhood graph for this dataset by connecting points

inside some predefined sliding window. Because the pixels of the image do not have

drastically different intensity in their neighborhood (except for the edges maybe) this

graph would be close to the exact one.

For other, more general, cases the exact construction of the k nearest neighbor graph

would require the computation of all the distances between all N points, which takes

O(N2), and then taking k closest one for each point. The last operation naively costs

O(N2 logN), but it might be accelerated by using partial quicksort to O(N(N+k log k)).

However, as we see, if computed exactly the cost is still quadratic on the number of points.

There exist many different algorithms that compute the nearest neighbor graph approx-

imately, such as cover trees (Beygelzimer et al., 2006), divide and conquer approaches

Chen et al. (2009), techniques based on locally sensitive hashing (Indyk, 2000; Liu et al.,

2005) etc.

However, either the the computational cost or the approximation error of many of

such approximation algorithms depends crucially on the dimensionality of the data

(Shakhnarovich et al., 2006; He et al., 2012).



113

It remains an interesting question of how those methods affect for entropic affinities and

the results of nonlinear dimensionality reduction in general.

Parallelization. One of the future direction is to adopt the methods for a use in

a distributed system. Indeed, in a presence of really large data, even storing a sparse

affinity matrix can be infeasible. Therefore distributing storage and computation is a

natural extension for all the methods that we have described in this thesis. However,

not all of the algorithms are readily available for use in parallel settings. The algorithm

should the able to process data in batch and computations of those batches, at least

some parts of the algorithm should be independent.

For the Entropic Affinities, adopting distributed computation requires only few modifi-

cation to the algorithm. In particular, except for the initialization, every computation

of β (including the bounds and using a root-finding algorithm) is independent from all

the others and can be done separately. As for the initialization, we can split the points

for each chunk according to the order of the points.

For LLL, we have converted the main bottleneck from the eigendecomposition to the

matrix multiplication. The latter operation is much easier to parallelize and gives much

better speed up (Chen et al., 2011). In addition, the construction of Z matrix consists of

(1) computing the KZ nearest landmarks for every point and (2) solving a linear system

(4.8). Both of these steps are independent from one another given a location of (small)

number of landmarks. Thus, the computation of Z is embarrassingly parallelizable.

There have been some work done on parallelizing the force-directed algorithms of graph

drawing for the use on GPU (Frishman and Tal, 2007; Hachul and Jünger, 2005). Those

methods use space partitioning to split the space into an independent regions that they

solve for in parallel. The objective function force-directed algorithms have very similar

form to the NLE methods and it would be an interesting direction to try to adopt the

techniques presented in those papers.

Finally, we can also parallelize the N -Body computation. As we see from the form of

the equations (5.1),(5.2),(5.3),(5.4) each of the expansions inside the source boxes can

be computed individually. In addition, the interaction between the boxes (the outer

sum) also decouples spatially due to the fast decay of the kernel. There exist few papers

(Gumerov and Duraiswami, 2008; Stock and Gharakhani, 2008; Godiyal et al., 2009).that

use these and other argument to apply FMM acceleration on GPU.

For the N -Body approximation it is important to understand more thoroughly how the



114

gradient approximation affects the change in the objective function. We think there

is much room to design better algorithms that combine specific search directions, opti-

mization techniques and N -body methods with specific NLE models. Another important

direction for future research is to characterize the convergence of NLE optimization with

inexact gradients obtained from N -body methods.



Appendix A

Datasets

A.1 COIL-20

COIL-20 dataset (Nene et al., 1996) contains images of rotation sequences of 20 physical

objects every 5 degrees, each a grayscale image of 128× 128 pixels, total N = 720 points

in D = 16384 dimensions. The dataset is useful for dimensionality reduction because, on

one side, it is very high-dimensional and, on the other, intrinsically, the images of each

objects follow a simple circular trajectory from 0 to 360 degrees. Thus, while we don’t

know the exact form of the embedding, we know that good embedding should preserve

this trajectory for every object and also keep each object separately from each other. In

fig. A.1 we show an example of the rotation of two objects from that dataset.

A.2 MNIST handwritten digits dataset

This dataset (LeCun et al., 1998) contains 60 000 images of different handwritten digits.

Each datapoint is a 28×28 grayscale image of a normalized and centered digit represented

by a 784-dimensional vector. The dataset is useful, because it intrinsically has 10 different

clusters and the 2D embedding is easy to interpret. In addition, the large number of

digits in this dataset makes it non-trivial to many algorithm to find a solution. On the

top row of fig. A.2 we show few examples of handwritten digits from MNIST dataset.

115



116

Figure A.1: Example of two objects from COIL-20 dataset and 12 out 72 images
per object that show the rotational structure of the dataset.

Figure A.2: Example of the elastic deformation to MNIST digits in the infiniteM-
NIST dataset. Top: original digit, bottom: one of the 16 deformations applied to
each digit.

A.3 infiniteMNIST

For our large-scale experiments, sometimes even 60 000 points from the original MNIST

is not enough. Therefore we have also used infiniteMNIST dataset (Loosli et al., 2007)

where a new handwritten digits is generated using elastic deformations to the original

MNIST dataset. For our purposes, we modified each digit from the original MNIST

dataset 16 different times, resulting in 960 000 new digits. Together with the original

dataset, this add up to a 1 020 000 digits. On the bottom of fig. A.2 we show one of 16

deformations that we have applied to the MNIST digit shown on the top row.



Bibliography

J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature,

324(4), 1986.

G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for

the Visualization of Graphs. Prentice-Hall, 1999.

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach.

Neural Computation, 12(10):2385–2404, Oct. 2000.

B. J. C. Baxter and G. Roussos. A new error estimate of the fast Gauss transform.

SIAM J. Sci. Comput., 24(1), 257–259 2002.

O. Bchir and H. Frigui. Fuzzy relational kernel clustering with local scaling parameter

learning. In Proc. of the 2006 Machine Learning for Signal Processing (MLSP10),

pages 289–294, Kittilä, Finland, Aug. 29 –Sept. 1 2010.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Computation, 15(6):1373–1396, June 2003.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric frame-

work for learning from labeled and unlabeled examples. Journal of Machine Learning

Research, 7:2399–2434, Nov. 2006.

Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learn-

ing eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16

(10):2197–2219, Oct. 2004a.

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, , N. Le Roux, and M. Ouimet.

Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering.

117



118

In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information

Processing Systems (NIPS), volume 16. MIT Press, Cambridge, MA, 2004b.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In

W. W. Cohen and A. Moore, editors, Proc. of the 23rd Int. Conf. Machine Learning

(ICML’06), pages 97–104, Pittsburgh, PA, June 25–29 2006.

I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Application.

Springer Series in Statistics. Springer-Verlag, Berlin, second edition, 2005.

C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near optimal column-based matrix

reconstruction. In Proc. of the 52th Annual Symposium on Foundations of Computer

Science (FOCS 2011), pages 305–314, Palm Springs, RI, Oct. 23–25 2011.

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood

Cliffs, N.J., 1973.

R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Other Titles in

Applied Mathematics. SIAM Publ., revised reprint edition, 2009.

M. Á. Carreira-Perpiñán. Fast nonparametric clustering with Gaussian blurring mean-

shift. In W. W. Cohen and A. Moore, editors, Proc. of the 23rd Int. Conf. Machine

Learning (ICML’06), pages 153–160, Pittsburgh, PA, June 25–29 2006.

M. Á. Carreira-Perpiñán. The elastic embedding algorithm for dimensionality reduction.

In Proc. of the 27th Int. Conf. Machine Learning (ICML 2010), Haifa, Israel, June 21–

25 2010.

M. Á. Carreira-Perpiñán and Z. Lu. The Laplacian Eigenmaps Latent Variable Model.

In M. Meilă and X. Shen, editors, Proc. of the 11th Int. Workshop on Artificial Intelli-

gence and Statistics (AISTATS 2007), pages 59–66, San Juan, Puerto Rico, Mar. 21–24

2007.

M. Á. Carreira-Perpiñán and R. S. Zemel. Proximity graphs for clustering and manifold

learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Informa-

tion Processing Systems (NIPS), volume 17, pages 225–232. MIT Press, Cambridge,

MA, 2005.



119

J. Chen, H.-r. Fang, and Y. Saad. Fast approximate kNN graph construction for high

dimensional data via recursive Lanczos bisection. Journal of Machine Learning Re-

search, 10:1989–2012, Sept. 2009.

W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel spectral clustering

in distributed systems. IEEE Trans. Pattern Analysis and Machine Intelligence, 33

(3):568–586, Mar. 2011.

X. Chen and D. Cai. Large scale spectral clustering with landmark-based representation.

In Proc. of the 25th National Conference on Artificial Intelligence (AAAI 2011), pages

313–318, San Francisco, CA, Aug. 7–11 2011.

J. Cook, I. Sutskever, A. Mnih, and G. Hinton. Visualizing similarity data with a mixture

of maps. In M. Meilă and X. Shen, editors, Proc. of the 11th Int. Workshop on Artificial

Intelligence and Statistics (AISTATS 2007), San Juan, Puerto Rico, Mar. 21–24 2007.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman & Hall, London, New

York, 1994.

N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang. Fast Krylov methods for n-

body learning. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural

Information Processing Systems (NIPS), volume 18. MIT Press, Cambridge, MA,

2006.

V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimen-

sionality reduction. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances

in Neural Information Processing Systems (NIPS), volume 15, pages 721–728. MIT

Press, Cambridge, MA, 2003.

V. de Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark

points. June 30 2004.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram

matrix for improved kernel-based learning. Journal of Machine Learning Research, 6:

2153–2175, Dec. 2005.

M. J. Er, S. Wu, J. Lu, and H. L. Toh. Face recognition with radial basis function (RBF)

neural networks. IEEE Trans. Neural Networks, 13(3):697–710, May 2002.



120

R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image col-

lections. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,

editors, Advances in Neural Information Processing Systems (NIPS), volume 22, pages

522–530. MIT Press, Cambridge, MA, 2009.

W. Fong and E. Darve. The black-box fast multipole method. J. Comp. Phys., 228(23):

8712–8725, 2009.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström

method. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(2):214–225, Feb.

2004.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in

logarithmic expected time. ACM Trans. Mathematical Software, 3(3):209–226, 1977.

Y. Frishman and A. Tal. Multi-level graph layout on the GPU. IEEE Trans. Visualization

and Computer Graphics, 13(6):1310–1319, 2007.

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.

Software: Practice and Experience, 21(11):1129–1164, Nov. 1991.

W. Gander. On Halley’s iteration method. Amer. Math. Monthly, 92(2):131–134, Feb.

1985.

S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely —

Laplacian sparse coding for image classification. In Proc. of the 2010 IEEE Computer

Society Conf. Computer Vision and Pattern Recognition (CVPR’10), pages 3555–

3561, San Francisco, CA, June 13–18 2010.

A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In Advances in

Neural Information Processing Systems (NIPS), Jan 2006. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.61.7998&rep=rep1&type=pdf.

A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart. Rapid multipole graph drawing

on the GPU. In D. Eppstein and E. R. Gansner, editors, Proc. 17th Int. Symposium

on Graph Drawing (GD 2009), pages 90–101, Chicago, IL, Sept. 22–25 2009.



121

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components

analysis. In Advances in Neural Information Processing Systems (NIPS), pages 513–

520, 2004.

A. G. Gray and A. W. Moore. ‘n-body’ problems in statistical learning. In T. K. Leen,

T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information Processing

Systems (NIPS), volume 13, pages 521–527. MIT Press, Cambridge, MA, 2001.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys.,

73(2):325–348, Dec. 1987.

L. Greengard and J. Strain. The fast Gauss transform. SIAM J. Sci. Stat. Comput., 12

(1):79–94, Jan. 1991.

N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics processors. J.

Comp. Phys., 227(18):8290–8313, 2008.

S. Hachul and M. Jünger. Large-graph layout with the fast multipole multilevel method.

2005.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM

Review, 53(2):217–288, 2011.

J. He, S. Kumar, and S.-F. Chang. On the difficulty of nearest neighbor search. In Proc.

of the 29th Int. Conf. Machine Learning (ICML 2012), Edinburgh, Scotland, June 26

– July 1 2012.

X. He and P. Niyogi. Locality preserving projections. In S. Thrun, L. K. Saul, and

B. Schölkopf, editors, Advances in Neural Information Processing Systems (NIPS),

volume 16. MIT Press, Cambridge, MA, 2004.

G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and

K. Obermayer, editors, Advances in Neural Information Processing Systems (NIPS),

volume 15, pages 857–864. MIT Press, Cambridge, MA, 2003.

Y. Hu. Efficient and high-quality force-directed graph drawing. The Mathematica Jour-

nal, 10(1):37–71, 2005.



122

P. Indyk. Dimensionality reduction techniques for proximity problems. In Proc. of the

11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages 371–378,

San Francisco, CA, Jan. 9–11 2000.

S. Kaski and J. Peltonen. Informative discriminant analysis. In T. Fawcett and N. Mishra,

editors, Proc. of the 20th Int. Conf. Machine Learning (ICML’03), pages 329–336,

Washington, DC, Aug. 21–24 2003.

B. Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning, 5

(4):287—364, 2012.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the Nyström method.

Journal of Machine Learning Research, 2012.

Ľ. Ladický and P. H. Torr. Locally linear support vector machines. In Proc. of the

4th Int. Conf on Web Search and Data Mining (WSDM 2011), pages 985–992, Hong

Kong, China, Feb. 9 – 12 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proc. IEEE, 86(11):2278–2324, Nov. 1998.

D. Lee, A. Gray, and A. Moore. Dual-tree fast Gauss transforms. In Y. Weiss,

B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Sys-

tems (NIPS), volume 18, pages 747–754. MIT Press, Cambridge, MA, 2006.

R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted

Arnoldi iteration. SIAM J. Matrix Anal. and Apps., 17(4):789–821, 1996.

T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practical approximate

nearest neighbor algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances

in Neural Information Processing Systems (NIPS), volume 17, pages 825–832. MIT

Press, Cambridge, MA, 2005.

W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised

learning. In Proc. of the 27th Int. Conf. Machine Learning (ICML 2010), Haifa, Israel,

June 21–25 2010.



123

W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In Proc. of the 4th

Int. Conf on Web Search and Data Mining (WSDM 2011), pages 1–8, Hong Kong,

China, Feb. 9 – 12 2011.

G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using

selective sampling. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,

Large Scale Kernel Machines, Neural Information Processing, pages 301–320. MIT

Press, 2007.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

MIT Press, Cambridge, MA, 1999.

A. Melman. Geometry and convergence of Euler’s and Halley’s methods. SIAM Review,

39(4):728–735, Dec. 1997.

R. Memisevic. Kernel information embeddings. In W. W. Cohen and A. Moore, editors,

Proc. of the 23rd Int. Conf. Machine Learning (ICML’06), pages 633–640, Pittsburgh,

PA, June 25–29 2006.

R. Memisevic and G. Hinton. Improving dimensionality reduction with spectral gradient

descent. Neural Networks, 18(5–6):702–710, June–July 2005.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers. Fisher discriminant analysis

with kernels. In Y. H. Hu and J. Larsen, editors, Proc. of the 1999 IEEE Signal

Processing Society Workshop on Neural Networks for Signal Processing (NNSP’99),

pages 41–48, Madison, WI, Aug. 23–25 1999.

A. Moore, J. Schneider, and K. Deng. Efficient locally weighted polynomial regression

predictions. In D. H. Fisher, editor, Proc. of the 14th Int. Conf. Machine Learning

(ICML’97), pages 236–244, Nashville, TN, July 6–12 1997.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (COIL-20).

Technical Report CUCS–005–96, Dept. of Computer Science, Columbia University,

Feb. 1996.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-



124

mation Processing Systems (NIPS), volume 14, pages 849–856. MIT Press, Cambridge,

MA, 2002.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer-Verlag, New York, second edition, 2006.

J. Peltonen and S. Kaski. Discriminative components of data. IEEE Trans. Neural

Networks, 16(1):68–83, Jan. 5 2005.

J. Platt. FastMap, MetricMap, and landmark MDS are all Nyström algorithms. In R. G.

Cowell and Z. Ghahramani, editors, Proc. of the 10th Int. Workshop on Artificial

Intelligence and Statistics (AISTATS 2005), pages 261–268, Barbados, Jan. 6–8 2005.

A. Quigley and P. Eades. FADE: Graph drawing, clustering, and visual abstraction.

In J. Marks, editor, Proc. 8th Int. Symposium on Graph Drawing (GD 2000), pages

197–210, Colonial Williamsburg, VA, Sept. 20–23 2000.

V. C. Raykar. The fast Gauss transform with all the proofs. Apr. 2006.

V. C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density

estimation. In Proc. of the 2006 SIAM Int. Conf. Data Mining (SDM 2006), pages

524–528, Bethesda, MD, Apr. 20–22 2006a.

V. C. Raykar and R. Duraiswami. The improved fast Gauss transform with applications

to machine learning. In L. Bottou, O. Chapelle, D. Decoste, and J. Weston, editors,

Large Scale Kernel Machines. MIT Press, Cambridge, MA, 2006b.

C. J. F. Ridders. A new algorithm for computing a single root of a real continuous

function. IEEE Trans. Circuits and Systems, 26(11):979–980, Nov. 1979.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear em-

bedding. Science, 290(5500):2323–2326, Dec. 22 2000.

J. K. Salmon and M. S. Warren. Skeletons from the treecode closet. J. Comp. Phys.,

111(1):136–155, 1994.

H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kauf-

mann, 2006.



125

L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low

dimensional manifolds. Journal of Machine Learning Research, 4:119–155, June 2003.

L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for

dimensionality reduction. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-

Supervised Learning, Adaptive Computation and Machine Learning Series, chapter 16,

pages 293–308. MIT Press, 2006.

T. R. Scavo and J. B. Thoo. On the geometry of Halley’s method. Amer. Math. Monthly,

102(5):417–426, May 1995.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10(5):1299–1319, July 1998.

G. Shakhnarovich, P. Indyk, and T. Darrell, editors. Nearest-Neighbor Methods in Learn-

ing and Vision. Neural Information Processing. MIT Press, Cambridge, MA, 2006.

Y. Shen, A. Y. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees.

In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems (NIPS), volume 18. Citeseer, 2006.

J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In Proc.

6th Int. Conf. Computer Vision (ICCV’98), Bombay, India, Jan. 4–7 1998.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern

Analysis and Machine Intelligence, 22(8):888–905, Aug. 2000.

J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation,

and Control. John Wiley & Sons, 2003.

M. J. Stock and A. Gharakhani. Toward efficient GPU-accelerated n-body simulations.

46th AIAA Aerospace Sciences Meeting And Exhibit, 608, 2008.

A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In Proc. of

the 2008 IEEE Computer Society Conf. Computer Vision and Pattern Recognition

(CVPR’08), Anchorage, AK, June 23–28 2008.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, Dec. 22 2000.



126

J. F. Traub. Iterative Methods for the Solution of Equations. Prentice-Hall, second

edition, 1982.

L. J. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605, November 2008.

L. J. P. van der Maaten. Fast optimization for t-SNE. Workshop on Challenges in Data

Visualization at NIPS 2010, 2010.

L. J. P. van der Maaten. Barnes-Hut-SNE. Jan. 15 2013.

J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. Smeulders. Kernel

codebooks for scene categorization. In D. Forsyth, P. Torr, and A. Zisserman, editors,

Proc. 10th European Conf. Computer Vision (ECCV’08), pages 696–709, Marseille,

France, Oct. 13–16 2008.

J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval perspec-

tive to nonlinear dimensionality reduction for data visualization. Journal of Machine

Learning Research, 11:451–490, Feb. 2010.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Partial-Hessian strategies for fast learning

of nonlinear embeddings. In Proc. of the 29th Int. Conf. Machine Learning (ICML

2012), pages 345–352, Edinburgh, Scotland, June 26 – July 1 2012.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Entropic affinities: Properties and efficient

numerical computation. In Proc. of the 230h Int. Conf. Machine Learning (ICML

2013), pages 477–485, Atlanta, GA, 2013a.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Locally linear landmarks for large-scale

manifold learning. In H. Blockeel, K. Kersting, S. Nijssen, and F. Zelezný, editors,

Proc. of the 24nd European Conf. Machine Learning (ECML–13), Prague, Czech Re-

public, Sept. 23–27 2013b.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Linear-time training of nonlinear low-

dimensional embeddings. In Proc. of the 17th Int. Workshop on Artificial Intelligence

and Statistics (AISTATS 2014), pages 968–977, Reykjavik, Iceland, Apr. 22–25 2014.



127

U. von Luxburg, A. Radl, and M. Hein. Getting lost in space: Large sample analysis of

the resistance distance. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel,

and A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS),

volume 23, pages 2622–2630. MIT Press, Cambridge, MA, 2010.

X. Wan and G. E. Karniadakis. A sharp error estimate for the fast Gauss transform. J.

Comp. Phys., 219(1):7–12, 2006.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear

coding for image classification. In Proc. of the 2010 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’10), pages 3360–3367, San Fran-

cisco, CA, June 13–18 2010.

K. Weinberger, B. Packer, and L. Saul. Nonlinear dimensionality reduction by semidef-

inite programming and kernel matrix factorization. In R. G. Cowell and Z. Ghahra-

mani, editors, Proc. of the 10th Int. Workshop on Artificial Intelligence and Statistics

(AISTATS 2005), pages 381–388, Barbados, Jan. 6–8 2005.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidef-

inite programming. In Proc. of the 2004 IEEE Computer Society Conf. Computer Vi-

sion and Pattern Recognition (CVPR’04), pages 988–995, Washington, DC, June 27

– July 2 2004.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidef-

inite programming. Int. J. Computer Vision, 70(1):77–90, Oct. 2006.

K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest

neighbor classification. Journal of Machine Learning Research, 10:207–244, Feb. 2009.

URL http://www.cse.wustl.edu/~kilian/code/code.html.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.

In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information

Processing Systems (NIPS), volume 13, pages 682–688. MIT Press, Cambridge, MA,

2001.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast Gauss transform

and efficient kernel density estimation. In Proc. 9th Int. Conf. Computer Vision

(ICCV’03), pages 464–471, Nice, France, Oct. 14–17 2003.



128

Z. Yang, J. Peltonen, and S. Kaski. Scalable optimization for neighbor embedding for

visualization. In Proc. of the 230h Int. Conf. Machine Learning (ICML 2013), pages

127–135, Atlanta, GA, 2013.

L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm

in two and three dimensions. J. Comp. Phys., 196(2):591–626, 2004.

K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. In

Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems (NIPS), volume 22. MIT Press,

Cambridge, MA, 2009.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances in Neural

Information Processing Systems (NIPS), pages 1601–1608, 2004.

Z. Zhang and J. Wang. MLLE: Modified locally linear embedding using multiple weights.

In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information

Processing Systems (NIPS), volume 19, pages 1593–1600. MIT Press, Cambridge, MA,

2007.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and

global consistency. In Advances in Neural Information Processing Systems (NIPS),

pages 321–328, 2003.

X. Zhou, N. Cui, Z. Li, F. Liang, and T. S. Huang. Hierarchical Gaussianization for image

classification. In Proc. 12th Int. Conf. Computer Vision (ICCV’09), pages 1971–1977,

Kyoto, Japan, Sept. 29 – Oct. 2 2009.


