
Large-Scale Methods for
Nonlinear Manifold Learning

Max Vladymyrov
EECS, School of Engineering

University of California, Merced
PhD defense,
Merced, CA

November 28, 2014

2

2

2

2

2

2

2

2

2

Data is
everywhere!

3

3

3

3

3

4

4

4

4

4

4

• historical data

4

• historical data
• market condition

4

• historical data
• market condition
• other players’ actions

4

• historical data
• market condition
• other players’ actions
• governmental regulations

4

• historical data
• market condition
• other players’ actions
• governmental regulations
• other factors

4

Data is
multidimensional!

• historical data
• market condition
• other players’ actions
• governmental regulations
• other factors

4

5

Possible ways to analyze high-dimensional data

5

Possible ways to analyze high-dimensional data

5

Possible ways to analyze high-dimensional data

5

Possible ways to analyze high-dimensional data

Works only for very
low-dimensional data!

6

6

Two-dimensional
dataset X

x1

x2

6

Two-dimensional
dataset X

x1

x2

6

Two-dimensional
dataset X

x1

x2

6

Two-dimensional
dataset X

x1

x2

Y
Three-dimensional
dataset

y1

y2

y3 6

Two-dimensional
dataset X

x1

x2

Y
Three-dimensional
dataset

y1

y2

y3

Dimensionality

reduction

6

Two-dimensional
dataset X

x1

x2

Y
Three-dimensional
dataset

y1

y2

y3

Dimensionality

reduction

Dimensionality reduction tries to find
latent structure of the data by
- learning important parameters,
- removing unnecessary dimensions (noise).

6

Other use of dimensionality reduction

• Preprocessing before other task e.g. classification or regression:
‣ denoising,
‣ decreasing the complexity with respect to dimensionality .

• Extracting latent structure of the data:
‣ feature learning,
‣ cluster information,
‣ deep networks with autoencoders.

• etc.

7

D

Consider a dataset with handwritten digits :1 000

8

2

MNIST Handwritten digits

Consider a dataset with handwritten digits :1 000

8

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :1 000

8

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :

0

BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

8

2

MNIST Handwritten digits

{

{ 28
28

Consider a dataset with handwritten digits :

0

BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

High-dimensional dataset: Y 2 R1 000⇥784

Number of points:
Number of dimensions:

N = 1000
D = 784

Reduction space: d = 2
8

2

MNIST Handwritten digits

9

MNIST Handwritten digits

visualized by ISOMAP
(Tenenbaum et al, ’00)

COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
10

COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
10

visualized by Elastic Embedding
(Carreira-Perpiñán, ’10)

11

COIL-20
Rotational sequences

12

Text corpus

visualized using MVU
(Weinberger and Saul, ’06)

Opinions of users on political issues

13
http://www.state.gov/opinionspace/

14

������
��������

����

�����

�������

�������������

�������

����������
������

������������������

����������

�����

�����

�����������

��������

������
���������������

�����������������
������ �������

��������������������

�������

���������������

�������������������

������

����������

�����

������

�������

������������

�����

������������

���������

��������

�������������

������������������

���������������

������

AOL search
queries dataset

visualized using MVE w/ b matching
(Shaw, ’11)

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II. Training of NLE Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using
partial-Hessian

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

• Nonlinear embedding
methods
‣ Stochastic Neighbor Embedding,
‣ t-SNE,
‣ The Elastic Embedding (EE),
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

• Nonlinear embedding
methods
‣ Stochastic Neighbor Embedding,
‣ t-SNE,
‣ The Elastic Embedding (EE),
‣ etc.

16

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

• Nonlinear embedding
methods
‣ Stochastic Neighbor Embedding,
‣ t-SNE,
‣ The Elastic Embedding (EE),
‣ etc.

16

Embedding quality

Classification of
dimensionality reduction
• Linear methods
‣ principal component

analysis (PCA),
‣ classical multidimensional

scaling (MDS).
‣ etc.

• Spectral methods
‣ Laplacian Eigenmaps,
‣ ISOMAP,
‣ Locally Linear

Embedding (LLE),
‣ etc.

• Nonlinear embedding
methods
‣ Stochastic Neighbor Embedding,
‣ t-SNE,
‣ The Elastic Embedding (EE),
‣ etc.

Runtime 16

Embedding quality

Given high-dimensional data points .
1.Convert data points to a affinity matrix .
2. Find low-dimensional coordinates , so

that their similarity is as close as possible to .

17

YD⇥N = (y1, . . . ,yN)
N ⇥N A

20 40 60 80 100

20

40

60

80

100

Xd⇥N = (x1, . . . ,xN)

Y A X
High-dimensional

input Affinity
Low-dimensional

output

A

RD

Rd

Graph-based dimensionality reduction

Affinity matrix

• For example, Gaussian affinities are given by:

wnm = exp(�1

2

k(yn � ym)/�k2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• Property:
- affinity matrix enforces locality

of the data.

• Intuition:
‣ high weight to nearby points,
‣ low weight to far away points.

wn·

Y

yn

18

W 2 RN⇥N• Affinity matrix represents the similarities between
points in the dataset. The higher the affinity value, the more similar
are the points to each other.

0.5

1

1.5

2

x 10−3

{
{

19

Gaussian affinity matrix

0.5

1

1.5

2

x 10−3

{
{

19

Gaussian affinity matrix

{
{

20

wnm = exp(�1

2

k(yn � ym)/�k2)
Gaussian affinity matrix: problem with �

{
{

20

wnm = exp(�1

2

k(yn � ym)/�k2)
Gaussian affinity matrix: problem with �

Gaussian affinity matrix

21

�n
�n

y1 y2

yn

y1 y2

yn

• Good should be:
‣ set separately for every data point,
‣ take into account whole distribution of distances.

• represents spatial characteristic of the data, which is not
intuitive and is hard to set (especially for every point).

�n

�n

Entropic affinities (Vladymyrov and Carreira-Perpiñán, ’13)

• Consider a distribution of the neighbors for

For entropic affinities, is set individually for each point such that it
has a distribution over neighbors with fixed perplexity .

22

pn(y,�) =
K(k(y � yn)/�k2)PN
k=1 K(k(y � yk)/�k2)

�
K

y1, . . . ,yn 2 RD

y 2 RD

posterior distribution of Kernel Density Estimate.

• The entropy of the distribution is defined as:
H(y,�) = �

PN
n=1 pn(y,�) log(pn(y,�))

• Consider the bandwidth given the perplexity :

• We define entropic affinities as probabilities
for with respect to . These affinities define a random walk matrix.

p = (p1, . . . , pN)
y �

�

(Hinton & Rowies, 2003)

H(y,�) = logK

K

Entropic affinities

23

Perplexity of in a distribution over neighbors provides the same
surprise as if we were to choose among equiprobable neighbors.

K
K

p N

radius of the circle corresponds to � Neighbors

pn

Entropic affinities

23

Perplexity of in a distribution over neighbors provides the same
surprise as if we were to choose among equiprobable neighbors.

K
K

p N

radius of the circle corresponds to � Neighbors

pn

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a

• There exists
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just
almost machine precision ()

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use
with the bounds

• We can use
points.)

tol = 10�15

�n

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a unique root for any .

• There exists
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just
almost machine precision ()

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use
with the bounds

• We can use
points.)

tol = 10�15

�n

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a unique root for any .

• There exists tight bounds for the root that can be computed
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just
almost machine precision ()

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use
with the bounds

• We can use
points.)

tol = 10�15

�n

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a unique root for any .

• There exists tight bounds for the root that can be computed
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just
almost machine precision ()

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use high-order convergence methods that together
with the bounds guarantee the convergence of the algorithm.

• We can use
points.)

tol = 10�15

�n

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a unique root for any .

• There exists tight bounds for the root that can be computed
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just
almost machine precision ()

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use high-order convergence methods that together
with the bounds guarantee the convergence of the algorithm.

• We can use warm-start initialization based on the order of the
points.)

tol = 10�15

�n

Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any ,
and has a unique root for any .

• There exists tight bounds for the root that can be computed
in constant time.

 defines a root-finding problem for .

24

• We can solve for in just over one iteration per point to
almost machine precision ().

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use high-order convergence methods that together
with the bounds guarantee the convergence of the algorithm.

• We can use warm-start initialization based on the order of the
points.)

tol = 10�15

�n

25

Entropic affinities (computation)

25

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

y1

y2

yn

Entropic affinities (computation)

�(0)
2

25

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

y1

y2

yn

Entropic affinities (computation)

�(0)
2

�(1)
2

�(2)
2

�(3)
2

25

0 5 10 15 20020406080100120K σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

solution to the
previous problem

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

0 5 10 15 20
0

20

40

60

80

100

120

K

σ

solution to the
previous problem

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

0 5 10 15 20020406080100120K σ

y1

y2

yn

Entropic affinities (computation)

25

0 5 10 15 20020406080100120K σ

0 5 10 15 20020406080100120K σ

y1

y2

yn

Entropic affinities (computation)

Spectral methods

26

• Minimize

‣ : symmetric psd, contains information about the similarity
between pairs of data points.

‣ : symmetric pd (usually diagonal), set the scale of .

• Examples:
‣ Laplacian eigenmaps, graph Laplacian,
‣ ISOMAP, is given by a matrix of shortest distances,
‣ Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.

AN⇥N

BN⇥N

A
A

X

X = UTB� 1
2 U = (u1, . . . ,ud) d

C = B� 1
2AB� 1

2

 , where are the trailing eigenvectors of the
matrix .

• Solution is unique and can be found in a closed form from the
eigenvectors of matrix: N ⇥N

N ⇥N

minX tr
�
XAXT

�
s.t. XBXT = I

s.t. translation and scale constraints

• Intuition:
‣ if is large (original points are located nearby to each

other) place and nearby.
‣ if is small (original points are far away) there is no

direct constraint.

ELE(X) =
1

2
tr
�
XLX

T
�
=

NX

n,m=1

wnm kxn � xmk2

27

• Spectral method global minimum is given by trailing
eigenvectors of graph Laplacian .

X

wnm

wnm

)
)

xn xm

)

{distance between
andxn xm

= kx1 � x2k2 + kx1 � x3k2 + · · ·+ kxn � xmk2 + . . .w12 w13 wnm

Laplacian Eigenmaps (LE) (Belkin and Niyogi, ‘03)

L = diag
⇣PN

n=1 wnm

⌘
�W

• Minimize with respect to

28

Laplacian Eigenmaps (LE) (Belkin and Niyogi, ‘03)

)

Laplacian Eigenmaps tries to preserve local structure of the data
with the scale of the embedding being fixed.

29

Locality is preserved,
scale is preserved!

There is nothing that
pushes points apart
from each other,
except for the scale
constraint!

Laplacian Eigenmaps

30

Stochastic neighbor embedding (SNE)
(Hinton and Roweis, ‘03)

• Define a conditional probability in both spaces that point selects any other
point as its neighbor:

qm|n =

exp(�kxn � xmk2)
P

k 6=n exp(�kxn � xkk2)
pm|n =

exp(�
��
(yn � ym)/�2

��
)P

k 6=n exp(�k(yn � yk)/�2k)

yn

xn

ESNE(X) =

NX

n=1

D(PnkQn) =

NX

n,m=1

pn|m log

pn|m
qn|m

• Minimize the KL-divergence between those probability distributions:

30

Stochastic neighbor embedding (SNE)
(Hinton and Roweis, ‘03)

• Define a conditional probability in both spaces that point selects any other
point as its neighbor:

qm|n =

exp(�kxn � xmk2)
P

k 6=n exp(�kxn � xkk2)
pm|n =

exp(�
��
(yn � ym)/�2

��
)P

k 6=n exp(�k(yn � yk)/�2k)

yn

xn

ESNE(X) =

NX

n=1

D(PnkQn) =

NX

n,m=1

pn|m log

pn|m
qn|m

• Minimize the KL-divergence between those probability distributions:

Variations of SNE
• s-SNE (Cook et al, ‘07): Normalizes both pdf over all interactions,

not just over distances to a query point

‣ symmetric interactions,
‣ easier computation,
‣ very similar results.
• t-SNE (van der Maaten and Hinton '08): Defines low-d pdf over Student’s t

kernel instead of Gaussian:

qnm =

exp(�kxn � xmk2)
PN

k,l=1 exp(�kxl � xkk2)

qnm =
(1 + kxn � xmk2)�1

PN
k,l=1(1 + kxl � xkk2)�1

‣ new kernel has heavier tails better far-field interaction,
‣ better for visualization, but worse for exact structure

preservation (because we match different kernels).

pnm =

exp(�k(yn � ym)/�k2)
PN

k,l=1 exp(�k(yk � yl)/�k2)

pnm =

exp(�k(yn � ym)/�k2)
PN

k,l=1 exp(�k(yk � yl)/�k2)

31

)

Relation between LE and SNE
The objective function equals (up to constants):

• Term ① is like Laplacian Eigenmaps.
• Term ② is a “prior” that pushes apart all latent point pairs equally,

irrespectively of whether their high-dimensional counterparts are
close or far in data space.

{ {
data-dependent term ① data-independent term ②

• SNE enforces keeping the images of nearby objects nearby (like LE)
while pushing all images apart from each other.

• The prior ② is what makes SNE improve significantly over LE.

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

32

Intuition:

The elastic embedding (EE) (Carreira-Perpiñán, ‘10)

Intuition:
• if and are similar, first term will pull and together,
• if and are different, second term will push and apart.
Properties:
• the first part is quadratic, the second is more nonlinear and non-

convex,
• positive affinity matrix can be sparse (because of a kernel decay),
• negative affinity matrix should be full.

• Minimize with respect to

w+
nm = exp(�1

2

k(yn � ym)/�k2) w�
nm = kyn � ymk2

33

• Define two neighborhood graphs:

X

EEE(X,�) =
NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(k�xn � xmk2)

yn

yn

ym

ym

xn

xn

xm

xm

Connections between methods

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

ELE(X) =
NX

n,m=1

wnm kxn � xmk2 s.t. translation and scale constraints

Es-SNE(X) =

NX

n,m=1

pnm kxn � xmk2 + log

NX

n,m=1

exp(�kxn � xmk2)

Et-SNE(X) =

NX

n,m=1

pnm log(1 + kxn � xmk2) +
NX

n,m=1

(1 + k�xn � xmk2)�1

EEE(X) =

NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(k�xn � xmk2)

34

Nonlinear Embedding (NLE) methods

General embedding formulation:

 is a repulsive term:
• often very nonlinear,
• minimal with points separated infinitely,
• all interactions should be computed.

 is an attractive term:
• often quadratic,
• minimal with coincident points,
• defined usually on the sparse affinity (not

all interactions are computed).

Optimal embedding balances both forces.

E(X,�) = E+(X) + �E�(X) � � 0

E+(X)

E�(X)

�

� ☼
☼

�

� ☼
☼

35

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic Affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

36

Part II Optimization using
partial-Hessian

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Entropic Affinities

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

36

Part II. Training of NLE Optimization using
partial-Hessian

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk+1

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk+1

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk+1

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration
with a line search:

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:
L-BFGS, Conjugate Gradient, etc.

xk+1

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0

Including second-order information

Consider the following method. For every iteration :
• choose any positive definite ,
• solve a linear system for a search direction ,
• use line search to find a step size for the next iteration

Convergence is guaranteed!

38

k
Bk

Bkpk = �gk pk

⌘
xk+1 = xk + ⌘pk (e.g. with backtracking line search).

How to choose good ?

We want :
• positive definite (pd),
• fast to compute and solve the linear system .
• contain as much Hessian information as possible,

8 6 0 2 4 6 8

0

1

2

3

4

5

(gradient descent) (Newton’s method)
more Hessian information
faster convergence rate

Bk = I

Bk = r2E

our

Bk

Bk

Bk = I Bk = r2E

Bk

Bkpk = �gk

39

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

The Hessian of Nonlinear Embedding

The Hessian is matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where are graph Laplacians:
• : constant for Gaussian kernel psd.
• : depends on the embedding . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

• contain as much Hessian information as possible,
Bkpk = �gk

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

✓

• contain as much Hessian information as possible,
Bkpk = �gk

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

✓

• contain as much Hessian information as possible,

‣ block-diagonal and has blocks of graph Laplacian ,
‣ constant for Gaussian kernel . For other kernels we can fix it as some

intermediate ,
‣ linear system can be solved efficiently using Cholesky

factorization of ,
‣ (further) sparsify the weights with a -NN graph.

d N ⇥N 4L+

B = Bk
X

W+
B

Bkpk = �gk

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

✓

• contain as much Hessian information as possible,

✓
‣ block-diagonal and has blocks of graph Laplacian ,
‣ constant for Gaussian kernel . For other kernels we can fix it as some

intermediate ,
‣ linear system can be solved efficiently using Cholesky

factorization of ,
‣ (further) sparsify the weights with a -NN graph.

d N ⇥N 4L+

B = Bk
X

W+
B

Bkpk = �gk

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

✓

• contain as much Hessian information as possible,

✓
‣ block-diagonal and has blocks of graph Laplacian ,
‣ constant for Gaussian kernel . For other kernels we can fix it as some

intermediate ,
‣ linear system can be solved efficiently using Cholesky

factorization of ,
‣ (further) sparsify the weights with a -NN graph.

d N ⇥N 4L+

B = Bk
X

W+
B

‣ equal to the Hessian of the spectral methods: ,
‣ “bends” the gradient of the nonlinear using the curvature of

the spectral .
E

E+

Bk = r2E+(X)

Bkpk = �gk

41

• positive definite (pd),
• fast to compute and solve the linear system

The spectral direction (Vladymyrov and Carreira-Perpiñán, ’12)

 is a convenient Hessian approximation.Bk = 4L+ ⌦ Id⇥d

We wanted : Bk

✓

• contain as much Hessian information as possible,

✓
‣ block-diagonal and has blocks of graph Laplacian ,
‣ constant for Gaussian kernel . For other kernels we can fix it as some

intermediate ,
‣ linear system can be solved efficiently using Cholesky

factorization of ,
‣ (further) sparsify the weights with a -NN graph.

d N ⇥N 4L+

B = Bk
X

W+
B

‣ equal to the Hessian of the spectral methods: ,
‣ “bends” the gradient of the nonlinear using the curvature of

the spectral .
E

E+

✓
Bk = r2E+(X)

Bkpk = �gk

The spectral direction (computation)

•The strategy adds almost no overhead when compared
to the objective function and the gradient computation.

42

Cost per iteration
Objective function

Gradient
Spectral direction

O(N2d)
O(N2d)
O(Nd)

•Runtime is faster and convergence is still guaranteed.

•Applicable to any nonlinear embedding method
(s-SNE, t-SNE, EE, …).

Optimization methods compared:
‣ Gradient descent
‣ Fixed-point iterations
‣ The spectral direction
‣ L-BFGS

The spectral direction (experiments)

Bk = I
Bk = 4D+ ⌦ Id⇥d

Bk = 4L+ ⌦ Id⇥d

43

44

COIL-20. Convergence analysis, s-SNE
50 runs for each algorithm with random initial location.

44

COIL-20. Convergence analysis, s-SNE
50 runs for each algorithm with random initial location.

45

Comparing fixed-point iteration to the spectral diction for
MNIST digits in one hour of optimization.

MNIST. Convergence analysis, t-SNE
20 000

45

Comparing fixed-point iteration to the spectral diction for
MNIST digits in one hour of optimization.

MNIST. Convergence analysis, t-SNE
20 000

Fixed-point iteration, 20 min, EE

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

46

47
−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Spectral direction, 20 min, EE

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III

48

Part II. Training of NLE Optimization using
partial-Hessian

Entropic Affinities

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

48

Part II. Training of NLE Optimization using
partial-Hessian

Entropic Affinities

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

48

Part II. Training of NLE Optimization using
partial-Hessian

Entropic Affinities

Problem of spectral methods

• Consider a spectral problem:

With large , solving this eigenproblem is infeasible even if and
. are sparse.

min
X

tr
�
XAXT

�
s.t. XBXT = I

N
B

A

• Solution is unique and can be found in closed form for by the
eigenvectors of matrix constructed from and .N ⇥N A B

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

LearnedXOriginal datasetY Affinity matrix

49

50

Learning with landmarks

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

LearnedXOriginal datasetY Affinity matrix

50

Learning with landmarks

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

LearnedXOriginal datasetY Affinity matrix

50

Learning with landmarks

Reduced affinity matrix

5 10 15 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

Landmarks Learned
)

eY eX

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

LearnedXOriginal datasetY Affinity matrix

51

Learning with landmarks

Reduced affinity matrix

5 10 15 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

Landmarks LearnedeY eX

 Problems:
• We need a way to project the non-landmark points, e.g. with

Nyström method (Talwalkar el at, 2008).
• It only uses the information in about the landmarks, ignoring

the non-landmarks. This requires using many landmarks to
represent the data manifold well. If too few landmarks are used:
‣ Bad solution for the landmarks .
‣…and bad prediction for the non-landmarks.

e
X = e

x1 . . . , exL

A

with reduced affinities , .

Locally Linear Landmarks (LLL)

52

• Assume each projection is a locally function of the landmarks:
xn =

PL
l=1 zlnex, n = 1, . . . , N) X = eXZ

• Solving the original eigenproblem of with this constraint
results in a reduced eigenproblem of the same form but of
on :

N ⇥N
L⇥ L

eX

•After is found, the non-landmarks are predicted as

•Advantages over Nyström method:
‣ The reduced affinities involve the entire dataset

and contain much more information about the manifold that the
landmark–landmark affinities, so fewer landmarks are needed.

‣ Solving this smaller eigenproblem is faster.
‣ The out-of-sample mapping requires less memory and is faster.

eA = ZAZT

eX X = eXZ
(out-of-sample mapping).

mineX tr
⇣
eXeAeXT

⌘
s.t. eXeBeXT = I

eA = ZAZT eB = ZBZT

(Vladymyrov and Carreira-Perpiñán, ’13)

LLL: reduced affinities

53

Affinities between landmarks:
• Nyström (original affinities):

• LLL (reduced affinities):

So landmarks and can be farther apart and still be connected along the
manifold.

Affinities between…

path

eA = ZAZT) eaij =
PN

n,m=1 zinanmzjm) path i—n—m—j 8n,m

i—jA) aij)

i j

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

5 10 15 20

5

10

15

20

0.1

0.2

0.3

0.4

0.5

5 10 15 20

5

10

15

20
0

0.5

1

1.5
All the points Landmarks (Nyström) Landmarks (LLL)

Experiments: MNIST dataset,

54

Exact LE, 80 s.

LL
L,

5
s.

LE
 (N

ys
.),

5
s.

N = 60 000

Experiments: large-scale dataset

• points from infiniteMNIST.
• random landmarks ().
N = 1020 000
L = 104 1%

55

LLL (18 min runtime) LE (with as an out of sample)Z

Experiments: large-scale dataset
The reason for the improved result with LLL is that it uses better
affinities, so the landmarks are better projected.

Landmarks with
LLL reduced affinities

Landmarks with
original affinities

56

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

57

Part II. Training of NLE Optimization using
partial-Hessian

Entropic Affinities

Nonlinear dimensionality reduction

Spectral
methods

Stochastic Neighbor
Embedding s-SNE t-SNE Elastic

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx.
using N-Body methods

Locally Linear
Landmarks

Barnes-Hut
method

Fast Multipole
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

57

Part II. Training of NLE Optimization using
partial-Hessian

Entropic Affinities

Optimization of NLE

58

8 6 0 2 4 6 8

0

1

2

3

4

5

Bk = 4L⌦ Id⇥d

Bk = I

Bk = r2E(Xk)

For every iteration :
‣ compute the gradient ,
‣ find search direction ,
‣ use line search to find a step

size for the next iteration:

k

⌘

Xk+1 = Xk + ⌘Pk

Spectral direction, as well as other gradient-based methods
require gradient and objective function evaluations for every
iteration.

Pk

Gk

Computational bottleneck of NLE

59

In elastic embedding algorithm objective function and the gradient
are given by:

with

Computing and for every is .

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

S(xn)Sx(x
n

) n = 1, . . . , N O(N2)

No matter how fast is the optimization, it just decreases the
number of iterations required for convergence. Each iteration is
still because of the gradient and objective function
evaluations!

O(N2)

S(xn) =
NX

m=1

e

�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e

�kxn�xmk2

Computational bottleneck of NLE

60

• Solution: use approximate methods to compute these interactions!
‣ tree-based methods;
‣ fast multipole methods.

• The bottleneck of the algorithm is computation of the
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2

Computational bottleneck of NLE

60

• Solution: use approximate methods to compute these interactions!
‣ tree-based methods;
‣ fast multipole methods.

• The bottleneck of the algorithm is computation of the
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2

• Build a tree around

Tree-based methods

61

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually .O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

• Build a tree around .

Tree-based methods

61

• Complexity is usually .O(N logN)

• Query the nodes of the tree rather than individual points.
Gains come from:
‣ pruning interaction between points

that are too far away.
‣ approximating the interactions

between points that are located at a
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually hard to derive.

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between and others points:xn

X

xn

Barnes-Hut algorithm (Barnes and Hut '86)

62

☺ Can be applicable to any kind of interaction (Euclidean
distances, Gaussian distances, etc).
☺ Single parameter to control the trade-off between speed and
approximation error.
☹ No clearly defined error bounds.

Was applied to speed up NLE algorithms by Yang et al. (2013) and Maaten (2013).

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: building a quad-tree

1. Make sure that the points are
located in the box .
2. If there are more than two points
in the cell, compute its centroid and
split it.

Complexity:

63

[0, 1]d

O(N logN)

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓

{D
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓

{ l

{D
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Barnes-Hut: querying a quad-tree

- distance from the query
point to the centroid
- side length of the current cell,

Approximate the interaction with
all points in the cell if

l

D
< ✓

64

D

l

where is a user parameter, that controls the approximation:✓
• smaller gives more accurate prediction,
• larger gives better speedup.

✓
✓

Fast multipole methods
Properties:
☺ Time complexity .
☺ Well defined error bounds.
☹ Expansion for each new kernel needs to be derived
separately. The performance may vary.
☹ Computational cost grows exponentially with number of
dimensions.

65

O(N)

(Greengard and Rokhlin '87)

66

Approximate the interactions of the form:

The idea is to do a series expansion of the kernel , such that
the sum decouples over and :

Q(xn) =
NX

m=1

qmK(k(xn � xm)/�k2)

K
xn xm

Fast multipole methods (Greengard and Rokhlin '87)

 using multi-index notation ↵ � 0) ↵1, . . . ,↵d � 0

K(k(xn � xm)/�k2) =
X

↵�0

f↵ (xn) g↵ (xm)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either

uniformly or based on density),
3. A lot of points in a cell do a series

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box exactly,
• a lot of points use center of mass.

Algorithm:

(Greengard and Strain, ’91)

67

)

)
)

Application of N-Body to NLE
•We can approximate the following interaction with N-Body

methods
S(xn) =

NX

m=1

K(||xn � xm||2) Sx(x
n

) =
NX

m=1

x

m

K(||x
n

� x

m

||2)

•The objective function and the gradient of EE:

• Objective function and the gradient of other NLE methods can
be defined analogously.

68

• Given and , each term is can be computed in .S(xn) Sx(x
n

) O(N)

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

69

Experiments: handwritten digits60 000

All methods show similar decrease in the objective function per iteration.

69

Experiments: handwritten digits60 000

All methods show similar decrease in the objective function per iteration.

70

Experiments: handwritten digits60 000

The decrease is very different if considered per minute of runtime.

70

Experiments: handwritten digits60 000

The decrease is very different if considered per minute of runtime.

100 101
102 103

106

107
O

F

iterations

GD; FMM

GD; BH

FP; FMM

FP; BH

LBFGS; FMM

LBFGS; BH

1 2 3 4 5 6 7 8 9 10 11
runtime

Experiments: handwritten digits

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

71

Runtime

FM
M

 a
fte

r 3
 h

ou
rs

Ba
rn

es
-H

ut
 a

fte
r 3

 h
ou

rs

1 000 000

❶ ❶

➋ ➋

❶ ➋

72

Experiments: handwritten digits1 000 000

72

Experiments: handwritten digits1 000 000

73

73

Conclusions
• Nonlinear dimensionality reduction gives good results, but usually

expensive to train.
• New ways to scale-up NLE algorithms to datasets with points

(on a single core with moderate memory requirements):
‣ For spectral learning methods (LE, LLE, PCA, Spec. clustering):
- Locally Linear Landmarks (LLL) reformulates the problem on a
subset, while retaining the structure of the whole dataset.

‣ For nonlinear embedding methods (SNE, t-SNE, EE):
- spectral direction gives 10-100x speedup comparing to the
traditional optimization methods.

- N-Body approximations using Barnes-Hut
or FMM reduces the complexity of

 the algorithms to and respectively.

> 106

74

O(N logN)

O(N)

Papers
• Max Vladymyrov and M. Á. Carreira-Perpiñán (2014): “Fast, accurate spectral clustering using locally

linear landmarks”, in submission.
• M. Á. Carreira-Perpiñán and Max Vladymyrov (2014): “A fast, universal algorithm to learn parametric

nonlinear embeddings”, in submission.
• Max Vladymyrov and M. Á. Carreira-Perpiñán (2014): “Linear-time training of nonlinear low-

dimensional embeddings”, 17th International Conference on Artificial Intelligence and Statistics
(AISTATS 2014), pp. 968–977. Acceptance rate: 35.8% (120/335), poster.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2013): “Locally linear landmarks for large-scale
manifold learning”. 24th European Conference on Machine Learning (ECML 2013), pp. 256–271.
Acceptance rate: 25.0% (111/443), oral.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2013): “Entropic affinities: properties and efficient
numerical computation”. 30th International Conference on Machine Learning (ICML 2013), pp. 477–
485. Acceptance rate: 23.5% (283/1204), oral.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2012): “Partial-Hessian strategies for fast learning of
nonlinear embeddings”. 29th International Conference on Machine Learning (ICML 2012), pp. 345–
352. Acceptance rate: 27.2% (242/890), oral.

• Code for all the methods presented is available online:

75

https://eng.ucmerced.edu/people/vladymyrov

Software

https://eng.ucmerced.edu/people/vladymyrov

Papers
• Max Vladymyrov and M. Á. Carreira-Perpiñán (2014): “Fast, accurate spectral clustering using locally

linear landmarks”, in submission.
• M. Á. Carreira-Perpiñán and Max Vladymyrov (2014): “A fast, universal algorithm to learn parametric

nonlinear embeddings”, in submission.
• Max Vladymyrov and M. Á. Carreira-Perpiñán (2014): “Linear-time training of nonlinear low-

dimensional embeddings”, 17th International Conference on Artificial Intelligence and Statistics
(AISTATS 2014), pp. 968–977. Acceptance rate: 35.8% (120/335), poster.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2013): “Locally linear landmarks for large-scale
manifold learning”. 24th European Conference on Machine Learning (ECML 2013), pp. 256–271.
Acceptance rate: 25.0% (111/443), oral.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2013): “Entropic affinities: properties and efficient
numerical computation”. 30th International Conference on Machine Learning (ICML 2013), pp. 477–
485. Acceptance rate: 23.5% (283/1204), oral.

• Max Vladymyrov and M. Á. Carreira-Perpiñán (2012): “Partial-Hessian strategies for fast learning of
nonlinear embeddings”. 29th International Conference on Machine Learning (ICML 2012), pp. 345–
352. Acceptance rate: 27.2% (242/890), oral.

• Code for all the methods presented is available online:

75

Thank you!
Questions?

https://eng.ucmerced.edu/people/vladymyrov

Software

https://eng.ucmerced.edu/people/vladymyrov

76

Out-of-sample mapping: example

Original Reconstructed Low-dimensional space

76

Out-of-sample mapping: example

Original Reconstructed Low-dimensional space

Fast out-of-sample mapping
• Given a new point , we solve the original problem

over and , subject to keeping the embedding
fixed:

77

y 2 RD

(Xx) (Yy) X

E0(x,y,�) = E+(x,y) + �E�(x,y) � � 0

F (y) = argmin
x

E0(x,y)
f(x) = argminy E0(x,y)

• Project new high-d point :
• Reconstruct new low-d point :

0 2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

11

12

13

14

15

X1

X 2

−10
−5

0
5

10
15

0
5

10
15

20
−15

−10

−5

0

5

10

15

Y1Y2

Y 3

y1 y2

y3

x1

x2

D = 3 d = 2Original dataset , Low-dimensional embedding ,Y X

x

y

F (y)

f(x)

8 6 0 2 4 6 8

0

1

2

3

4

5

78

Xk

• Approximation the error with the model .
• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

8 6 0 2 4 6 8

0

1

2

3

4

5

78

Xk

• Approximation the error with the model .
• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk

8 6 0 2 4 6 8

0

1

2

3

4

5

78

Xk

• Approximation the error with the model .
• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk
Ĝkapprox.

8 6 0 2 4 6 8

0

1

2

3

4

5

78

Xk

• Approximation the error with the model .
• is a model parameter and represents the accuracy of the

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error .Xk+1 = Xk + ✏k

exact Gk
Ĝkapprox.

�

79

E

xx

E

x

E

hE(X+ ✏)� E(X)i = 1

2
�2 tr

�r2E(X)
�
+O(�4)

Negative curvature Positive curvature No curvature

Mean of the absolute error:

X X X

E(X)

E(X)
E(X)

We have qualitative predictions:
1. Adding noise will be beneficial only where the mean curvature

. . is negative
2. When the mean curvature is positive, the lower the accuracy

the worse the optimization;
3. will vary widely at the beginning of the optimization and

become approximately constant and equal to .1
2�

2 tr
�
r2E(X)

��E(X)

1
n tr

�
r2E(X)

�

Model the effect of the approximate gradient

80

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

Positive curvature
(harm the approximation)

Negative curvature
(benefit from the approximation)

X

Model the effect of the approximate gradient

Under this model, we can suggest to increase the accuracy
parameter as we proceed with iterations.

80

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

Positive curvature
(harm the approximation)

Negative curvature
(benefit from the approximation)

X

Model the effect of the approximate gradient

Under this model, we can suggest to increase the accuracy
parameter as we proceed with iterations.

Accuracy of the approximation

81

Compare different ways to change the accuracy of the
approximation:
• fixed large,
• fixed small,
• changing from small to large,
• changing from large to small.

82

82

82

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

)

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

)

)

Given a high-dimensional dataset, PCA find directions of biggest
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)

83

)

)
PCA works only if data is

linearly separable!

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

−50 0 50
−60

−40

−20

0

20

40

60
s-SNE t-SNE

Rotational sequences

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

−50 0 50
−60

−40

−20

0

20

40

60
s-SNE t-SNE

Rotational sequences

Optimization of Nonlinear Embedding

85

E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization of Nonlinear Embedding

85

E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization of Nonlinear Embedding

85

E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Optimization of Nonlinear Embedding

86

E(X,�) = E+(X) + �E�(X) � � 0

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

Optimization of Nonlinear Embedding

86

E(X,�) = E+(X) + �E�(X) � � 0

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

E
+
(X

)
+

�
E

�
(X

)

In Nonlinear Embedding
methods, optimization

should be done iteratively.

