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Data is 
everywhere!
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Data is 
multidimensional!
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• governmental regulations
• other factors
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Possible ways to analyze high-dimensional data
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Possible ways to analyze high-dimensional data

Works only for very 
low-dimensional data!
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reduction

Dimensionality reduction tries to find 
latent structure of the data by
- learning important parameters,
- removing unnecessary dimensions (noise).
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Other use of dimensionality reduction

• Preprocessing before other task e.g. classification or regression:
‣ denoising,
‣ decreasing the complexity with respect to dimensionality    .

• Extracting latent structure of the data:
‣ feature learning,
‣ cluster information,
‣ deep networks with autoencoders.

• etc.
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Consider a dataset with          handwritten digits    :1 000
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Consider a dataset with          handwritten digits    :

0

BBBBBBBBBBBBBBBBBBBBBB@

0
0
0
0
...

100
104
89
90
...
0
0
0

1

CCCCCCCCCCCCCCCCCCCCCCA

2 R1⇥784

1 000

High-dimensional dataset: Y 2 R1 000⇥784

Number of points:
Number of dimensions:

N = 1000
D = 784

Reduction space: d = 2
8
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MNIST Handwritten digits
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MNIST Handwritten digits

visualized by ISOMAP
(Tenenbaum et al, ’00)



COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
10



COIL-20 Rotational sequences

{ {

128

128

R1⇥16 384

images per object:72

objects:10

High-dimensional dataset:
Number of points:
Number of dimensions:

Y 2 R720⇥16 384

N = 720
D = 16 384

Reduction space: d = 2
10



visualized by Elastic Embedding
(Carreira-Perpiñán, ’10)
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COIL-20  
Rotational sequences
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Text corpus 

visualized using MVU
(Weinberger and Saul, ’06)



Opinions of users on political issues

13
http://www.state.gov/opinionspace/
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AOL search 
queries dataset

visualized using MVE w/ b matching
(Shaw, ’11)



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III

15

Part II. Training of NLE Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using 
partial-Hessian



Nonlinear dimensionality reduction

Spectral 
methods

Stochastic Neighbor 
Embedding s-SNE t-SNE Elastic 

Embedding

Nonlinear Embedding Methods (NLE)

Large-scale approx. 
using N-Body methods

Entropic affinities

Locally Linear 
Landmarks

Barnes-Hut
method

Fast Multipole 
Methods

Part I. Nonlinear dimensionality reduction

Part III. Scaling-up to large-scale datasets

15

Part II. Training of NLE Optimization using 
partial-Hessian



Classification of 
dimensionality reduction
• Linear methods
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analysis (PCA), 
‣ classical multidimensional 

scaling (MDS).
‣ etc.
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Given high-dimensional data points                                    .
1.Convert data points to a            affinity matrix    .          
2. Find low-dimensional coordinates                                 , so 

that their similarity is as close as possible to    .

17

YD⇥N = (y1, . . . ,yN )
N ⇥N A

20 40 60 80 100
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Xd⇥N = (x1, . . . ,xN )

Y A X
High-dimensional      

input Affinity
Low-dimensional      

output

A

RD
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Graph-based dimensionality reduction



Affinity matrix

• For example, Gaussian affinities are given by:

wnm = exp(�1

2

k(yn � ym)/�k2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• Property:
- affinity matrix enforces locality 

of the data.

• Intuition: 
‣ high weight to nearby points, 
‣ low weight to far away points. 

wn·

Y

yn

18

W 2 RN⇥N• Affinity matrix                     represents the similarities between 
points in the dataset. The higher the affinity value, the more similar 
are the points to each other. 
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Gaussian affinity matrix

21

�n
�n

y1 y2

yn

y1 y2

yn

• Good     should be:
‣ set separately for every data point,
‣ take into account whole distribution of distances.

•      represents spatial characteristic of the data, which is not 
intuitive and is hard to set (especially for every point).

�n

�n



Entropic affinities (Vladymyrov and Carreira-Perpiñán, ’13)

• Consider a distribution of the neighbors                           for 

For entropic affinities,    is set individually for each point such that it 
has a distribution over neighbors with fixed perplexity   .

22

pn(y,�) =
K(k(y � yn)/�k2)PN
k=1 K(k(y � yk)/�k2)

�
K

y1, . . . ,yn 2 RD

y 2 RD

posterior distribution of Kernel Density Estimate.

• The entropy of the distribution is defined as:
H(y,�) = �

PN
n=1 pn(y,�) log(pn(y,�))

• Consider the bandwidth    given the perplexity    :

• We define entropic affinities as probabilities                             
for    with respect to   . These affinities define a random walk matrix. 

p = (p1, . . . , pN )
y �

�

(Hinton & Rowies, 2003)

H(y,�) = logK

K



Entropic affinities

23

Perplexity of     in a distribution    over     neighbors provides the same 
surprise as if we were to choose among     equiprobable neighbors.

K
K

p N

radius of the circle corresponds to � Neighbors

pn
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Entropic affinities (computation)

• The problem is well defined for a Gaussian kernel for any    , 
and has a 

• There exists 
in constant time.

                              defines a root-finding problem for     .
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• We can solve for     in just 
almost machine precision (                 )

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use 
with the bounds 

• We can use 
points. )

tol = 10�15
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• The problem is well defined for a Gaussian kernel for any    , 
and has a unique root for any                  .

• There exists tight bounds for the root     that can be computed 
in constant time.

                              defines a root-finding problem for     .

24

• We can solve for     in just over one iteration per point to 
almost machine precision (                 ).

H(yn,�n) = logK �n

�n

�n

K 2 (0, N)

• We can use high-order convergence methods that together 
with the bounds guarantee the convergence of the algorithm.

• We can use warm-start initialization based on the order of the 
points. )

tol = 10�15

�n
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Spectral methods
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• Minimize

‣             : symmetric psd, contains information about the similarity 
between pairs of data points.

‣             : symmetric pd (usually diagonal), set the scale of    .

• Examples:
‣ Laplacian eigenmaps,      graph Laplacian,
‣ ISOMAP,      is given by a matrix of shortest distances,
‣ Kernel PCA, MDS, Locally Linear Embedding (LLE), etc.

AN⇥N

BN⇥N

A
A

X

X = UTB� 1
2 U = (u1, . . . ,ud) d

C = B� 1
2AB� 1

2

                       ,  where                              are the    trailing eigenvectors of the            
matrix                             .

• Solution is unique and can be found in a closed form from the 
eigenvectors of             matrix:  N ⇥N

N ⇥N

minX tr
�
XAXT

�
s.t. XBXT = I



s.t. translation and scale constraints

• Intuition: 
‣ if         is large (original points are located nearby to each 

other)      place      and      nearby. 
‣ if         is small (original points are far away)     there is no 

direct constraint.

ELE(X) =
1

2
tr
�
XLX

T
�
=

NX

n,m=1

wnm kxn � xmk2

27

• Spectral method     global minimum is given by trailing 
eigenvectors of graph Laplacian                                         .

X

wnm

wnm

)
)

xn xm

)

{distance between     
andxn xm

= kx1 � x2k2 + kx1 � x3k2 + · · ·+ kxn � xmk2 + . . .w12 w13 wnm

Laplacian Eigenmaps (LE) (Belkin and Niyogi, ‘03)

L = diag
⇣PN

n=1 wnm

⌘
�W

• Minimize with respect to
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Laplacian Eigenmaps (LE) (Belkin and Niyogi, ‘03)

)

Laplacian Eigenmaps tries to preserve local structure of the data 
with the scale of the embedding being fixed.
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Locality is preserved,
scale is preserved!

There is nothing that 
pushes points apart 
from each other, 
except for the scale 
constraint!

Laplacian Eigenmaps
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Stochastic neighbor embedding (SNE)   
(Hinton and Roweis, ‘03)

• Define a conditional probability in both spaces that point selects any other 
point as its neighbor:

qm|n =

exp(�kxn � xmk2)
P

k 6=n exp(�kxn � xkk2)
pm|n =

exp(�
��
(yn � ym)/�2

��
)P

k 6=n exp(�k(yn � yk)/�2k)

yn

xn

ESNE(X) =

NX

n=1

D(PnkQn) =

NX

n,m=1

pn|m log

pn|m
qn|m

• Minimize the KL-divergence between those probability distributions:
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Variations of SNE
• s-SNE (Cook et al, ‘07): Normalizes both pdf over all interactions, 

not just over distances to a query point

‣ symmetric interactions,
‣ easier computation,
‣ very similar results.
• t-SNE (van der Maaten and Hinton '08): Defines low-d pdf over Student’s t 

kernel instead of Gaussian: 

qnm =

exp(�kxn � xmk2)
PN

k,l=1 exp(�kxl � xkk2)

qnm =
(1 + kxn � xmk2)�1

PN
k,l=1(1 + kxl � xkk2)�1

‣ new kernel has heavier tails      better far-field interaction,
‣ better for visualization, but worse for exact structure 

preservation (because we match different kernels).

pnm =

exp(�k(yn � ym)/�k2)
PN

k,l=1 exp(�k(yk � yl)/�k2)

pnm =

exp(�k(yn � ym)/�k2)
PN

k,l=1 exp(�k(yk � yl)/�k2)

31

)



Relation between LE and SNE
The objective function equals (up to constants):

• Term ① is like Laplacian Eigenmaps.
• Term ② is a “prior” that pushes apart all latent point pairs equally, 

irrespectively of whether their high-dimensional counterparts are 
close or far in data space.

{ {
data-dependent term ① data-independent term ②

• SNE enforces keeping the images of nearby objects nearby (like LE) 
while pushing all images apart from each other.  

• The prior ② is what makes SNE improve significantly over LE.

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

32

Intuition:



The elastic embedding (EE) (Carreira-Perpiñán, ‘10)

Intuition: 
• if      and      are similar, first term will pull      and      together,
• if      and      are different, second term will push      and      apart.
Properties:
• the first part is quadratic, the second is more nonlinear and non-

convex,
• positive affinity matrix can be sparse (because of a kernel decay),
• negative affinity matrix should be full.

• Minimize with respect to 

w+
nm = exp(�1

2

k(yn � ym)/�k2) w�
nm = kyn � ymk2

33

• Define two neighborhood graphs:

X

EEE(X,�) =
NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(k�xn � xmk2)

yn

yn

ym

ym

xn

xn

xm

xm



Connections between methods

ESNE(X) =

NX

n,m=1

pnm kxn � xmk2 +
NX

n=1

log

NX

m 6=n

exp(�kxn � xmk2)

ELE(X) =
NX

n,m=1

wnm kxn � xmk2 s.t. translation and scale constraints

Es-SNE(X) =

NX

n,m=1

pnm kxn � xmk2 + log

NX

n,m=1

exp(�kxn � xmk2)

Et-SNE(X) =

NX

n,m=1

pnm log(1 + kxn � xmk2) +
NX

n,m=1

(1 + k�xn � xmk2)�1

EEE(X) =

NX

n,m=1

w+
nm kxn � xmk2 + �

NX

n,m=1

w�
nm exp(k�xn � xmk2)
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Nonlinear Embedding (NLE) methods

General embedding formulation:

        is a repulsive term: 
• often very nonlinear, 
• minimal with points separated infinitely,
• all interactions should be computed.

        is an attractive term: 
• often quadratic, 
• minimal with coincident points,
• defined usually on the sparse affinity (not 

all interactions are computed).

Optimal embedding balances both forces.

E(X,�) = E+(X) + �E�(X) � � 0

E+(X)

E�(X)

�

� ☼
☼

�

� ☼
☼
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NLE: Simple optimization algorithm

• Gradient Descent:
‣ compute the gradient

‣ compute the direction

‣ compute new iteration        
with a line search:                            

‣ repeat till convergence. 8 6 0 2 4 6 8

0

1

2

3

4

5

• Other gradient-based optimization methods are applicable:      
L-BFGS, Conjugate Gradient, etc.

xk

Can we do better?
37

• Minimize objective function:

g ⌘ rE = 4X(L+ � �L�)

pk = �gk

xk+1

xk+1 = xk + ⌘pk

E(X,�) = E+(X) + �E�(X) � � 0
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Including second-order information

Consider the following method. For every iteration   :
• choose any positive definite     ,
• solve a linear system                     for a search direction     ,
• use line search to find a step size    for the next iteration

Convergence is guaranteed!

38

k
Bk

Bkpk = �gk pk

⌘
xk+1 = xk + ⌘pk (e.g. with backtracking line search).



How to choose good     ?

We want      : 
• positive definite (pd),
• fast to compute and solve the linear system                     .
• contain as much Hessian information as possible,

8 6 0 2 4 6 8

0

1

2

3

4

5

(gradient descent) (Newton’s method)
more Hessian information
faster convergence rate

Bk = I

Bk = r2E

our

Bk

Bk

Bk = I Bk = r2E

Bk

Bkpk = �gk
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The Hessian of Nonlinear Embedding

The Hessian is                 matrix and given by:

40

r2E =

+ 8Lxx

� 16�vec(XLq)vec(XLq)T

4L+ ⌦ Id⇥d

4�L� ⌦ Id⇥d�

where                          are graph Laplacians:
•                  : constant for Gaussian kernel    psd.
•       : depends on the embedding    . Some parts are psd.

L+,L�,Lxx,Lq

Nd⇥Nd

Lxx

L+,L�,Lq

X
)
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Bkpk = �gk
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The spectral direction (computation)

•The strategy adds almost no overhead when compared 
to the objective function and the gradient computation.

42

Cost per iteration
Objective function

Gradient
Spectral direction

O(N2d)
O(N2d)
O(Nd)

•Runtime is faster and convergence is still guaranteed.

•Applicable to any nonlinear embedding method 
(s-SNE, t-SNE, EE, …).



Optimization methods compared:
‣ Gradient descent
‣ Fixed-point iterations
‣ The spectral direction
‣ L-BFGS

The spectral direction (experiments)

Bk = I
Bk = 4D+ ⌦ Id⇥d

Bk = 4L+ ⌦ Id⇥d
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COIL-20. Convergence analysis, s-SNE
50 runs for each algorithm with random initial location.
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COIL-20. Convergence analysis, s-SNE
50 runs for each algorithm with random initial location.
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Comparing fixed-point iteration to the spectral diction for     
MNIST digits in one hour of optimization.

MNIST. Convergence analysis, t-SNE
20 000
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Fixed-point iteration, 20 min, EE
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Problem of spectral methods

• Consider a spectral problem:

With large    , solving this eigenproblem is infeasible even if     and        
.    are sparse.

min
X

tr
�
XAXT

�
s.t. XBXT = I

N
B

A

• Solution is unique and can be found in closed form for by the 
eigenvectors of            matrix constructed from    and    .N ⇥N A B
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Learning with landmarks
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Learning with landmarks

Reduced affinity matrix
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Learning with landmarks

Reduced affinity matrix
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Landmarks LearnedeY eX

 Problems:
• We need a way to project the non-landmark points, e.g. with 

Nyström method (Talwalkar el at, 2008).
• It only uses the information in     about the landmarks, ignoring 

the non-landmarks. This requires using many landmarks to 
represent the data manifold well. If too few landmarks are used:
‣ Bad solution for the landmarks                        .
‣…and bad prediction for the non-landmarks.

e
X = e

x1 . . . , exL

A



with reduced affinities                   ,                   . 

Locally Linear Landmarks (LLL)

52

• Assume each projection is a locally function of the landmarks:
xn =

PL
l=1 zlnex, n = 1, . . . , N ) X = eXZ

• Solving the original eigenproblem of            with this constraint 
results in a reduced eigenproblem of the same form but of          
on    :

N ⇥N
L⇥ L

eX

•After    is found, the non-landmarks are predicted as              

•Advantages over Nyström method:
‣ The reduced affinities                   involve the entire dataset 

and contain much more information about the manifold that the 
landmark–landmark affinities, so fewer landmarks are needed.

‣ Solving this smaller eigenproblem is faster.
‣ The out-of-sample mapping requires less memory and is faster.

eA = ZAZT

eX X = eXZ
(out-of-sample mapping).

mineX tr
⇣
eXeAeXT

⌘
s.t. eXeBeXT = I

eA = ZAZT eB = ZBZT

(Vladymyrov and Carreira-Perpiñán, ’13)



LLL: reduced affinities

53

Affinities between landmarks:
• Nyström (original affinities):

• LLL (reduced affinities): 

So landmarks   and    can be farther apart and still be connected along the 
manifold.

Affinities between…

path

eA = ZAZT ) eaij =
PN

n,m=1 zinanmzjm ) path i—n—m—j 8n,m

i—jA ) aij )

i j
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Experiments: MNIST dataset, 
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Exact LE, 80 s.

LL
L, 

5 
s.

LE
 (N

ys
.), 

5 
s.

N = 60 000



Experiments: large-scale dataset

•                       points from infiniteMNIST.
•              random landmarks (     ).
N = 1020 000
L = 104 1%

55

LLL (18 min runtime) LE (with    as an out of sample)Z



Experiments: large-scale dataset
The reason for the improved result with LLL is that it uses better 
affinities, so the landmarks are better projected.

Landmarks with 
LLL reduced affinities

Landmarks with 
original affinities
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Optimization of NLE
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8 6 0 2 4 6 8

0

1
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Bk = 4L⌦ Id⇥d

Bk = I

Bk = r2E(Xk)

For every iteration   :
‣ compute the gradient      ,
‣ find search direction     ,
‣ use line search to find a step 

size    for the next iteration:

k

⌘

Xk+1 = Xk + ⌘Pk

Spectral direction, as well as other gradient-based methods 
require gradient and objective function evaluations for every 
iteration.

Pk

Gk



Computational bottleneck of NLE 
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In elastic embedding algorithm objective function and the gradient 
are given by:

with

Computing             and           for every                      is            .

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)

S(xn)Sx(x
n

) n = 1, . . . , N O(N2)

No matter how fast is the optimization, it just decreases the 
number of iterations required for convergence. Each iteration is 
still            because of the gradient and objective function 
evaluations!

O(N2)

S(xn) =
NX

m=1

e

�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e

�kxn�xmk2



Computational bottleneck of NLE
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• Solution: use approximate methods to compute these interactions!
‣ tree-based methods;
‣ fast multipole methods.

• The bottleneck of the algorithm is computation of the 
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2



Computational bottleneck of NLE

60

• Solution: use approximate methods to compute these interactions!
‣ tree-based methods;
‣ fast multipole methods.

• The bottleneck of the algorithm is computation of the 
pairwise interaction between data points (N-body problem).

S(xn) =
NX

m=1

e�kxn�xmk2

Sx(x
n

) =
NX

m=1

x

m

e�kxn�xmk2



• Build a tree around    

Tree-based methods

61

• Complexity is usually  O(N logN)

• Query the nodes of the tree rather than individual points.       
Gains come from:
‣ pruning interaction between points 

that are too far away.
‣ approximating the interactions 

between points that are located at a 
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually 

Example: kd-tree, dual-trees, Barnes-Hut algorithm, etc.
To compute the interaction between      and others points:xn
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Gains come from:
‣ pruning interaction between points 

that are too far away.
‣ approximating the interactions 

between points that are located at a 
similar distance.

• Problems:
‣ do not scale well with dimensions of latent space,
‣ error bounds are usually hard to derive.
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Barnes-Hut algorithm (Barnes and Hut '86)

62

☺ Can be applicable to any kind of interaction (Euclidean 
distances, Gaussian distances, etc).
☺ Single parameter to control the trade-off between speed and 
approximation error.
☹ No clearly defined error bounds.

Was applied to speed up NLE algorithms by Yang et al. (2013) and Maaten (2013).



Barnes-Hut: building a quad-tree

1. Make sure that the points are 
located in the box         .
2. If there are more than two points 
in the cell, compute its centroid and 
split it.

Complexity:
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Barnes-Hut: querying a quad-tree

- distance from the query 
point to the centroid
- side length of the current cell,

Approximate the interaction with 
all points in the cell if

l

D
< ✓
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where    is a user parameter, that controls the approximation:✓
• smaller    gives more accurate prediction, 
• larger    gives better speedup.   
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Fast multipole methods
Properties:
☺ Time complexity          .
☺ Well defined error bounds.
☹ Expansion for each new kernel needs to be derived 
separately.  The performance may vary.
☹ Computational cost grows exponentially with number of 
dimensions.

65

O(N)

(Greengard and Rokhlin '87)



66

Approximate the interactions of the form:

The idea is to do a series expansion of the kernel    , such that 
the sum decouples over      and      :

Q(xn) =
NX

m=1

qmK(k(xn � xm)/�k2)

K
xn xm

Fast multipole methods (Greengard and Rokhlin '87)

            using multi-index notation ↵ � 0 ) ↵1, . . . ,↵d � 0

K(k(xn � xm)/�k2) =
X

↵�0

f↵ (xn) g↵ (xm)



Fast Gauss Transform

1. Normalize the dataset to lie in a unit box.
2. Grid the box into smaller boxes (either 

uniformly or based on density),
3. A lot of points in a cell     do a series 

expansion around the center of the box.
4. Ignore interactions between distant boxes.
5. Compute the interaction:

• few points in the box     exactly,
• a lot of points     use center of mass.

Algorithm:

(Greengard and Strain, ’91)
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Application of N-Body to NLE
•We can approximate the following interaction with N-Body 

methods
S(xn) =

NX

m=1

K(||xn � xm||2) Sx(x
n

) =
NX

m=1

x

m

K(||x
n

� x

m

||2)

•The objective function and the gradient of EE:

• Objective function and the gradient of other NLE methods can 
be defined analogously. 

68

• Given          and            , each term is can be computed in          .S(xn) Sx(x
n

) O(N)

EEE(X) =
PN

n,m=1 wnm kxn � xmk2 + �
PN

n=1 S(xn)

G
EE

(X) = 4XL� 4�X diag (S(X)) + 4�Sx(X)
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Experiments:           handwritten digits60 000

All methods show similar decrease in the objective function per iteration.
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The decrease is very different if considered per minute of runtime.
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Experiments:               handwritten digits1 000 000
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Conclusions
• Nonlinear dimensionality reduction gives good results, but usually 

expensive to train.
• New ways to scale-up NLE algorithms to datasets with           points 

(on a single core with moderate memory requirements):
‣ For spectral learning methods (LE, LLE, PCA, Spec. clustering):
- Locally Linear Landmarks (LLL) reformulates the problem on a 
subset, while retaining the structure of the whole dataset.

‣ For nonlinear embedding methods (SNE, t-SNE, EE):
- spectral direction gives 10-100x speedup comparing to the 
traditional optimization methods.

- N-Body approximations using Barnes-Hut                                        
or FMM reduces the complexity of 

  the algorithms to                     and            respectively.  

> 106

74

O(N logN)

O(N)
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Thank you! 
Questions?

https://eng.ucmerced.edu/people/vladymyrov

Software

https://eng.ucmerced.edu/people/vladymyrov
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Out-of-sample mapping: example

Original Reconstructed Low-dimensional space
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Fast out-of-sample mapping
• Given a new point             , we solve the original problem 

over          and          , subject to keeping the embedding    
fixed:

77

y 2 RD

(Xx) (Yy) X

E0(x,y,�) = E+(x,y) + �E�(x,y) � � 0

F (y) = argmin
x

E0(x,y)
f(x) = argminy E0(x,y)

• Project new high-d point   :
• Reconstruct new low-d point   :
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Ĝkapprox. 



8 6 0 2 4 6 8

0

1

2

3

4

5

78

Xk

• Approximation the error with the model                        .
•    is a model parameter and represents the accuracy of the 

approximation.

✏k s N (0,�2I)

Model the effect of the approximate gradient

�

• For each iteration we incur the error                           .Xk+1 = Xk + ✏k

exact Gk
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E

xx

E

x

E

hE(X+ ✏)� E(X)i = 1

2
�2 tr

�r2E(X)
�
+O(�4)

Negative curvature                            Positive curvature                           No curvature                            

Mean of the absolute error:

X X X

E(X)

E(X)
E(X)

We have qualitative predictions:
1. Adding noise will be beneficial only where the mean curvature 

.         .         is negative
2. When the mean curvature is positive, the lower the accuracy 

the worse the optimization;
3.           will vary widely at the beginning of the optimization and 

become approximately constant and equal to                      .1
2�

2 tr
�
r2E(X)

��E(X)

1
n tr

�
r2E(X)

�

Model the effect of the approximate gradient
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Under this model, we can suggest to increase the accuracy 
parameter as we proceed with iterations.
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Accuracy of the approximation 

81

Compare different ways to change the accuracy of the 
approximation: 
• fixed large,
• fixed small,
• changing from small to large,
• changing from large to small.
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Given a high-dimensional dataset, PCA find directions of biggest 
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)
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Given a high-dimensional dataset, PCA find directions of biggest 
variation of the data and projects the data accordingly.

Principal Component Analysis (PCA)
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)

)
PCA works only if data is 

linearly separable!
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Optimization of Nonlinear Embedding
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E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4



Optimization of Nonlinear Embedding

85

E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4



Optimization of Nonlinear Embedding

85

E(X,�) = E+(X) + �E�(X) � � 0

E
�
(X

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4



Optimization of Nonlinear Embedding
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In Nonlinear Embedding 
methods, optimization 

should be done iteratively.


