
UNIVERSITY OF CALIFORNIA, MERCED

Low-rank Compression of Neural Networks:
LC Algorithms and Open-source Implementation

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering & Computer Science

by

Yerlan Idelbayev

Committee in charge:
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via additive combination of reshaped, low-rank matrices,” in Data Compression
Conference (DCC 2021), pp. 243–252.
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ABSTRACT OF THE DISSERTATION

Low-rank Compression of Neural Networks:

LC Algorithms and Open-source Implementation

by

Yerlan Idelbayev

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California Merced, 2021

Professor Miguel Á. Carreira-Perpiñán, Chair

Neural networks have gained widespread use in many machine learning tasks due

to their state-of-the-art performance. However, the cost of this progress lies in

the ever-increasing sizes and computational demands of the resulting models. As

such, the neural network compression, the process of reducing the size, power

consumption, or any other cost of interest of the model, has become an important

practical step when deploying the trained models to perform inference tasks.

In this dissertation, we explore a particular compression mechanism — the

low-rank decomposition — and its extensions for the purposes of neural network

compression. We study important aspects of the low-rank compression: how to

select the decomposition ranks across the layers, how to choose best decomposition

shapes for non-matrix weights among a number of options, and how to adapt the

low-rank scheme to target the inference speed. Computationally, these are hard

problems involving integer variables (ranks, decomposition shapes) and continuous

variables (weights), as well as nonlinear loss and constraints.

As we show over the course of this dissertation, all these problems admit

suitable formulations that can be efficiently solved using the recently proposed

learning-compression algorithm. The algorithm relies on the alternation of two

optimization steps: the step over the neural network parameters, the L step, and

the step over the compression parameters, the C step. Once we formulate the

xii



compression problems, we show how the L and C steps are derived. Each step can

be solved efficiently: the L step is solved by stochastic gradient descent, and the

C step relies on singular value decomposition. We demonstrate the effectiveness of

the proposed compression schemes and the corresponding algorithms on multiple

networks and datasets.

Finally, we discuss the resulting general neural network compression toolkit

that encompasses all compression schemes presented in this dissertation and many

others. The toolkit is designed to be flexible and extensible, and is released under

the open-source license.
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Chapter 1

Introduction

Neural networks have established state-of-the-art performance nearly in every

machine learning task, and currently, are the method of choice for problems in the

fields of image, audio, and video classification, natural language processing, speech

to text and text to speech processing, and others. With such a wide application

space, the neural networks have become an important practical tool in day-to-day

activities. For instance, you can find dozens of neural networks deployed around

you and your devices as image and video enhancers in cameras and smartphones,

as voice-to-text modules in virtual keyboards, or as personal assistants in your

favorite email clients.

The improvement in the performance of the neural networks is typically at-

tributed to the following four factors: 1) availability of large-scale datasets such

as ImageNet [108] or Microsoft COCO [87] with high quality labeling information;

2) availability of efficient hardware such as graphical processing units (GPUs) and

custom build accelerators like tensor processing units (TPUs) [68], which allow to

speed up the training of the neural networks; 3) availability of open-source software

frameworks such as Caffe [67], Theano [115], TensorFlow [1], PyTorch [103], which

ease the burden of training and experimentation; and finally 4) research on better

training techniques, such as novel initialization [34, 44] or normalization [63] meth-

ods, and the sheer amount of accumulated empirical knowledge on typical settings

of the algorithms, i.e., the training recipes. These factors in combination allow us

to train ever-increasing neural networks with better performances.

1
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We can illustrate the evolution of neural network designs and performances on

the large scale image recognition task of Russakovsky et al. [108]. This challenge,

also known as ImageNet-2012 or ILSVRC2012, asks to create a machine learning

model able to classify a color image into one of the 1 000 classes. Starting from the

seminal paper of Krizhevsky et al. [75], in which authors proposed a neural network

(now called AlexNet) achieving 81.8% top-5 accuracy, neural networks started to

dominate the challenge at the cost of increasing complexity and computational

demand. The winner of the year 2012, the AlexNet, had only 8 layer and required

727 MFLOPs to classify a single image. The winners of following years have more

layers and require more computation: for example, the winner of 2014 had 22

layers and 2 GFLOPs [112], the winner of 2015 had 154 layers and 11 GFLOPs

[45], etc. On the bottom of Figure 1.1 we show a summary of the performances

of different architectures on the ImageNet 2012 task. On the top of Figure 1.1,

we show a historic overview of the number of trainable parameters in prominent

neural networks.

As you can see from Figure 1.1, improvements in the network accuracy come

from training larger and more demanding neural networks. Yet, the trend of

“larger network — better accuracy” comes contrary to the economic and business

considerations when these models are actually used (deployed). We can identify

two primary deployment scenarios:

• Cluster deployment. When deploying a network in a cluster environment,

we have access to powerful computers with lots of memory and computa-

tional resources. However, running on those powerful machines might be an

expensive operation, especially if we are running at scale. Thus we would like

to use fewer resources like CPUs and GPUs, virtual machines, and consume

less power to save money.

• Edge deployment. In this scenario, we deploy trained networks on low-

power devices like smartphones that are closest to the end-user. Such devices

have stringent constraints in terms of available resources: memory, band-

width, power, etc., therefore the deployed model can fail to run at all, e.g.,

if it does not fit into the available RAM.
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Parameters over the years

FLOPs vs Top-5 accuracy

Figure 1.1: Summary of performances of different neural networks on the
ImageNet-2012 task. Top: Historic perspective on number of parameters in the
leading neural networks over the years (reprinted by permission from Springer Na-
ture Customer Service Centre GmbH: Nature Electronics, Scaling for Edge Infer-
ence of Deep Neural Network [125], © 2018). Bottom: FLOPs vs top-5 accuracies
for different networks on ILSVRC2012 task (obtained from Bianco et al. [9]).
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This leads to the problem of model compression — how we can modify the param-

eters of the model (neural network) so that it requires fewer resources and fits into

device constraints (say, cheaper to run or has smaller size) while maintaining the

reference accuracy of the model.

Out of many compression strategies that have been developed in the litera-

ture, in this dissertation we focus on using the low-rank decompositions. Such

a compression scheme has several advantages. Firstly, low-rank methods have a

history of usage in the fields of linear algebra, signal processing, and statistics

with robust computational routines like singular value decomposition (SVD) and

well-tested software packages like BLAS and LAPACK. Secondly, when the neural

network weights are compressed using the matrices with appropriately small ranks,

it reduces both the size of the network and the computational requirements needed

for the forward pass. Most importantly, the computational savings are realizable

without explicit support from the hardware. Indeed, if the weight matrix W is of

low-rank, it can be seen as a product of matrices UVT . The forward pass Wx

through such layer now can be computed as a forward pass through a sequence

of two regular layers: first through a layer with weights VT and then through a

layer with weights U. This hardware friendliness is in stark contrast compared to

other compression schemes: e.g., quantized or element-wise pruned models require

building a dedicated processor to be efficiently deployed [38].

1.1 Contributions

In this dissertation, we study the low-rank compression of the neural networks

and several important extensions to it: device targeted compression and the low-

rank compression with joint selection of decomposition shapes. These compression

problems are hard since each involves a combinatorial substructure: for instance,

these problems involve selecting a rank for each of the K layers in the network,

which means the number of different choices we need to make is exponential in K.

As we will review in section 2.1, low-rank decomposition has been used for

model compression with different degrees of success, often relying on heuristics or
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using training algorithms that cannot be generalized. Our approach is different

as we 1) formulate the compression task as a well-specified optimization problem;

and 2) tackle many forms of low-rank compression using a single framework of

the learning-compression algorithm of Carreira-Perpiñán [15], which makes our

approach generic and extensible. The resulting algorithms are simple, yet compet-

itive: we achieve similar or exceeding compression ratios when compared to the

leading methods from the literature at the same accuracy levels. The results pre-

sented in this dissertation have been published in peer-reviewed conferences and

now constitute solid baselines for neural network compression problems.

Additionally, we present an open source toolkit written in Python that incor-

porates all low-rank compressions discussed in this dissertations and many others

forms of compressions: quantization, pruning, and combinations of those. This

software builds on top of the LC algorithm and is used in all of our experiments

and publications. Below we give a summary of every chapter in this dissertation.

• In Chapter 2 we present an extensive review of neural network compression

works spanning various compression mechanisms like low-rank compression

(section 2.1), pruning (section 2.2), quantization (section 2.3), and their com-

binations. We additionally present an overview of available model compres-

sion software and their limitations in section 2.4.

• In Chapter 3 we review the Learning-Compression algorithm which is the

backbone optimization method used in our research. The algorithm allows

us to efficiently solve the model compression problems formulated using con-

strained optimization, which is achieved by separation of the model learning

from the model compression.

• In Chapter 4 we apply the LC algorithm to solve the problem of low-rank

compression of the neural networks. We show that with a suitable formula-

tion we can jointly learn both weights and the ranks of the neural networks

to minimize the cost of interest like total floating point operations (FLOPs)

in the resulting model.

• In Chapter 5 we show how our formulation of low-rank compression can be
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naturally extended to handle device-targeted compression: that is how can

we jointly train weights and select ranks for a model so that it runs as fast

as possible on a given hardware.

• In Chapter 6 we discuss in depth the application of low rank for compression

to convolutional layers, which admit several different forms of low-rank de-

compositions. We propose to select the optimal decomposition form as part

of the optimization and compare it to regular low-rank compression schemes.

• In Chapter 7 we present an open-source software framework based on our re-

search: the LC toolkit. We will discuss the design choices behind the library,

and the implemented features that makes library extensible and flexible.

• In Chapter 8 we conclude the dissertation and outline possible future direc-

tions for our research.



Chapter 2

Related Work

This chapter presents an extensive overview of various compression mechanisms

studied in the literature. Due to the nature of the neural network compression

field (with hundreds of publications each year), this review is not an exhaustive

overview, and certain methods may be already outdated.

2.1 Low rank and other decompositions

Decompositions of a matrix as a product of lower-rank matrices, including the

low-rank and tensor ones, have been thoroughly studied in the fields of linear

algebra, statistics, engineering, and have found multitudes of applications. For

a thorough review of different tensor decomposition types we refer to Kolda and

Bader [71]. In this section we limit our attention to relevant tensor and low-rank

decomposition works which are used for neural network compression: either to

reduce the number of parameters in the net or to speed up the inference time.

If the weight matrix W of shape a × b can be naturally decomposed into a

product of r-rank matrices UVT , we can store U and V separately by using

r × (a + b) floating point values. When r is suitably small, i.e., r ≤ ab/(a + b),

storing such decomposed weights (instead of the original W) becomes an efficient

compression mechanism. The decomposed matrices not only save storage, but also

reduce the computational load: instead of computing y = Wx during the forward

pass of the neural network, we would compute the intermediate product x′ = VTx

7
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first, and then compute y = Ux′. Such chaining reduces the total FLOPs count of

the model (see appendix A), and, most importantly, can be efficiently implemented

in any neural network and underlying hardware: it is equivalent to having two

linear layers with weights U and VT instead of one layer with W.

Generalizations of low-rank decompositions for higher order matrices, i.e., ten-

sors, also have compressing properties and have been widely explored in the neural

network compression literature. In Table 2.1 we group and summarize the various

types of decompositions used for network compression. Aside from the decompo-

sition type, there are several important characterizations of these works that we

review next. In section 2.1.1 we review simple methods which heuristically select

the ranks and in section 2.1.2 we review typical heuristics. In section 2.1.3 we re-

view the works that formulate principled optimization problems to train low-rank

networks. Finally, in section 2.1.4 we review how matrix decomposition can be

extended to convolutional layers.

Before we proceed with the main review of low-rank compression works, we

would like to note that some methods use decompositions to create a new archi-

tecture rather than using it as a compression tool. These methods decompose

the layer, say as UVT , and use it as a new layer and train the network from

scratch wrt to parameters U and V instead of original W. Such an approach was

used on image classification problems [84, 117, 129], as well as on language models

where extremely large matrices appear in the final layers [18, 109]. Interestingly,

now popular depth-wise separable convolutions of Chollet [20], Sandler et al. [110]

are a particular version of tensor CP decomposition applied to the weights of a

convolutional layer.

Throughout this section we will be denoting the weight matrix or weight tensor

interchangeably using bold math symbols (e.g., W), and its decomposition as

∆(Θ). In case of low-rank decomposition applied to matrix W we have ∆(Θ) =

UVT with Θ = {U,V}.
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Type Specifics Used in works of

Low rank
scheme 1

Denil et al. [25], [26], Zhang et al.

[135], Wen et al. [120], Xu et al.

[125], Li and Shi [80]

scheme 2
Jaderberg et al. [66], [113], Xu

et al. [125], Kim et al. [69]

CP Denton et al. [26], [77]

Tucker Kim et al. [70]

Tensor decompositions Tensor-Train
Novikov et al. [102] FC layers only,

Garipov et al. [33]

Tensor-Ring Wang et al. [117]

Block-Term Ye et al. [129]

Other

Jaderberg et al. [66] as scheme 1

with filters of rank 1

Ioannou et al. [61], Ioannou et al.

[62] decompose with linear

combination of different rank

matrices

Table 2.1: Summary of different decompositions used for neural network
compression.

2.1.1 Early methods

Early methods simply applied a chosen form of decomposition to the pre-trained

weights, and then optionally retrained the decomposed weight matrices on the neu-

ral network task L by solving the problem of minΘ L(∆(Θ)). We can characterize

these methods by decompositions strategies as data dependent and data indepen-

dent.

Data-independent strategies minimize the normed difference between the orig-
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inal weights W and its decomposition ∆(Θ):

min
Θ

‖W −∆(Θ)‖. (2.1)

For certain decomposition forms (low-rank for a matrix or Tucker 2 for a tensor)

this problem can be solved optimally using Singular Value Decomposition (SVD).

Denton et al. [26] and Tai et al. [113] heuristically choose the ranks, initialized the

low-rank weight with SVD solution and fine-tuned it on the original task of the

network. The work of Denton et al. [26] additionally introduce a scheme where

weight tensors are approximated as outer products of rank-1 matrices, for which

they use alternating least squares to optimize the corresponding decomposition

problem of eq. (2.1). In the works of Jaderberg et al. [66], Lebedev et al. [77] and

Novikov et al. [102] the chosen decomposition forms do not have efficient solutions,

therefore authors used iterative methods to populate the decomposed models, and

did not retrained weights afterwards.

Data-dependent strategies minimize a data-dependent norm of eq. (2.1), for

example Denton et al. [26] use the Mahalanobis distance, or minimize the normed

difference between responses of original weights W and its decomposition ∆(Θ)

wrt to datapoints x in layer-wise fashion:

min
Θ

∑

x

‖Wx−∆(Θ)x‖. (2.2)

Denil et al. [25] use low-rank matrix decomposition with ∆(Θ) = UVT , and

solve the eq. (2.1) approximately by computing U as the kernel ridge regression,

U = (K + λI)−1W, for a heuristically chosen kernel matrix K. Jaderberg et al.

[66] solved the data-dependent problem of the eq. (2.2) using LBFGS solver, where

the initialization come from the solution of the data-independent version of the

problem. Zhang et al. [135] recognized that low-rank decomposition version of the

eq. (2.2) is a well known reduced rank regression (RRR) problem, which has an

optimal solution using the SVD of a certain covariance matrix.

Initial empirical evidence in the literature suggested that finetuning of the

decomposed weights wrt original loss of the neural network, i.e., minΘ L(∆(Θ)),

is not easy or does not produce better results, thus after decompositions of the
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weights, factor matrices remained as is. For example, Zhang et al. [135] write “fine-

tuning is very sensitive to the initialization (given by the approximated model)

and the learning rate”, and Jaderberg et al. [66] note that finetuning “does not

actually result in better classification accuracy than doing data ℓ2 reconstruction

optimization”. Therefore, initial works restricted finetuning only to a subset of the

weights: e.g., Denil et al. [25] finetune only V-matrices of decompositions, keeping

Us fixed; Denton et al. [26] finetune only non-decomposed weights. On the other

hand, Lebedev et al. [77] were able to finetune the entirety of the decomposed

network, though they report that “gradients within the decomposed layers are

prone to the gradient explosion” and “proper care should be taken when selecting

the learning rates”. Tai et al. [113] were able to finetune low-rank networks, and

attribute the success to usage of the batch normalization transformation of Ioffe

and Szegedy [63] between the layers of the network.

2.1.2 Heuristic criteria for rank selection

Most of the methods discussed in this section use heuristics to determine the

ranks of the decompositions. We call such criteria to be heuristic even though they

come as a solution of some optimization problem. Yet, the underlying problem

these heuristics are solving completely disregard the task loss L of the neural

network and replace it with an easy to solve surrogate function that has no relation

to the original L function. Here are some of the most used heuristics:

H1 Zhang et al. [135] proposed to estimate the reduced ranks of the weight ma-

trices by greedily maximizing the accumulated sum of singular values of the

matrices, subject to resulting FLOPs of the network is being within a p-

proportion, where p is user defined hyper-parameter.

H2 Tai et al. [113], Wen et al. [120] and Xu et al. [125] use a simpler heuristic:

choose the rank ri of the layer i in such way that ri-rank approximation is

within a p-ratio of the norm of the original matrix, i.e., choose the highest

rank satisfying ‖UV‖F ≤ p‖W‖F . For example, Wen et al. [120] and Tai

et al. [113] use p = 0.95 and Xu et al. [125] use p = 0.95 and p = 0.99.
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H3 Gusak et al. [36], Kim et al. [70] select the ranks by treating the data-

independent approximation problem of eq. (2.1) as a Bayesian Matrix Fac-

torization problem and solve it using variational procedure of Nakajima et al.

[99]

Heuristics H1 and H2 require a single SVD to compute the ranks estimates, there-

fore they are fast. Heuristic H3 might take some time depending on the matrix

size. Other heuristics used in the literature can be easily extracted from the com-

binations of above.

2.1.3 Joint optimization of ranks and weights

While a large body of the methods use heuristically determined ranks for de-

compositions, and then finetune, there are methods that treat low-rank and tensor

compression problems as joint optimization over the ranks and weights so that the

overall task loss of the network is minimized.

Direct handling of the rank Li and Shi [80] formulate the rank-selection prob-

lem jointly with neural network training, minimizing the loss of a network with

constraints on the total number of allowed weights and computation, which de-

pends on the rank of each layer. This problem is solved approximately in an alter-

nating manner, where one step optimizes over the weights via SGD, and another

step optimizes over the ranks but requires the solution of a mixed-integer pro-

gram (involving discrete and continuous variables, NP-hard) using the commercial

software MOSEK.

Indirect handling of the rank Instead of handling the ranks directly, one line

of work is to penalize ranks indirectly. One option for such a penalty is convex

relaxation of the rank function — the nuclear norm ‖W‖
∗
. It is defined as a

sum of singular values of the matrix, and proven to be a convex envelope of the

rank function, i.e., the closest convex lower bound in point-wise sense [31]. The

nuclear norm minimization enjoys certain guarantees when used in compressed

sensing, i.e., when searching for the lowest-rank matrix that satisfies the partial
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observations [14, 105]. Methods that use nuclear norm optimize the penalized

objective of minW L(W)+λ‖W‖
∗
, and use gradient based optimizers that require

running SVD to compute the gradient wrt nuclear norm part. Such formulation

has been used to compress single-layer networks in the work of Harchaoui et al.

[41], and multi-layer networks in the work of Alvarez and Salzmann [4].

Other low-rank penalties have been explored as well. Wen et al. [120] propose

to train a neural network with a “force regularization” penalty R defined per every

pair of rows wi,wj of matrix W:

R(W) =
∑

i,j

∥
∥
∥
∥

wi

‖wi‖
−

wj

‖wj‖

∥
∥
∥
∥
.

Another line of work that handles ranks indirectly is pruning based approaches

applied to the decomposition structure. Most of the decompositions of interest can

be seen as a sum of small building blocks Bi: in case of matrices, any r-rank matrix

can be seen as a sum of r matrices of rank 1. These methods explicitly rewrite full

weight matrices in its complete decomposition form as W =
∑

i αiBi, and jointly

train on the task loss L while having ℓ1 penalty on αi values. If some of the αi

values get pruned due to the sparsifying properties of ℓ1 norm, the rank of the W

matrix reduces. Xu et al. [125] adopts such approach for low-rank decompositions,

and the work of Kossaifi et al. [72] use it for CP decomposition.

There are several disadvantages of indirectly handling the ranks. First, it is

unclear how to extend these methods to include rank-based costs, say, power-

consumption of r-rank layer. Without a cost-driven approach, resulting decom-

posed networks will be suboptimal in comparison to the models that directly min-

imize the cost of interest. Second, the optimization procedures of those methods

are not well suited for training of deep nets. For instance, the nuclear norm based

approaches require SVD after every stochastic gradient step, which is an expensive

operation. For pruning based approaches, the main difficulty comes in ℓ1 penalty

and stochasticity of the gradient. To determine whether the building block of

decomposition has been pruned, its αi value must be exactly zero, which is im-

possible when training with SGD. Thus, all of these methods revert to heuristic

rank selection (see section 2.1.2) at the end or during the training to determine
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the ranks of decompositions.

2.1.4 Low-rank parameterization of convolutional layers

Finally, we review how we can apply low-rank matrix parameterization for

tensors, particularly for tensors coming from weights of convolutional layers. A

convolutional layer with n filters of c channels and d × d spatial resolution has

ncd2 parameters and naturally forms a tensor of size n × c × d × d. We can

parametrized it with one of the following low-rank structures which in turn can be

implemented as a sequence of convolutions:

Scheme 1 We can view the convolutional weights as a linear layer with shape

of n × cd2 applied to appropriately reshaped volumes of the input. The

rank-r approximation then has two linear mappings with weight shapes of

n× r and r× cd2, which can be efficiently implemented as a sequence of two

convolutional layers: first with r filters of shape c × d × d, and second with

n filters of shape r × 1 × 1. Such parameterization was used in works of Li

and Shi [80], Wen et al. [120], Xu et al. [125] and others.

Scheme 2 Alternatively, we can view the convolutional weights as a linear layer

with shape of nd × cd applied to reshaped volumes of the input. For this

scheme, an approximation of rank r will have two linear mappings with

weight shapes of nd× r and r× cd, which can be implemented as a sequence

of two convolutional layers: first with r filters of c × d × 1 and second with

n filters of r × 1 × d. This parameterization was used by Jaderberg et al.

[66], Tai et al. [113].

Scheme 3 Over the course of our research, we have discovered a third decompo-

sition shape which is a mirror of scheme 1. Instead of reshaping the weights

as n× cd2, we now reshape them as nd2× c. A low rank layer in this scheme

can be implemented as a sequence of following layers: first with r filters of

shape 1× 1× c, and second with n filters of d× d× r.

The aforementioned process of reshaping of a tensor into a matrix is generally

known as matricization or unfolding of a tensor. In tensor algebra literature various
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unfolding schemes have been studied, however, only a few of them can be efficiently

supported by modern deep-learning frameworks and underlying hardware.

2.2 Pruning and sparsification

The problem of neural network pruning is as old as neural networks themselves.

Once an efficient training method using the gradient backpropagation was proposed

[107], it was empirically observed that training a larger model is often easier, yet,

having a smaller model is more desirable. The primary motivation for initial

pruning methods was to achieve smaller and more generalizable models. Indeed,

by Occam’s razor principle, out of many possible models that perfectly fit the

data, the one having the fewest weights usually generalizes better (i.e., does not

overfit). Pruning has other advantages: it allows us to get an insight into the

network’s learning (e.g., which features are important), but most importantly it

reduces the size and computational requirements of the model, which makes it an

efficient compression mechanism.

We can apply pruning on the level of individual weights, which is known as

unstructured pruning, or on the level of neurons and filters — structured prun-

ing. Very sparse models can be achieved using the unstructured pruning, but the

efficient deployment of such models requires the support of sparse matrix-vector

multiplications. In comparison, the structured pruning methods achieve moderate

compression ratios, yet they have the advantage of being hardware friendly: if a

neuron is removed from a layer, it simply reduces the dimension of the weight

matrix, which can be implemented natively. The current body of the pruning

methods perform both structured and unstructured pruning and can be divided

into two groups: the heuristic methods that propose some ranking of the weights

(or neurons), known as saliency ranking, and the methods that achieve pruned

models by formulating an optimization problem involving sparsifying penalties.
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2.2.1 Saliency ranking methods

The methods in this category rank weights (or neurons) of the pre-trained

neural network according to some saliency measure, prune certain fraction of it,

and optionally retrain the remaining weights on the original model task. The main

idea of the saliency methods is to estimate (often heuristically) what happens to

the model loss L(w) if a single weight wi becomes zero. At its best, such an

approximation is only accurate for a single weight removal, as it cannot account

for the combined effects of multiple weights being simultaneously pruned. Yet,

saliency methods are often used as robust baselines due to their simplicity. We

review several methods revolving around this idea next.

Assume we have a pre-trained neural network, with weights w minimizing a

certain loss function L, i.e. w = arg minw L(w). The pruning of the weight wi can

be written as a perturbation w − wiei, where ei is a unit vector along i-th axis.

The change of the loss under such perturbation is given by Taylor’s expansion:

L(w − wiei) ≈ L(w)− wi∇L(w)Tei +
1

2
w2

i e
T
i Hei (2.3)

Here H is the matrix of the second derivatives of the loss L evaluated at w, the

Hessian matrix. Since w is the minimizer of the loss function (by our pre-training

assumption), the ∇L(w) = 0. Thus, the change in the loss when wi gets pruned is

given by the third term of (2.3), which gives us the salience ranking for every weight

wi. To compute the salience, LeCun et al. [78] used a diagonal approximation to

the Hessian, in which case the change of the loss is given by

Si = L(w − wiei)− L(w) =
1

2
w2

iHii,

where Hii is the i-th diagonal item of H. Hassibi and Stork [42] considered a

more general formulation of (2.3) where during the pruning of wi we are allowed

to modify other weights by δw-perturbation such that wi + δwi = 0. In such case,

the subsequent change in the value of the loss is given by saliency of

Si =
1

2

w2
i

(H−1)ii
.

This approach requires the computation of the inverse of the Hessian. Instead of

using the full Hessian, Hassibi and Stork [42] propose to use the Gauss-Newton



17

approximation for the Hessian (involving only Jacobian terms). The method of

Hassibi and Stork [42] is a generalization of the method of LeCun et al. [78] and

empirically found to be working better. Unfortunately, computation of the full

Hessian matrix does not scale well with the current sizes of deep neural networks,

as it requires O(N2) storage for a network with N parameters. Even diagonal

approximation of LeCun et al. [78] is hard to compute due to the complexity of

backpropagation of the second-order derivatives. Therefore, numerous follow-up

works were proposed to rectify the challenges with Hessian based methods. One

approach of handling the size of the Hessian matrices is by applying the method

of Hassibi and Stork [42] in layer-wise fashion, e.g, as in the work of Dong et al.

[29].

Hessian computation can be avoided if the first-order expansion of the equation

(2.3) is to be analyzed as it was done in the works of Molchanov et al. [96], Mozer

and Smolensky [97]. For this to work out, the assumption of ∇L(w) = 0 must be

dropped, i.e., we no longer assume that pruning is applied to a fully pre-trained

model minimizing the L(w). In such case, Mozer and Smolensky [97] define the

saliency of the weight to be:

Si =

∣
∣
∣
∣
wi

∂

∂wi

L(w)

∣
∣
∣
∣
.

Molchanov et al. [96] use this saliency measure to rank entire filter groups, where

the saliency of the filter is given as the sum of the weight saliencies within the

group.

Interestingly, as noted by Hassibi and Stork [42], the Hessian-based saliency

approach motivates the magnitude-based pruning. If we assume diagonal isotropic

Hessian in (2.3), the salience of the weight is its magnitude (Si = wi). This yields

a simple yet efficient method when applied to the pruning of deep neural networks

[37, 39, 132], and can be generalized to the pruning of the filters using the ℓ1 norm

[81]. However, magnitude-based pruning is a local, naive approximation of the

pruning process and other approaches can achieve higher sparsities.
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2.2.2 Sparsifying penalties

A more principled approach to achieve a pruned neural network is by applica-

tion of the sparsifying penalty Ω(w) and training the following loss jointly:

min
w

L(w) + λΩ(w).

Here, λ is user defined hyper-parameter controlling the amount of desired sparsity.

The initial penalties studied in this context used modifications of weight decay,

which were influenced by Tikhonov’s regularization of statistical models. Partic-

ularly, the ℓ2 penalty of Ω(w) = ‖w‖22 penalizes the magnitudes of the weights,

and forces all of the weights to be smaller. Such penalty can be easily handled by

the gradient descent methods, and have been used throughout in the literature.

However, the ℓ2 penalty does not have a strong sparsifying effect. To remedy it, as

discussed in works of Weigend et al. [118] and Hanson and Pratt [40], Rumelhart

proposed another weight decay of the form of

Ω(w) =
∑

i

w2
i

1 + w2
i

.

This penalty will not affect weights with large magnitudes, as w2
i ≈ w2

i + 1 when

wi is large, however will penalize smaller weights driving them to zero.

Another type of penalty, the ℓ1-norm of the form Ω(w) = ‖w‖1 =
∑

i |wi|, has

gained significant attention in the convex optimization literature due to convexity

of such penalty and strong sparsifying properties. In fact, the linear regression

model with ℓ1 penalty is well known as a LASSO problem, and has efficient learning

algorithms [43, ch. 5]. While the ℓ1 norm penalizes only individual weights, it can

be modified into a group penalty to target the pruning of entire neurons of the

network. One example of such group penalty is ℓ2,1 proposed by Ding et al. [27].

The approaches involving ℓ1 penalty on the weights and groups has been widely

used for neural network compression. In the works of Liu et al. [90] and Ye et al.

[128] the ℓ1 penalty is applied to batch-normalization scalars, essentially pruning

the entire neuron groups. In the works of Alvarez and Salzmann [3], Lebedev and

Lempitsky [76], Wen et al. [119] the group ℓ2,1 penalty is used. Other sparsifying

penalties based on ℓ1 norm and its variants are being investigated as well [127].
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Learning in the presence of ℓ1 Stochastic gradient descent (SGD), a standard

tool for training of deep nets, has several challenges when training ℓ1-norm penal-

ized models due to: a) the ℓ1 norm is not differentiable at zero which makes it hard

to state convergence guarantees (if any) when approaching pruned solutions and

b) stochasticity of SGD introduces the noise for every trained weight wi, making

it impossible to identify whether wi is actually pruned or not. Some approaches,

ignore these challenges and proceed with SGD, performing a final heuristic thresh-

olding of the weights at the end of the training [76, 119]. Other works adopt the

algorithms like ISTA and FISTA [8], which are guaranteed to converge in con-

vex case, however, it is unclear how do such convergence guarantees translate for

modern neural networks with nonconvex loss surfaces.

2.3 Quantization

The neural network quantization is the process of forcing the weights of the

neural network to be shared, that is every weight wi must come from a codebook

of K entries C = {c1, c2, . . . , cK}. The codebook entries themselves might be

fixed by hand, for example with binary (C = {0, 1}) or ternary codebooks (C =

{−1, 0,+1}); partially adaptive, where only a learned rescaling of the codebook is

allowed; or fully adaptive without any constraints on the codebook entries. The

compression is achieved via a) the savings in the storage of the net: instead of

storing N floating-point weights wi (e.g., N ×32 bits), we only need to store index

into a codebook plus codebook itself (⌈logK⌉×N +K×32 bits) and b) savings in

inference: if both weights and activations are quantized using a suitable codebook

(say integer-only) forward pass through the net can be computed more efficiently.

While neural network quantization was studied as early as in 90s [32, 114], the

interest in this compression mechanism was revitalized with recent push into neural

network compression. The current landscape of quantization work can largely be

divided into:

• Quantization aware training, QAT. In QAT setting we assume that we

have full control over the neural network weights and the training data, so



20

we can execute a complicated optimization pipeline [5, 6, 16, 49, 65].

• Post training quantization, PTQ. In PQT setting we assume that we only

have access to the trained network that needs to be quantized, without the

accompanying dataset that the network was trained on. It is expected that

the entire quantization pipeline can be executed quickly, typically within

minutes [7, 74, 83, 98, 121].

In terms of error-compression tradeoff of the resulting quantized networks, the

quantization-aware training is the leading approach. A general setting of such

methods is to solve a problem of the form:

min
w,C

L(w) s.t. wi ∈ C, ∀i = 1, . . . , N. (2.4)

In terms of the solutions of this problem we can outline three big categories: a)

methods that use modification of backpropagation b) methods that use constrained

optimization machinery. We discuss these methods next.

Methods that modify backpropagation A large number of works [5, 6, 22, 23,

49, 65, 74] uses an ad-hoc solution to the problem (2.4) that involves modification

of the stochastic gradient descent. While exact details differ across the methods,

the central idea is to maintain two copies of the weights: full precision ones and

their quantized copy. During the forward pass through the network the quantized

weights are used. Although the gradient wrt quantized weights is undefined due

to non-differentiability of quantization constraints, in these methods, the gradient

is computed as if no quantization constraints existed. This fake gradient is then

used to update full-precision weights, and then a new quantized copy is computed

from newly updated full weights.

Methods that use constrained optimization machinery A more principled

way to solve problem (2.4) is to rely on machinery of constrained optimization.

Such methods involve formulating the penalized version of the problem and solving

it using alternating optimization [16, 79] or rely on projected gradient descent

[130, 131].
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2.3.1 Scalar quantization using squared distortion

When quantizing the weights of the neural networks, many algorithms often

rely on solving squared distortion quantization problem defined with respect to

the weights w = {w1, . . . , wN} as :

min
Z, C

N∑

i=1

K∑

k=1

zik(wi − ck)2

s.t. zTi 1 = 1, zi ∈ {0, 1}
K .

(2.5)

Here, Z is a matrix containing the binary assignment vectors: each weight wi

must be assigned to a single codebook ck with zik = 1. This problem might be

familiar to many readers: it is a 1d version of the k-means clustering problem

[93]. Although, for dimensions d ≥ 2 and number of clusters k ≥ 2 this problem

is NP-hard [2, 24, 94], this is not the case for the scalar version. In fact, Bruce

[11] gave a O(NK2) solution using dynamic programming (DP). Wu and Rokne

[124] improved Bruce’s DP algorithm to have a runtime of O(NK logK) using

divide-and-conquer approach, and Wu [123] further reduced the runtime to O(NK)

relying on matrix searching techniques.

The continuous version of problem (2.5), assuming a data distribution p(w) on

weights and modifying sum to expectation, was studied by Lloyd [91] in the context

of pulse-code modulation. Lloyd gave the closed-form solutions for quantizers of

Gaussian and Laplacian distributions and introduced an alternating optimization

algorithm, which is a 1d version of the k-means algorithm.

Special forms

Many special forms of (2.5) appear as substeps in network quantization as

well. One particular case is when codebook entries are fixed but are allowed to be

rescaled by single α:

min
α,Z

N∑

i=1

K∑

k=1

zik(wi − α ck)2

s.t. zTi 1 = 1, zi ∈ {0, 1}
K , ∀i = 1, . . . , N

(2.6)
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Despte the lack of guarantees, a popular method in solving the rescaled scalar

quantization problem of (2.6) is alternating optimization akin to k-means with a

step over α and a step over assignments Z. For instance, Hwang and Sung [49]

used the alternating optimization for a case of C = {−1, 0, 1}, Anwar et al. [6]

used it for the uniform integer codebooks, and Leng et al. [79] employed it for the

powers-of-two codebooks.

Provable optimal algorithm for some specific cases of problem (2.6) and for the

general formulation have been derived too. Rastegari et al. [104] gave a solution for

scaled binary quantization where C = {−1, 1}, Carreira-Perpiñán and Idelbayev

[16] and Yin et al. [130] gave a solution for optimal scaled ternarization with C =

{−1, 0, 1}. For the generic case with arbitrary C, the globally optimal algorithm

running in O(NK logK) was given by Idelbayev et al. [60].

INT8 quantization The scaled INT8 case of problem (2.6), where the weights

are quantized into the rescaled codebook of C = {0,±1,±2, . . . ,±27}, has gained

a significant interest.

The solutions to the INT8 version of (2.6) available in the literature can be

divided into the following categories: alternating optimization solutions [5, 6, 49,

111, 134], heuristics based on maximum values [65, 121] or percentiles [121], grid

search search techniques [6, 21, 49, 89], and analytical solutions assuming a certain

distribution on datapoints [7, 13, 19, 30, 83]. None of these approaches, except for

the finely-spaced grid search, can guarantee a global optimum of INT8 quantization

problem on arbitrary data. However, an exhaustive sweep through the entire search

space for α-values is expensive; thus, some approximations are used: Hwang and

Sung [49] first find locally optimal solution using alternating optimization and then

improve it by a limited grid search; Choukroun et al. [21] fix the number of points

in the grid; Liu et al. [89] give a heuristic rule on how finely to space the grid.

Only recently, Idelbayev et al. [60] gave the globally optimal algorithm that

can solve problem (2.6) for any codebook C including the INT8 version.
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2.4 Model compression software

The field of model compression has grown enormously in the recent years re-

sulting in plethora of algorithmic approaches, research projects and software. At

present, many ad-hoc solutions have been proposed that typically solve only one

specific type of compression: quantization [16, 104, 138], pruning [37, 88, 119],

low-rank decomposition [25, 26, 66, 80, 109, 113, 120, 125, 126, 135] or tensor

factorizations [26, 77], and others. In this section we limit our attention to the

software aspect of the neural network compression and overview the supported

compression schemes among the software, available codes, and recently proposed

compression frameworks.

Individual compressions The majority of neural network compression research

is available as individual projects and recipes tailored for a particular compression

and model. Usually it is released as a companion code for published research paper,

e.g. see [113, 116, 125]. Some repositories combine several compression recipes in

a single place: e.g., Tensorpack1 or the fork of the Caffe library by Wei Wen2.

Out of many individual compressions proposed in the literature, the quantiza-

tion aware training of Jacob et al. [65] has gained popularity and became a stan-

dard feature of major deep-learning frameworks. TensorFlow, Pytorch, MxNet

and others independent projects like ADaPTION [95], Mayo [137], FINN-R[10]

and TensorQuant [92] natively support both training of such quantized models

and allow an efficient inference afterwards.

Efficient inference frameworks Relatively mature software is available if the

goal is not to compress the model (by changing the weights accordingly), but to

run the model as efficiently as possible on a given hardware. Many frameworks tar-

get the mobile deployment regime and allow to convert (compile) already trained

neural network to utilize the hardware-enabled fast computations: for instance,

through usage of edge TPU-s on Pixel 4 (Pixel Neural Core) or Neural Engine

1https://github.com/tensorpack/tensorpack/tree/master/examples
2https://github.com/wenwei202/caffe
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on iPhones. Examples of such frameworks include Tensorflow Lite3, PyTorch Mo-

bile4, Apple Core ML5, Nvidia’s TensorRT6, Qualcomm’s Neural Processing SDK7,

Xlinix’s FINN8, Facebook’s QNNPack9, and many others.

A generalization of this concept is to efficiently deploy and compile the dataflow

of the inference/backward pass for an arbitrary set of hardware. Some examples

include packages like Facebook’s Glow10, Google’s XLA11, or Apache TVM12.

Compression frameworks The diversity of compression mechanisms and lim-

ited support by deep learning frameworks led to the development of specialized

software libraries such as Distiller [141], NCCF [73], and PocketFlow [122]. These

frameworks gather multiple compression schemes and corresponding training algo-

rithms into a single framework, and make it easier to apply the compressions to new

models. Some of these frameworks allow to apply multiple compression simultane-

ously to disjoint parts of a single model, however most of the supported schemes can

be applied with per-model granularity only. Additionally, the underlying compres-

sion algorithms do not share the same algorithmic base thus requiring a substantial

understanding of many hyper-parameters for every compression-algorithm pair to

efficiently tune the settings.

3https://www.tensorflow.org/lite
4https://pytorch.org/mobile/home/
5https://developer.apple.com/documentation/coreml
6https://developer.nvidia.com/tensorrt
7https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
8https://xilinx.github.io/finn/
9https://engineering.fb.com/ml-applications/qnnpack/

10https://ai.facebook.com/tools/glow
11https://tensorflow.google.cn/xla?hl=en
12https://tvm.apache.org/



Chapter 3

Overview of the

Learning-Compression algorithm

In this chapter, we give an overview of the Learning Compression (LC) algo-

rithm used in our research. For the full details on the theoretical framework we

refer the reader to Carreira-Perpiñán [15].

Assume we have a previously trained model with weights w, which were ob-

tained by minimizing some loss function L(w). This is our reference model, which

represents the best loss we can achieve without compression. Here we omitted the

exact definition of the weights w, but for now, let us assume it has P parame-

ters. In the learning-compression framework, the compression is defined as finding

a low-dimensional parameterization ∆(Θ) of the weights w in terms of Q-sized

parameter Θ, with Q < P .

In the framework, the compression and decompression are regarded as map-

pings, while in the signal processing literature they are usually seen as algorithms,

for example, lossless compression algorithm of Ziv and Lempel [140]. Formally, the

decompression mapping ∆ maps a low-dimensional parameters Θ to the uncom-

pressed model weights w:

∆: Θ ∈ R
Q → w ∈ R

P ,

and the compression mapping behaves as its “inverse”:

Π(w) = arg min
Θ

‖w −∆(Θ)‖2.

25
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The goal of model compression is to find such Θ that its corresponding decom-

pressed model has (locally) optimal loss for a cost of interest. Therefore the model

compression as a constrained optimization problem is defined as:

min
w,Θ

L(w) + λC(Θ) s.t. w = ∆(Θ). (3.1)

Here, the term λC(Θ) with λ > 0 is intended to represent the cost of the deployed

compressed model in terms of quantities of interest: energy, size, compute, etc. The

problem in eq. (3.1) is constrained, nonlinear, and potentially non-differentiable

wrt Θ (e.g., when compression is binarization). To efficiently solve it we convert

this problem to an equivalent formulation using penalty methods, for which we

can either use quadratic penalty (QP) or augmented Lagrangian (AL):

LQP(w,Θ;µ) = L(w) +
µ

2
‖w −∆(Θ)‖2 + λC(Θ) (3.2)

LAL(w,Θ,β;µ) = L(w) +
µ

2
‖w −∆(Θ)‖2 + βT (w −∆(Θ)) + λC(Θ). (3.3)

Under standard assumptions (differentiable L, C, and ∆), the stationary points at

µ→∞ of eq. (3.2) and eq. (3.3) coincide with the stationary point of constrained

optimization problem (3.1). We will be using the QP formulation of eq. (3.2)

throughout this paper to make derivations easier, though, in practice we implement

the AL version, eq. (3.3), which has an additional vector β of Lagrange multipliers.

The QP version can be obtained from the AL version by setting β = 0 and skipping

the multipliers update step.

To obtain the LC algorithm we apply an alternating optimization to eq. (3.2)

wrt model parameters w and compression parameters Θ. This results into an algo-

rithm that alternates two generic steps while slowly driving the penalty parameter

µ→∞:

• L (learning) step: minw L(w) + µ

2
‖w −∆(Θ)‖2. This is a regular training

of the uncompressed model but with a quadratic regularization term. This

step is independent from the compression.

• C (compression) step: minΘ ‖w −∆(Θ)‖2 + λC(Θ). When λ = 0 this

means finding the best (lossy) compression of w (the current uncompressed
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w

(reference)

w∗ (optimal

compression)

∆(ΘDC) (direct

compression)

w-space

(uncompressed

models)

w∗(µ) feasible models

decompressible by ∆

Figure 3.1: The illustration of the model compression definition given by prob-
lem (3.1) for λ = 0. The loss function L(w) is defined over the entire w space,
depicted with green contours, and has a minimum at point w. The space of de-
compressible models (given by the form of of ∆) is illustrated in gray. Directly
compressing the pre-trained model by setting ΘDC = Π(w) results in sub-optimal
solution. To obtain the constrained minima of the problem (the point w∗), the
LC algorithm alternates between L and C steps while driving parameter µ → ∞,
which follows the path w∗(µ). The figure is obtained from Carreira-Perpiñán [15].

model) in the ℓ2 sense (orthogonal projection on the feasible set), and acts

as the inverse of mapping ∆. For a nonzero λ, this step’s solution finds such

a Θ that is close to w, but also respects our compression cost C. Notably,

this step is independent from the model loss, and thus independent of the

dataset.

Figure 3.1 illustrates the idea of model compression as constrained optimiza-

tion, and depicts the traced solution w∗(µ) during the optimization, and in Fig-
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input training data and model with parameters w

w← w = arg minw L(w) pre-trained model

Θ← ΘDC = Π(w) init compression

β ← 0

for µ = µ0 < µ1 < · · · <∞

w← arg minw L(w) + µ

2
‖w −∆(Θ)− 1

µ
β‖2 L step

Θ← arg minΘ ‖w −
1
µ
β −∆(Θ)‖2 + λC(Θ) C step

β ← β − µ(w −∆(Θ)) multipliers step

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ

Figure 3.2: The pseudocode of the learning-compression (LC) algorithm using
augmented Lagrangian formulation. Setting the β = 0 and skipping the multipliers
step will recover quadratic penalty (QP) formulation of the LC algorithm.

ure 3.2 we give the algorithm’s pseudocode using augmented Lagrangian. The LC

algorithm defines a continuous path (w(µ),Θ(µ)) indexed by µ. The beginning

of this path, at µ = 0+, corresponds to training the reference model and then

compressing it disregarding the loss (direct compression), a simple but suboptimal

approach popular in practice.

Optimization of the L and C steps The L step is a minimization problem

over the weights w, and can be solved using any optimization method. For neural

networks we typically use stochastic gradient descent (SGD). Since compression

parameter Θ enters this problem as a constant regardless of chosen compression

type, all L steps for any combination of compressions will have exactly the same

form. The solution of the C step is specific to the desired compression types and

might take various forms. However, since the C-step problem is disentangled from

the model and the dataset, and has a form of ℓ2 minimization, solving it is a much

easier problem. In fact, as we have discovered in the course of our research, for

certain compression choices the C-step problem is well studied and has a history

of its usage on its own merit in fields of data and signal compression.
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To summarize, our approach is based on solid optimization principles, with guar-

antees of convergence under standard assumptions. It formulates the problem of

model compression in a way that is intuitive and amenable to efficient optimiza-

tion. The form of the actual algorithm is obtained systematically by judiciously

applying mathematical transformations to the objective function and constraints.

For example, if one wants to optimize the cross-entropy over a certain type of neu-

ral net, and represent its weights via a quantized codebook, then the L and C steps

necessarily take a specific form. If one wants instead to represent the weights via

low-rank matrices, a different C step results, and so on. The resulting algorithm is

not based on combining backpropagation training with heuristics, such as pruning

weights on the fly, which may result in suboptimal results or even non-convergence.



Chapter 4

Low-rank compression with

automatic rank selection

A fundamental, yet, often not recognized problem in low-rank compression of

the neural networks is the problem of rank selection. This is an understandable

oversight because rank selection is an easy process for certain well known cases.

Say we want to find a low-rank decomposition of matrix W with a certain approxi-

mation error. The solution of this problem is computationally convenient: obtain a

singular value decomposition (SVD) of the matrix W as product of USVT (where

U and V are orthogonal and S is diagonal matrix containing singular values in

sorted order), and pick as many singular values as necessary until the desired

approximation error is achieved. Importantly, we do not need to solve a new opti-

mization problem for each target approximation error: we get all solutions at once

due to the special structure of the problem, thus a single SVD is sufficient.

Similarly, this property hold in a special case of model compression problem of

obtaining a low-rank linear regression fit. This problem is known as reduced rank

regression (RRR) in statistics [64, 106] and can be solved for all target ranks using

a single SVD of the specially formed data matrix.

Let us now take a look why rank selection is a much harder problem in the case

of a deep neural network. For a deep net we want to find both the rank and the

weights (matrix coefficients) for each layer so that some desired compression cost

is minimized and the ranks are constrained. The solution is not given anymore

30
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by computing a single SVD and examining the singular values. The problem

simplifies if we know the ranks beforehand: in such case we can directly optimize

the low-rank weights by rewriting them as product of low-rank matrices (UVT ) and

then fall back to standard deep learning tools: i.e., use automatic differentiation

coupled with stochastic gradient descent (SGD). In fact, a large body of low-

rank compression literature (see section 2.1) follow this line of work and rely on

heuristics to chose “good” rank configurations, however, the resulting models are

by no means optimal: simply because the ranks themselves were not part of the

optimization.

This makes it obvious that the real problem is in determining optimal values for

the set of ranks r1, . . . , rK . It also shows that the problem can be seen as a special

case of architecture optimization, where we search both over architectures (i.e., the

number of hidden units, or rank, within each layer) and over values of the matrices’

weights. Hence, this is a hard, combinatorial problem which is exponential on the

number of layers. Specifically, in a net with K layers of weights each having a

maximum rank of R there are RK combinations of rank choices, and R can be

thousands in large nets.

In this chapter, we use constrained optimization formulation for the rank se-

lection problem and derive a good, approximate, and efficient solution to it. Our

proposed formulation will jointly learn ranks and weights of the deep neural net-

works by exploring different rank configuration on the fly, during the optimization.

In practice, this does not result in much longer training time in comparison to train-

ing of the reference network in the first place; and, as we experimentally validate,

yields models that are comparable or better when comparison to low-rank methods

in the literature and other compression techniques.

4.1 Problem formulation

Let us assume we have a reference model with K layers and the weights w =

{W1, . . . ,WK}, where Wk is the weight matrix of the layer k with shape of ak ×

bk. For simplicity, we derive the algorithm assuming fully connected layers, yet
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the application to other (say, convolutional) layers is straightforward. We want

to determine the weights and the ranks of every layer in a such way that the

resulting low-rank model performs as good as possible on its task loss L, while

simultaneously having the lowest compression cost C among the family of low-

rank models. Thus, we want to solve the following optimization problem:

min
w

L(w) + λC(w) s.t. rank (Wk) = rk ≤ Rk, ∀ k = 1, . . . , K. (4.1)

Here, Rk is the maximum possible rank for matrix Wk, i.e. Rk ≤ min(ak, bk) and

λ is a user defined hyperparameter which trades off model accuracy (the loss L)

to compression cost C. This formulation penalizes the models that have high cost

C, thus performing a model selection. The cost function C measures the quantity

of interest we would like to compress (say, storage space in bits), and we explicitly

define C as a function of the layers’ ranks, for which we choose it to be separable

over the layers in the following way:

C(w) = C(r = {r1, . . . , rK}) = C(r1) + C(r2) + · · ·+ C(rK). (4.2)

This cost function is generic enough to handle following quantities of interest:

• Storage. The r-rank weights Wk can be decomposed as a product UkVk,

and require the storage of matrix Uk and Vk which have ak × r and r × bk

entries respectively. Thus, storage penalty will have the form of C(rk) =

rk × (ak + bk)

• FLOPs. For the fully connected layers, the forward pass through a layer

requires computation of the product of Wkx where x is an input to the

layer. If the matrix has low rank r, the product can be efficiently computed by

Uk (Vkx), where inner parenthesis is evaluated first. Such procedure requires

r × (ak + bk) floating point additions and multiplications (FLOPs). For

convolutional layers, each weight matrix is applied M times, thus a generic

FLOPs penalty has a form of C(rk) = M × rk × (ak + bk).
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4.2 Optimization algorithm

The optimization problem of eq. (4.1) is mixed-integer programming involving

optimization over weights and implicitly over ranks, which is hard to optimize.

To make it amenable to efficient optimization, we proceed by introducing the

auxiliary variables and convert the problem into “model compression as constrained

optimization” formulation of eq. (3.1), and then derive the LC algorithm. Let us

introduce a matrix Θk for every layer k = 1, . . . , K with constraints Wk = Θk:

min
W,Θ,r

L(W) + λC(r) (4.3)

s.t. Wk = Θk, rank (Θk) = rk ≤ Rk, k = 1, . . . , K

We then apply the quadratic penalty on equality constraints:

Q(W,Θ, r;µ) = L(W) + λC(r) +
µ

2

K∑

k=1

‖Wk −Θk‖
2

s.t. rank (Θk) = rk ≤ Rk, k = 1, . . . , K

and optimize it while driving µ→∞ by alternating over weights w and auxiliary

variables θ = {Θ1, . . . ,ΘK}. This will result in learning compression algorithm

with following L and C steps:

• L step: minw L(w) + µ

2

∑K

k=1 ‖Wk −Θk‖
2 has the form of standard neural

network training with ℓ2 weight decay, for which we will be using stochastic

gradient descent (SGD).

• C step: minθ,r λC(r) + µ

2

∑K

k=1 ‖Wk −Θk‖
2 s.t. rank (Θk) = rk ≤ Rk, for

k = 1, . . . , K. This is a joint rank selection and weight fitting problem for

which we provide an efficient solution involving singular value decomposition

(SVD).

C step solution Since the cost function C separates over layers, see eq. (4.2),

the entire C-step problem breaks down into K subproblems of:

min
θk,rk

λC(rk) +
µ

2
‖Wk −Θk‖

2 s.t. rank (Θk) = rk ≤ Rk. (4.4)
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If the optimal rank r∗k was known apriori, then we only need to find

min
Wk

µ

2
‖Wk −Θk‖

2

as the C(rk) is constant. In such case, we recognize this problem as finding best

r∗k-rank approximation of Wk, and the corresponding optimal Θ∗

k is given by the

Eckhart-Young theorem [35, th. 2.4.8]. Assuming w.l.o.g. ak ≥ bk and let Wk =

UkSkV
T
k be the SVD of Wk, where Uk of ak× bk and Vk of bk× bk are orthogonal

matrices, and Sk = diag (s1, . . . , sbk) with s1 ≥ · · · ≥ sbk ≥ 0 (sorted singular

values). Then the optimal Θ∗

k corresponding to r∗k is given as:

Θ∗

k = Uk(: , 1: r∗k)Sk(1: r∗k, 1: r∗k)Vk(: , 1: r∗k)T . (4.5)

Since we do not know the r∗k which minimizes the eq. (4.4) we simply enumer-

ate over every possible rk = 1, . . . , Rk and compute the corresponding Θk using

eq. (4.5). The pair of (rk,Θk) corresponding to the minimum value of the eq. (4.4)

is the global solution of the C-step problem. This enumeration requires only a

single full SVD of Wk.

Overall, the LC algorithm follows the pseudocode on Figure 3.2, and operates

by training the regularized model for a while with SGD over the full-rank matrices

W1, . . . ,WK (with a regularization term given by each low-rank matrix Θk), the

L step, and then obtaining each low-rank matrix Θk with currently optimal rank

rk via a SVD of Wk, the C step. We maintain two copies of each layer’s matrix:

Wk of full rank, and Θk of rank rk determined within each C step. These copies

will coincide in the limit µ → ∞ with Wk = Θk. The automatic rank selection

happens within the C step, effectively by doing a model selection over the rank

of each matrix. Practically, rather than continuing to iterate L and C steps until

convergence, at some iteration we fix the ranks, thereby fixing the architecture,

and optimize it directly via SGD with the chain rule, which is faster.

4.3 Experimental setup

We evaluate our algorithm on multiple datasets and networks: ResNets, VGG16,

and NiN on CIFAR10; AlexNet on ImageNet; and compare our results to base-
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lines, and other relevant works. We choose both lean (ResNets) and large (AlexNet,

VGG16) networks to demonstrate the power of rank-selection approach. Experi-

ments are initialized from reasonably well-trained reference models with same or

exceeding test accuracies reported in literature.

The hyper parameters of our experiments are as follows throughout all ex-

periments with minor changes, see Idelbayev and Carreira-Perpiñán [53] for full

details. To optimize L-step we use Nesterov’s accelerated gradient method [100]

with momentum of 0.9 on minibatches of size 128 (256 for MNIST), with decayed

learning rate schedule of η0 × am at m-th epoch. The initial learning rate η0 is

one of {0.0007, 0.001}, and learning rate decay is one of {0.98, 0.99}. Each L-step

is run for 15 epochs (30 for MNIST). Our LC algorithm runs for j steps where

j ≤ 60, and has µj = µ0 × bj, and we choose µ0 to be one of {5 · 10−4, 10−3}, and

b ∈ {1.2, 1.25}. The C step is performed by SVD followed by rank selection. For

the cost function C we use the number of floating point operations in millions,

MFLOPs, which is a function of layer’s rank.

We report train loss, test error, reduction ratio of storage (ρstorage) and the

number of floating point operations (ρFLOPS). We calculate FLOPs based on the

assumption of fused multiplication and additions, treating it as one FLOP, see

appendix A for exact details.

In our experiments, we use single low-rank scheme throughout a network. Ex-

periments on the MNIST and CIFAR10 are run with scheme 1, and for the Ima-

geNet we run experiments with both schemes.

We adopt the heuristics H1 and H2 described in section 2.1.2 as our baseline 1

and baseline 2. Both of the heuristics introduce hyper-parameter p ∈ [0, 1] which

controls the compression ratio. By changing the proportion both baselines give

rank estimates which we use to decompose the original networks, and then fine-

tune. We fine-tune using Nesterov SGD and set learning rates to achieve as good

performance as possible. Fine-tuning happens for about twice (2×) the number of

iterations required to train the reference networks, with a learning rate of 0.002 for

ResNets and 0.001 for NiN and VGG-16, which decayed by 0.99 after every epoch

for more details).
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Figure 4.1: Left: Comparison of our rank selection algorithm to the baselines on
CIFAR10 networks. We plot test error vs reduction ratio of FLOPs (ρFLOPS);
horizontal dashed lines — reference net performances. Right: we depict selected
ranks for low-rank NiNs achieving ρFLOPS = 2; ranks of reference NiN are given
by black crossed line. The line marked as COBLA gives results of automatic rank
selection method called COBLA of Li and Shi [80]

4.4 CIFAR10 experiments and comparison

We train reference ResNets of different sizes (20, 32, 56, and 110 layers) fol-

lowing the procedure of the original paper [45] using the code in [51]; the NiN and

VGG16 (adapted for CIFAR10) are trained using the same data-augmentation as

of ResNet’s. We compress these networks using baselines and using our algorithm

(with various values of λ), and fine-tune afterwards. For ResNets we compress

convolutional layers only, as only fully-connected layer has 64× 10 weights, which

minimally impacts the compression.

Figure 4.1 gives a comparison with baselines on ResNets, VGG-16 and NiN

trained on the CIFAR10. Our method achieves considerably better test errors across

all speed-up ratios. This happens because the baselines are committed to the

selected ranks, without the possibility to change them, whereas our algorithm

explores different sets of ranks while it converges to a better one. We show the
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Figure 4.2: Error-compression space of test error (Y axis), inference MFLOPs (X
axis) and number of parameters (ball size for each net), for ResNets, VGG16 and
NIN trained on CIFAR10. Results of our algorithm over different λ values for a
given network span a curve, shown as connected circles •—•, which starts on
the lower right at the reference R (λ = 0) and then moves left and up. Other
published results using low-rank compression are shown as isolated circles labeled
with a citation. Other published results involving structured filter pruning for
faster inference are shown as isolated squares labeled with a citation. Each color
corresponds to a different reference net. The area of a circle or square is propor-
tional to the number of parameters in the corresponding compressed model. Ideal
models are small balls (having few parameters) on the left-bottom (where both
error and FLOPs are the smallest).

differences in selected ranks for the low-rank NiNs achieving 2× speed-up on the

right part of Figure 4.1. While all three methods select approximately the same

ranks for the first three layers, decisions for the layers 4–8 are different.

With multiple quantities of interest comparing the performance of compressed

neural networks is rather tricky. The most obvious way is to report a single com-
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Figure 4.3: Depiction of an interplay between model FLOPs, number of parame-
ters, resulting test error for LC Models (our), as in Figure 4.2 but separately for
the ResNet20, 32. Each of the blue circles correspond to a particular compressed
model via LC, it’s area is proportional to number of parameters (independently
normalized for each figure). Results of other compressions are given by: different
colored circles — low-rank, squares — filter pruning. Right-most plot compares to
joint weights and ranks learning algorithm of Li and Shi [80] called COBLA.

pression ratio in terms of the number of parameters, or speed-up. Having only one

number does not necessarily reflect other important metrics, e.g., compression of

parameters does not correspond to faster inference (with fewer FLOPs), and gener-

ally, not as interesting as the interplay between compressed model’s performance,

compression, and speed-up ratios. We should also note that compression ratios

(of any kind) on its own are not representative as they can be easily inflated by

compressing a larger (overparametrized) model in the first place. Therefore, to vi-

sualize and understand this tradeoff better, we decided to report achieved FLOPs,

model size and test accuracy in a single plot. The Figure 4.2 depicts all our CI-

FAR10 results obtained via low-rank compression (as connected circles), other’s

results obtained via low-rank compression as labeled circles [80, 120, 125], and

most importantly puts low-rank compression in perspective with other reported

results for faster inference, i.e., structured filter pruning of [46, 81, 128, 133, 139],

as squares (to indicate apples to oranges comparison). Ideally, we would like to

have models on the left-bottom corner of this plot, where both FLOPs and error

are minimal. Results trace a pareto curve, which is mostly formed by our low-rank

compressed ResNets and VGG16. We make few observations: 1) low-rank mod-
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Figure 4.4: Some of final selected architectures in terms of rank and FLOPs of a
layer for VGG16 and ResNet20 using our method. For λ values, the multiplicative
factor of ×10−4 is omitted.

els obtained via our algorithm are comparable and often considerably better than

other low-rank compression and structured pruning results 2) it is often beneficial

in terms of error-FLOPs tradeoff to train a larger model and then compress it,

for example, one of the low-rank VGG16-s with 107 MFLOPs achieve 6.11% error,

which is comparable to the test error of the reference ResNet110 (6.02%) but with

much fewer FLOPs (252 vs 107 MFLOPs).

As some portions of Figure 4.2 are a bit cluttered, we show separately the

error-FLOPs tradeoffs for ResNet20, 32 and NiN in Fig 4.3. The rightmost plot in
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Figure 4.2 compares our results to a joint weights-and-rank learning method of Li

and Shi [80] called COBLA. Our method significantly outperforms COBLA with

a higher margin in the high compression regime.

One question we need to ask is how selected ranks change over λ values? Or

can we infer these ranks beforehand, fix them by decomposition and train with

SGD, which will eliminate the need in joint weights-ranks learning altogether? We

show selected ranks obtained by our method for each layer of the ResNet20 and

VGG16, and corresponding FLOPs in Fig 4.4. We see that the selected ranks

are not uniform at all, and some layers, e.g., layer 5 and 9 for VGG16, have much

higher ranks comparing to others. Most importantly, their relative proportion does

not stay the same for different λ values. Take a look at layers 10 and 11 of VGG16:

for the value of λ = 0.5 the selected rank of layer 10 is greater of 11th, but for

the higher value of λ = 0.8 the relation is reversed. These relations can not be

captured by simple heuristics, and need to be inferred via joint optimization.

4.5 ImageNet experiments

We train the batch normalized version of the AlexNet network [75] having 62M

parameters and 1140 MFLOPs on the ImageNet ILSVRC2012 dataset [108] using

the augmentation procedure of the original paper. This network has a slightly

larger FLOPs count (1170M vs 727M) when compared to Caffe-AlexNet due to

not having group convolution. Our reference model achieves top-1 validation er-

ror of 40.43% and top-5 validation error of 17.55%. We compress the reference

network using our rank-selection algorithm for both schemes 1 and 2 of low-rank

decompositions using various λ-s.

We report our experimental results in Table 4.1. Although both decomposition

schemes 1 and 2 allow us to achieve a significant FLOPs reduction while maintain-

ing test errors close to the reference model — with scheme-1 we can get a model

with 257 MFLOPs and top-1 validation error 40.81%, and with scheme 2 we can

get a model with 166 MFLOPs with 40.46% top-1 error — we observe that scheme

2 is better suited for reducing the FLOPs count on AlexNet. For instance, 321
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λ× 10−4 # params. MFLOPs top-1 error, % top-5 error, %

R 62.3M 1139 40.43 17.55

0.05 43.0M 436 39.27 17.16

0.15 17.6M 257 40.81 18.17

sc
h

em
e

1

0.17 15.8M 248 41.11 18.36

0.20 13.8M 231 41.56 18.72

0.05 42.7M 321 39.15 16.99

0.10 25.1M 226 49.60 17.40

sc
h

em
e

2

0.15 17.4M 185 39.93 17.47

0.20 13.6M 166 40.46 17.71

0.25 11.4M 151 41.03 18.23

Table 4.1: Our algorithm on AlexNet using low-rank parametrization schemes 1
and 2 (for several λs). We report: number of parameters and MFLOPs, and
top-1/top-5 errors on the validation set (%).

MFLOPs version of scheme-2 AlexNet achieves a top-1 test error of 39.15% which

is better than 436 MFLOPs version of scheme-1 AlexNet’s test error of 39.27%.

In Table 4.2 we compare our low-rank AlexNet results to existing decomposi-

tion and structured pruning methods in the literature. Since most results in the

literature use Caffe-AlexNet (which has smaller FLOPs count), we report FLOPs

reduction ratios wrt to Caffe-AlexNet. Our compressed networks achieve consider-

ably better speed-up ratios (ρFLOPs) and accuracies in comparison to other low-rank

and filter pruning methods. Our smallest scheme-1 network has fewer FLOPs and

better error than scheme-1 decomposed AlexNet of Wen et al. [120]. Our smallest

scheme-2 network achieves 4.79× FLOPs reduction wrt Caffe-AlexNet while hav-

ing the same accuracy, which outperforms similar scheme-2 methods of Kim et al.

[69], Tai et al. [113], and structured pruning methods of Ding et al. [28], Li et al.

[82], Yu et al. [133].
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MFLOPs top-1 error, % top-5 error, % ρFLOPs

Caffe-AlexNet [67] 727 42.70 19.80 1.00

Kim et al. [70], Tucker 272 n/a 21.67 2.66

Tai et al. [113], scheme 2 185 n/a 20.34 3.90

Wen et al. [120], scheme 1 269 n/a 20.14 2.69

Kim et al. [69], scheme 2 272 43.40 20.10 2.66

Yu et al. [133], filter pruning 232 44.13 n/a 3.12

Li et al. [82], filter pruning 334 43.17 n/a 2.16

Ding et al. [28], filter pruning 492 43.83 20.47 1.47

ours, scheme 1, λ = 0.20 231 41.56 18.72 3.13

ours, scheme 2, λ = 0.20 151 41.03 18.23 4.78

Table 4.2: AlexNet compression with our algorithm vs published work using low-
rank methods and structured pruning. We report top-1/top-5 validation error (%)
and MFLOPs number and FLOPs reduciton ratio wrt Caffe-AlexNet.



Chapter 5

Device-targeted low-rank

compression

For many tasks involving real-time audio/video processing and enhancement

(e.g., speech to text, photo relighting) a too high inference time is unacceptable

and may lead to the loss of customer base and profits. Different compression

schemes have been proposed to address the inference time speed-up; however, most

of the works handle it indirectly through a proxy optimization target: the total

number of floating-point operations (FLOPs). While a smaller FLOPs count is

indicative of a faster inference time, there is no one-to-one correspondence between

smaller FLOPs and faster runtime. For example, on our testbed, the 727 MFLOPs

version of the AlexNet (trained on ImageNet) runs a single image inference in 328

ms. In comparison, the CIFAR10 version of VGG16 has 314 MFLOPs, which is

2.32× fewer than AlexNet; yet, it runs 6.07× faster (54 ms) illustrating that on-

device runtime does not only depend on the total FLOPs. Indeed, the inference

runtime is the function of the neural network’s overall structure and the hardware

characteristics (e.g., frequency of CPU/GPU, size of the cache, memory speed),

and it cannot be extrapolated from a single FLOPs-count number.

We consider the problem of inference-targeted compression of a neural network

for a given device and adopt the low-rank compression as our method of choice.

While such a scheme has a history of usage for network compression problems

to reduce FLOPs and size of the networks, we show that it can be effectively

43
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used to directly target the on-device inference time of compressed models due

to the following. First, as we discuss in section 5.1, the low-rank scheme gives

rise to a simple yet accurate device-runtime model that can be used to a precise

estimation of the actual inference time of the compressed model. Second, the

computational reductions of low-rank compression are realizable without specific

hardware support (unlike, for instance, elementwise pruning [38]): if the layer

with weights W is compressed with r-rank matrix UVT, then forward pass of Wx

through that layer can be implemented as a forward pass through a sequence of

layers with weights VT and U.

The problem we are solving is challenging: we need to find the best config-

uration of ranks (one rank per layer, integer values) and corresponding low-rank

weights (floating-point values) so that network has the fastest on-device inference

time while maintaining its original task performance. Assuming we have K layers

with M possible ranks per layer, the problem involves selection over the set of

MK distinct rank configurations. However, as we show in section 5.2, a suitable

formulation of this problem using the proposed device-runtime model admits an

efficient algorithm involving alternation of simple steps: a step over weights of

the neural networks (solved by stochastic gradient descent, SGD) and a step over

the rank configurations (solved by enumeration). In section 5.4 we experimentally

validate our approach’s effectiveness by compressing the AlexNet and VGG16 to

have fast inference time on the ARM Cortex-A57 CPU of the NVIDIA’s Jetson

Nano embedded computing platform.

Related work Several works use the resulting number of FLOPs as an opti-

mization criterion when optimizing over the ranks [53, 55, 56, 80]. However, we

are not aware of any methods that directly optimize the on-device inference speed.

5.1 Device runtime model

Assume we are given a neural network with K layers and the weights W =

{W1,W2, . . . ,WK} where Wk is a weight matrix (or tensor) of the kth layer. The

weights W implicitly define a computational graph for an inference pass through
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CPU Quad-core ARM Cortex-A57, 1.4 GHz

GPU 128 CUDA cores at 0.9 GHz

RAM 4 GB 64-bit LPDDR4, 1.6 GHz

OS Ubuntu 18.04.5 LTS

Kernel GNU/Linux 4.9.140-tegra

Storage 128 GB microSDXC memory card

Software PyTorch v1.6.0, ONNXRuntime v1.4.0

Table 5.1: Specifications of NVIDIA’s Jetson Nano Developer kit used as our target
testbed. While it has a built-in GPU, we used the CPU inference time (parallelized
on two threads) as our compression goal.

the network. When we execute this graph on the given hardware, we can measure

the inference time. Throughout this chapter, we define the inference time as the

total time required to complete a forward pass of a single image through the

computational graph, and call it R(W).

In our model, we assume that the total inference time R(W) is the sum of

the inference times through each of the K layers since layers have to be processed

sequentially:

R(W) = R1(W1) +R2(W2) + · · ·+RK(WK). (5.1)

Here, each of the Rk(Wk) measures the total inference time through a layer k:

this involves the time to load the weights and the inputs, actual computation

time, and time to unload the output. In reality, the right hand side of eq. (5.1)

is an upper bound to the total runtime R(W): when the computational graph is

executed optimally, some weights and inputs can be prefetched and layer-to-layer

computations can be pipelined, thus, finishing earlier than the sum of separate

inferences through each layer.

When we compress the network using the low-rank decomposition, the kth layer

is compressed by an rk-rank matrix, and the forward pass through the layer can be

implemented as a sequence of fully-connected or convolutional layers (sec. 2.1.4).

Since the computational graph is defined by the shape of the weight matrices, and

not by the weight values, we conclude that the inference time through a layer k is
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R7(r) measurements for AlexNet True vs. modeled inference time
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Figure 5.1: Left: Measurements and regression fit to model the inference time as a
function of rank for the 7th layer of AlexNet. Right: Plot of the actual, on device
inference time for 100 randomly sampled low-rank configurations of AlexNet vs.
the predictions of our model R(r). On these samples, the mean average error was
3.03 ms.

a function of the rank, and our model simplifies as:

R(W) = R(r) = R1(r1) +R2(r2) + · · ·+RK(rK). (5.2)

We make several observations. First, due to a small number of possible ranks

per layer, we can directly measure the value of Rk(r) on the device. Essentially,

Rk(r) is a lookup table with a single measurement for each r. Second, the pro-

posed model is computationally efficient and avoids a combinatorial number of

measurements. Assuming there are M possible ranks per layer (rk = 1, . . . ,M),

rather than making MK measurements for all possible rank configuration we only

need MK on-device measurement in total.

Even though we need to consider M ranks per layer, collecting the inference

times might be time consuming and impractical. Particularly, the measurements

need to be repeated many times to reduce the noise, however, too many mea-

surements at a time might induce the thermal throttling1 of the target device

which adds inconsistencies to the model, and measurements need to be taken at

intermittent intervals.
1https://en.wikipedia.org/wiki/CPU_throttling
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Due to the aforementioned considerations, in the actual implementation of the

proposed model we collected the low-rank inference measurements at certain rank

intervals and then fit a regression curve. To make the measurements, we use

highly-optimized implementation of the forward pass through the ONNX runtime.

When we used the CPU of Jetson Nano Developer board as our target device

(see Table 5.1), we noticed that measurements within each layer follow a line

trend except for some outliers (which are presumably caused by noise). Therefore,

we computed an ℓ1-fit and used the fitted lines as our Rk functions (see left of

Figure 5.1). In our experiments, we found that ℓ1-fitted regression can model

rank-dependent device runtime pretty accurately across all layers.

How good is our model? To answer this question, we sampled random rank

configurations for the AlexNet architecture by choosing each layer’s rank uniformly

(out of possible ones) and measured the true inference speeds of the sampled

architectures. On the right of Figure 5.1 we compare true inference times to the

modeled inference times. As we can see, the difference between our model and the

true inference time is minuscule: the average difference on the sampled low-rank

architectures was 3.03 milliseconds.

5.2 Problem formulation and optimization

Having developed the device runtime model R(r) for a given K-layer network

with weights W = {W1, . . . ,WK}, now we give a low-rank compression formula-

tion that targets the inference time on the given device. We denote the network’s

task loss (e.g., cross-entropy) as L and define the following optimization problem

of

min
W,r

L(W) + λR(r) s.t. rank (Wk) = rk, k = 1, . . . , K, (5.3)

where the term λR(r) with user-chosen λ > 0 controls the amount of desired

reduction of the inference time.

The problem given by eq. (5.3) is a mixed-integer optimization involving the

floating-point weights of the neural network and the integer rank values. Typically,

even the neural network part on its own (without the rank constraints) requires
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many iterations over the training dataset to be properly optimized (with SGD), and

combination with rank constraints makes it truly challenging. Fortunately, this for-

mulation falls into the category of model compression as constrained optimization

problems [15] and admits an efficient solution based on the Learning-Compression

(LC) algorithm.

To derive the LC algorithm corresponding to our formulation, let us equiva-

lently rewrite (as in chapter 4) the constraints by introducing the auxiliary variables

Θk for each k = 1, . . . , K as

rank (Wk) = rk ⇐⇒ Wk = Θk, rank (Θk) = rk,

and then apply penalty method [101, ch.17] to the matrix terms (i.e., Wk = Θk)

while driving µ→∞ (norms are Frobenius):

min
W,Θ,r

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2 + λR(r)

s.t. rank (Θk) = rk, k = 1, . . . , K.

(5.4)

We use the quadratic penalty to simplify the derivations; however, in practice,

we use the augmented Lagrangian method, which has an additional step over the

vector of Lagrange multipliers. If we apply alternating optimization over variables

W and {Θ, r} we obtain the substeps that can be efficiently handled:

• Learning (L) step. The step over W has the form of:

min
W

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2.

• Compression (C) step: The step over Θ and r separates into K smaller

substeps due to the form of R (eq. 5.2):

min
Θk,rk

µ

2
‖Wk −Θk‖

2 + λRk(rk) s.t. rank (Θk) = rk.
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input K-layer neural net with weights W = {W1, . . . ,WK},

hyperparameter λ, device runtime model R.

W = (W1, . . . ,WK)← arg minW L(W) reference net

r = (r1, . . . , rK)← 0 ranks

Θ = (Θ1, . . . ,ΘK)← 0 auxillary variables

for µ = µ1 < µ2 < · · · < µT

W← arg min
W

L(W) +
µ

2

K∑

k=1

‖Wk −Θk‖
2

L step

for k = 1, . . . , K C step

Θk, rk ← arg min
Θk,rk

µ

2
‖Θk −Wk‖

2 + λRk(rk)

if ‖W −Θ‖ is small enough then exit the loop

return W,Θ, r

Figure 5.2: LC algorithm to jointly learn weights and ranks when applying the
low-rank compression to target on-device inference speed.

5.3 Solutions of L and C steps

The L-step problem is a standard neural network training (learning) with added

ℓ2 regularization. We solve it using SGD. The C-step problem can be interpreted

as finding best low-rank approximation (compression) to the matrix Wk in the

presence of a cost function over the ranks. The solution of this problem was

given in section 4.2 and requires computing a singular value decomposition of Wk

followed by enumeration.

Overall, the LC algorithm alternates between L and C steps while driving

µ → ∞. The L step finds (locally) optimal weights W that are close to the

current selection of the low-rank matrices (Θ) with the rank configuration r. The

C step finds the best configuration of the ranks and the optimal numeric values

of the low-rank matrices that approximate the current weights W. Once µ is

sufficiently large, neural network weights W and its compressed form Θ will reach

equality by satisfying Wk = Θk.
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Model MFLOPs Inference time top-1 err top-5 err

reference (R) 1140 378.5 ms 40.43% 17.55%

Caffe-AlexNet [67, 75] 727 328.7 ms 42.90% 19.80%

λ = 5.0× 10−3 421 104.1 ms 38.88% 16.83%

λ = 1.0× 10−2 290 69.2 ms 39.12% 17.03%

ou
rs

λ = 2.0× 10−2 186 42.0 ms 40.34% 17.64%

low-rank AlexNet (ch. 4) 227 83.6 ms 39.61% 17.40%

low-rank AlexNet (ch. 4) 166 50.2 ms 40.46% 17.71%

ENC-AlexNet [69] 272 93.3 ms 43.40% 19.93%

SqueezeNet 1.1 [50] 352 63.8 ms 42.90% 19.70%

Table 5.2: Details of selected low-rank AlexNets obtained with our algorithm,
and comparison to some of the available low-rank AlexNets in the literature. We
additionally include a comparison to the SqueezeNet [50] that has similar accuracy
to the AlexNet but was manually designed to be small and fast. All reported
runtime measurements are performed on our testbed: CPU of Jetson Nano.

5.4 Experiments

We demonstrate the effectiveness of our approach by compressing batch normal-

ized versions of AlexNet (trained on ImageNet) and VGG16 (trained on CIFAR10)

networks. We initialize the algorithm from the reasonably well-trained reference

models. Our reference AlexNet has 62.3M parameters, 1140 MFLOPs, and the top-

1/top-5 validation error of 40.43%/17.55%. We did not use group convolutions in

our reference version of AlexNet, therefore it has a slightly larger FLOPs count of

1140 MFLOPs, whereas standard (Caffe-version) has 727 MFLOPs [67, 75]. The

reference CIFAR10 VGG16 model has 15.3M parameters, 313.73 MFLOPs, and a

test error of 6.46%.

As our target device we use the ARM Cortex-A57 CPU of the NVIDIA’s Jetson

Nano; full specifications are available in Table 5.1. Single image inference times on

this CPU (using two threads) are 378.45 ms for AlexNet and 53.99 ms for VGG16.

For each network we build the runtime model as specified in section 5.1. The
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weights of the convolutional layers are reshaped using the scheme 2 (section 2.1.4).

We run our LC algorithm for T steps with an exponential schedule on µ with

µt = a × bt at the tth step: for AlexNet we set T = 30, a = 10−4 and b = 1.2;

for VGG16: T = 60, a = 10−5 and b = 1.2. Each L step was trained with

stochastic gradient descent using the following settings: for AlexNet we used the

learning rate of 0.001 (decayed by 0.9 after each epoch) with the momentum of 0.9

on minibatches of 256 images; for VGG16 we used the learning rate of 7 × 10−4

(decayed by 0.99 after each epoch) with the momentum of 0.9 on minibatches

of size 128 images. Each L step used a predetermined number of epochs (i.e.,

full passes over the dataset): 5 epochs for AlexNet and 20 epochs for VGG16.

Once the algorithm finished, we finetuned the decomposed weights for a small

number of epochs (AlexNet: 30 epochs, VGG16: 100 epochs). Overall, the entire

compression pipelines requires not more than 2.5× the time required to train the

reference networks in the first place.

To explore the error-compression tradeoff, we run our compression with various

values of λ. We report our results in Figure 5.3 as inference time vs. validation

error over the range of the obtained networks. To put our result in perspective,

we additionally plot the results of FLOPs guided low-rank compression of [53].

For both networks, we achieve lower test error for the same inference speed

when compared to the results of FLOPs guided low-rank compression. Notably,

with λ = 1 × 10−2 we obtain a low-rank AlexNet model that has the validation

error of 39.12% and requires only 69.2 ms to complete its inference pass on our

target device. This results in a speed-up of 5.47× wrt reference model and 4.74×

wrt Caffe-AlexNet while having 1.5% improvement in the test error wrt reference.

The FLOPs count of this particular network is not that small: it requires 290

MFLOPs of compute; and compressed AlexNets with fewer FLOPs are available

in the literature (see Table 5.2). However, the architecture of our compressed

network was directly optimized to run as fast as possible on the target device,

therefore, even with 290 MFLOPs it runs faster than the 227 MFLOPs low-rank

AlexNet of [53] and the 272 MFLOPs low-rank AlexNet of [69], while additionally

having a better accuracy.
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Low-rank compression of AlexNet (ImageNet)
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Figure 5.3: Inference speed vs. error plot for our (blue) compressed AlexNet (top)
and VGG16 models (bottom); for both networks, we additionally compare to the
FLOPs based low-rank compression of [53] (given with red). The test errors and
inference times of the reference models are indicated by horizontal dashed line
labeled as R.
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We see a similar pattern for VGG16 results. For instance, with λ = 1.4 ×

10−2 our algorithm achieves a network that requires only 12.26 ms of CPU time

(4.40× faster) while having a test error of 6.38%. This network has a total of 57.3

MFLOPs, yet, it runs faster than 55.3 MFLOPs low-rank VGG16 of [53]: 12.26ms

vs. 12.33 ms.



Chapter 6

Low-rank compression of

convolutional layers:

decomposition schemes

When applying the low-rank methods, we decompose the weight matrix as a

product UVT of lower rank matrices. For fully connected layers, where weights

are naturally in a matrix form, this parametrization is straightforward to apply.

However, the weights of the convolutional layers come as tensors; therefore, to

apply a low-rank, we should first reshape its weights into a matrix. Formally,

a matrix reshapeis a reordering of the items in a tensor A into a matrix A so

that matrix A contains the same set of items as A. There are many possible

matrix reshapes of a tensor, and each reshape gives a rise to a different low-rank

decomposition scheme. A few of the decomposition schemes can be implemented

as a sequence of convolutional layers, allowing to harness the compressive and

speeding-up properties of low rank; for a detailed overview of these schemes we

refer to section 2.1.4.

In previous low-rank compression works, the decomposition scheme (e.g., scheme

1) was fixed and applied throughout the network. This is suboptimal in practice,

as each scheme has its own advantages and should be selected accordingly, per

layer. To address this, we want to select the best decomposition scheme for every

layer of a given neural network. One simple but not an efficient solution to this

54
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Regular convolution
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Figure 6.1: Illustration of a regular convolution operation (top left) and its rank-r
decompositions according to schemes 1, 2, and 3. The input to a layer has the shape
of c×w× h and is depicted as a cube with the appropriately marked dimensions.
When the input is convolved with n filters of dimension c × d × d (filters are not
shown) it generates an output tensor of shape n×w′×h′. Each arrow represents a
convolution of a portion of the input with a single filter, and points to the result of
this convolution, a cube of size 1×1×1. Low-rank decomposition schemes replace
the convolutional layer with a sequence of two convolutions.
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selection problem is to try all possible combinations of decompositions using an

off-the-shelf low-rank compression algorithm. For a K layer neural network with

M different decomposition schemes to try, the total number of combinations is

MK : this number of trials is unmanageable with the average depth of modern

neural networks having dozens of layers (e.g., ResNet-152 has K = 152 layers).

The problem exacerbates when we include the rank selection problem: clearly,

the performance of the compressed network is a function of the rank as well as

the decomposition scheme. How can we select the ranks and the decompositions

schemes for every layer of the neural network to fit into our constraints yet avoiding

the associated combinatorial explosion? We approach this problem by formulating

a model selection problem that captures both rank and shape selection as part of

the objective. We then show that our formulation is amenable to the alternating

optimization and give an efficient algorithm to learn ranks, shapes, and weights of

the neural network.

6.1 Problem formulation

Assume we are given a K-layer neural network trained to minimize a task

loss L (e.g., cross-entropy) over its weights W = {W1, . . . ,WK} where the Wk is

the weight tensor of the layer k. Let as denote the matrix reshape of the tensor

Wk that induces the low-rank decomposition scheme s as R(Wk, s), and the actual

reshaped matrix as Θk = R(Wk, s). We want to select the best scheme and rank for

each layer to optimize the tradeoff between the model loss and a compression cost

C(Θ, r). To achieve this goal, we impose the low-rank structure on the reshaped

weights of each layer via explicit rank constraints on the corresponding Θk-terms,

and form the following model selection problem over the ranks r = {r1, . . . , rK},

decomposition schemes s = {s1, . . . , sK}, and weights W:

min
W,Θ,r,s

L(W) + λ C(Θ, r)

s.t. Θk = R(Wk, sk),

rank (Θk) = rk, ∀k = 1, . . . , K

(6.1)
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We control the amount of the compression (and subsequent tradeoff) via a pa-

rameter λ > 0; and the compression cost function C(Θ, r) will encourage having

smaller models. It is up to the user to determine the optimal operating point wrt

λ: usually multiple values are considered to select among a family of compressed

models (see Figure 6.3). We define the C(Θ, r) to be layerwise separable function:

C(Θ, r) = C(Θ1, r1) + · · ·+ C(ΘK , rK). (6.2)

Such a cost function can handle multiple targets of interest:

• It can target the storage and FLOPs of the compressed model, as both of

these are the functions of the rank and can be written as C(Θk, rk) = α× rk

for some constant α (see chapters 4–5).

• It can target the nuclear norm [31] of weight matrices instead: C(Θk, rk) =

‖Θk‖∗. Such penalty has been well studied in the compressed sensing field

and known to have low-rank inducing properties.

6.2 Optimization algorithm

The problem (6.1) is discrete over the ranks, schemes, and reshapes, but contin-

uous over the weights, which makes it a challenging optimization problem. Fortu-

nately, the formulation of (6.1) is in learning-compression form [15] which admits

alternating optimization solution [15, 16, 17, 53, 54, 55]. To obtain the algo-

rithm, we equivalently reformulate the problem (6.1) using the quadratic penalty

[101]. (Here we use quadratic penalty for brevity of presentation. In practice

we use augmented Lagrangian version which has an additional step over the La-

grange multipliers.) We apply the penalties only to the reshaping constraints of

Θk = R(Wk, sk) and optimize the following while driving µ→∞:

min
W,Θ,r,s

L(W) + λ C(Θ, r) +
µ

2

K∑

k=1

‖Θk −R(Wk, sk)‖2F

s.t. rank (Θk) = rk, ∀k = 1, . . . , K.

(6.3)

The reformulation (6.3) allows us to efficiently optimize the problem by alternating

over W and {Θ, r, s}. This results into learning (L) and compression (C) steps:
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• L step: min
W

L(W) +
µ

2

K∑

k=1

‖Θk −R(Wk, sk)‖2F

The step over W is fully differentiable, and has a simple ℓ2-regularized form

of the neural network training. We will use SGD to solve this step.

• C step: min
Θ,r,s

λ C(Θ, r) +
µ

2

K∑

k=1

‖Θk −R(Wk, sk)‖2F

The step over Θ, r and s is still a mixed-integer optimization problem, how-

ever, it admits an efficient solution depending on the form of compression

cost C.

The alternation of L and C steps guarantee a monotonic decrease of the objective

function. More importantly, it confines the combinatorial search over the ranks

and decomposition schemes to a subproblem that does not involve the network loss

(which typically requires iteration over a large dataset).

Solution of the C step The layerwise separable cost function (6.2) splits the

C-step problem into subproblems over each layer k:

min
Θk,rk,sk

λ C(Θk, rk) +
µ

2
‖Θk −R(Wk, sk)‖2F

s.t. rank (Θk) = rk.

(6.4)

For a fixed decomposition scheme sk the solution of this optimization problem over

Θk, rk is known in closed form for multiple costs C. For the storage and FLOPs

costs, the solution involves SVD and enumeration over the ranks as was shown

in section 4.2. For the nuclear-norm cost, the solution involves singular value

shrinkage [12]. Therefore, to find the solution of (6.4) we iterate over possible

schemes, and select the triplet (Θk, rk, sk) attaining the minimum loss of eq. (6.4).

See Figure 6.2 for the full pseudocode.

6.3 Experimental evaluation and discussion

We demonstrate the power of jointly training weights, ranks, and decompo-

sitions schemes by compressing various models on different datasets. We com-

press the Caffe version of LeNet5 on MNIST dataset, batch normalized VGG16
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input K-layer neural net with weights W = {W1, . . . ,WK},

hyperparameter λ, cost function C,

set of reshaping schemes {S1, . . . ,Sm}

W = (W1, . . . ,WK)← arg min
W

L(W) reference net

s = (s1, . . . , sK)← (S1, . . . ,S1) decomposition schemes

r = (r1, . . . , rK)← 0 ranks

Θ = (Θ1, . . . ,ΘK)← 0 reshaped weights

for µ = µ1 < µ2 < · · · < µT

W← arg min
W

L(W) +
µ

2

K∑

k=1

‖Θk −R(Wk, sk)‖2 L step

for k = 1, . . . , K C step

for s′k = S1, . . . ,Sm

Θ′

k, r
′

k ← arg min
Θk,rk

λ Ck(rk) +
µ

2
‖Θk −R(Wk, s

′

k)‖
2

if (Θ′

k, r
′

k, s
′

k) has a lower C-step objective then

(Θk, rk, sk)← (Θ′

k, r
′

k, s
′

k)

return W,Θ, r

Figure 6.2: Pseudocode of the LC algorithm to jointly learn weights, ranks, and
low-rank decomposition schemes to compress a network

on CIFAR10, and AlexNet on ImageNet. While our algorithm can handle differ-

ent compression costs C, we run our experiments with C targeting the resulting

MFLOPs reduction of the models. Our algorithm is initialized from reasonably

well pre-trained reference models and run with different values of λ to explore the

entire error-FLOPS tradeoff space. We allow the algorithm to select over schemes

1, 2, and 3 of sec 2.1.4. Overall, the total runtime of compression does not take

more than 3× the time spend on training the reference model in the first place.

We run L and C steps in a total of T times with the µ value of µinit × bt at step

t, and perform finetuning for 10–20 epochs afterwards. All L steps are optimized

using SGD with a momentum of 0.9 and the initial learning rate is decayed by 0.99

after each epoch. The exact values are as follows:
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λ
The selected scheme and rank over layers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2.0× 10−5
S1 S2 S2 S2 S3 S2 S2 S3 S2 S2 S2 S2 S2

31 11 9
16 32 71 97 116 238 263 254 292 172 122 99 105

7.5× 10−5
S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

23 10 9
15 20 43 53 113 110 116 239 124 79 72 74 89

Table 6.1: The final selected ranks and reshaping schemes (across layers) for some
of the compressed VGG16 models on CIFAR10 using our algorithm. The VGG16
network has 16 layers: layers 1–13 are convolutional, for which we selected both
schemes and ranks, and layers 14–16 are fully connected, for which we select only
the ranks. We denote schemes as: S1 (scheme 1), S2 (scheme 2), S3 (scheme 3).
Notice how selected scheme and ranks change when we use a higher value of λ,
e.g., the selected scheme for layer 5 changed from S3 to S2 The reference VGG16
has the test error of 6.45% with 317 MFLOPs and 15.2M parameters, the low-rank
VGG16 with λ = 2 × 10−5 (first row) has the test error of 5.90%, 156 MFLOPs,
and 4.8M parameters, the low-rank VGG16 with λ = 7.5× 10−5 (second row) has
the test error of 5.97%, 78 MFLOPs, and 2.5M parameters.

• LeNet5: T = 30, µinit = 0.001, b = 1.1. Each L step runs for 30 epochs with

a learning rate of 0.02.

• VGG16: T = 60, µinit = 0.0002, b = 1.2. Each L step runs for 15 epochs

with a learning rate 0.0001.

• AlexNet: T = 30, µinit = 0.001 and b = 1.1. Each L step is run for 15

epochs with a learning rate 0.0005.

We plot our rank-and-scheme-optimized LeNet5 and VGG16 models on Fig-

ure 6.3. To give a perspective on whether the scheme selection improves the over-

all compression, we additionally run our algorithm with a fixed reshape (using

schemes 1, 2, or 3) throughout the net, effectively disabling the scheme selection.

As expected, low-rank networks trained with only a fixed scheme do not achieve

competitive error-FLOPs tradeoff when compared to the scheme optimized coun-

terparts. For instance, our scheme optimized low-rank LeNet5-s have no accuracy

loss up to 0.6 MFLOPs, which corresponds to ×4.25 speed-up; and our com-
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Figure 6.3: Compression of LeNet5 and VGG16 networks trained on MNIST
and CIFAR10 datasets using automatic rank selection with fixed decomposition
schemes 1, 2, 3 and comparison to our approach where schemes and ranks are
learned jointly. For each scheme (and our method) we run multiple compression
and generate a family of model which we plot as a curve. We additionally plot
some of the available compression results in the literature using square markers.
Horizontal dashed lines marked with R indicate the test-error of reference (uncom-
pressed) networks.



62

MFLOPs top-1 error, % top-5 error, %

Caffe-AlexNet 727 42.70 19.80

Tai et al. [113], scheme 2 185 — 20.34

Wen et al. [120], scheme 1 269 — 20.14

Kim et al. [69], scheme 2 272 43.40 20.10

chapter 4, scheme 1 240 42.83 19.93

chapter 4, scheme 2 151 42.69 19.83

ours, with λ = 1.5× 10−5 179 41.64 19.22

ours, with λ = 2.0× 10−5 156 42.44 19.65

Table 6.2: Our low-rank AlexNet models (with rank and scheme selection) and
comparison to other low-rank results in the literature. We report top-1 and top-5
validation accuracy on ImageNet dataset and the FLOPs count of the final model.

pressed VGG16 nets do not experience accuracy drop until reaching models with

61 MFLOPs (×5.1 speed-up). In fact, for VGG16 we see a substantial improve-

ment in test error for moderately compressed models: our 78 MFLOPs network has

a test error of 5.97%, which is a 0.54% improvement wrt reference model. We also

plot recent results from the structured pruning literature (as square markers) that

reduce the FLOPs count of VGG16 [47, 48, 81, 85, 86, 136]. Our results achieve

significantly better error-FLOPs tradeoff compared to low-rank compression using

individual reshaping schemes and when compared to structured pruning results as

well.

To illustrate the differences in selected ranks and schemes of our compressed

models, we report some of the final architectures for VGG16 in Table 6.1. We

notice non-trivial changes in both ranks and schemes of the final architectures:

while a network with 156 MFLOPs has a mix of schemes 1, 2, and 3, the 78

MFLOPs network only uses schemes 1 and 2.

For the AlexNet experiments, we report the achieved FLOPs count and top-

1/top-5 validation errors in Table 6.2. Our rank-and-scheme-optimized AlexNet

models achieve better error-FLOPs tradeoff than most of the low-rank compression
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results existing in the literature and comparable to rank-optimized AlexNets of

[53] which use scheme 2 throughout the network. Interestingly, our algorithm

selects the scheme-2 decomposition for all convolutional layers of AlexNet as well,

suggesting that scheme 2 might be a good default option for a high-compression

regime.



Chapter 7

LC toolkit: open-source

compression framework

An overarching theme of this dissertation is the low-rank compression of neu-

ral networks and its solution using learning-compression algorithm. As we have

presented various extensions of this compression mechanism in chapters 4–6, the

reader might have noticed that the only difference between the resulting algorithms

in each case was the solution of the C-step problem. This is not a coincidence,

but a result of the application of learning-compression algorithm for the model

compression problems defined in a constrained formulation (see eq. 3.1).

Over the years, we have used the LC algorithm to train models using different

compression mechanisms: quantization [16, 58], pruning [17, 58], low-rank com-

pression [53, 55, 56, 57], and various combinations of those [55, 58, 59]. For the

purposes of these experiments, we have created a software frameworks that capi-

talizes on the advantages of the LC algorithm. Now, after many rounds of internal

testing, refactoring, and rewriting, we are releasing this code as an open-source

library available for general audience.

7.1 LC algorithm: a software perspective

Although we have discussed the LC algorithm in great detail over the course

of this dissertation, our previous encounters were primarily of academic nature.

64
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The pseudocode of the LC algorithm

input training data and model with parameters w

w← w = arg minw L(w) pretrained model

Θ← ΘDC = Π(w) init compression

β ← 0

for µ = µ0 < µ1 < · · · <∞

w← arg minw L(w) + µ

2
‖w −∆(Θ)− 1

µ
β‖2 L step

Θ← arg minΘ ‖w −
1
µ
β −∆(Θ)‖2 + λC(Θ) C step

β ← β − µ(w −∆(Θ)) multipliers step

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ

Implementation of the LC algorithm in our software

class LCAlgorithm():

# Housekeeping code ...

# Pretrained model is provided by user at initialization

def run(self):

self.mu = 0

self.c_step(step_number=0)

for step_n, mu in enumerate(self.mu_schedule):

self.mu = mu

self.l_step(step_n) # call to user-provided L step

self.c_step(step_n) # resolve the compression tasks

self.multipliers_step()

Figure 7.1: The pseudocode of the LC algorithm using the augmented Lagrangian
formulation and corresponding implementation in our software (located in LC-

Algorithm class); the main running method is shown.
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Type Forms

Quantization

Adaptive Quantization into {c1, c2, . . . , cK}

Binarization into {−1, 1} and {−c, c}

Ternarization into {−c, 0, c}

Pruning

ℓ0-constraint (s.t., ‖w‖0 ≤ κ)

ℓ1-constraint (s.t., ‖w‖1 ≤ κ)

ℓ0-penalty (α‖w‖0)

ℓ1-penalty (α‖w‖1)

Low-rank

Low-rank compression to a given rank

Low-rank with automatic rank selection for FLOPs

Low-rank with automatic rank selection for storage

Additive

Combinations

Quantization + Pruning

Quantization + Low-rank

Pruning + Low-rank

Quantization + Pruning + Low-rank

Table 7.1: Currently supported compression types, with their exact forms. These
compression can be defined per one or multiple layers, and different compression
can be applied to different parts of the model.

In this section, let us take a look at the algorithm from the software engineering

perspective. To make the discussion easier we duplicate the pseudocode of the LC

algorithm along with the actual implementation in Figure 7.1.

One of the main advantages of the LC algorithm is the separation of the model

learning from the model compression which is encapsulated in alternation of these

two (L and C) steps in the optimizaiton. Our software capitalizes on this sep-

aration: to apply a new compression mechanism under the LC formulation, the

software requires only a new C step corresponding to the chosen compression mech-

anism, and the L step will be simply reused. Indeed, the compression parameter Θ

enters the L step problem as a constant regardless of the chosen compression type.

Therefore, all L steps for any combination of compressions have the same form.

Once the L step has been implemented for a model, any possible compression (C

steps) can be applied.



67

Importantly, the separation of L and C steps allows us to use the best tools

available for each steps. For modern neural networks, the L step optimization

means performing iterations over the dataset (using SGD) and requires hardware

accelerators. The formulation of the C step, on the other hand, is given by ℓ2

minimization, and as we have seen in this dissertation, solutions of it can be

computed using efficient algorithms. The list of currently supported compressions

is given in Table 7.1.

Finally, from the software engineering perspective, the separation of L and C

steps makes code robust and allows us to thoroughly test and debug each compo-

nent separately. Other advantages of this separation include the following:

• Modularity. Each L and C step is implemented as a separate module,

hence, changing the model or the compression type simply involves calling

the corresponding routine.

• Extensibility. New machine learning models or compression technieques

can be easily added by creating new modules.

• Reusability. Reusability happens on multiple levels. Compressions, and

their C steps, will be reused across many models. The L step has to be

implemented only once for a model, and it will be reused across multiple

compressions. Additionally, many C step solutions can be directly lifted

from specialized libraries that implement the necessary functionality (e.g.,

SVD) efficiently.

• Usability. In practice, one does not know what type of compression is best

for a given model. Our approach offers, within the same framework of the

LC algorithm, multiple models and multiple compression types that user can

try or combine with minimum coding and engineering effort.

7.2 Design

Our main goal in designing the software is to have an easy to use, efficient,

robust, and configurable neural network compression software. Particularly, we
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want to have the flexibility of applying any available compression (Table 7.1) to

any parts of the neural network with per-layer granularity. For example, consider

the following compression tasks:

• a single compression per layer: say, low-rank compression for layer 1 with

target rank of 5

• a single compression per multiple layers: e.g., prune 5% of weights in layer 1

and 3, jointly

• mix compressions: e.g., quantize layer 1 and prune jointly layers 2 and 3

• additive compressions: be able to use additive compressions in the same

mix-and-match way, for a single layer or multiple layers jointly

The mix-and-match on the level of a layer granularity is an important require-

ment as neural networks can have heterogeneous structures: having layers with few

parameters but many FLOPs and vice-versa. As such, some layers might be better

suited to the specific form of compression than others, which has been exploited

in the literature with specific schemes targeting only, for example, fully-connected

layers [18, 109]. To implement our desiderata, we leverage the modularity of the

LC algorithm and introduce some additional building blocks next.

L step We hand off the model training operations, the L step, to the user through

the lambda functions. This gives a fine-grained control to the user on the model’s

actual learning: hardware utilization, data source pulling, and other essential steps

required for training. Usually, the L step implementation is already available or

can be extracted from the training code used for the reference (uncompressed)

model. Below we give a typical way of implementing the L step in PyTorch:

def my_l_step(model, lc_penalty, args**):

loss = model.loss(out_, target_) + lc_penalty()

loss.backward()

optimizer.step()

Here we skipped some code (such as the setup of the optimizer and data source

configuration) for brevity. Note that the only required change is the addition of

lc penalty term.
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C step All provided compressions of Table 7.1 are implemented as subclasses

of CompressionTypeBase class, and the actual C step is exposed through the

compress method. This allows a straightforward extension of the library of com-

pressions: if needed, the user simply wraps the custom C-step solution into an

object of CompressionTypeBase class. Below we give an example implementa-

tion of the C step for binarization:

class ScaledBinaryQuantization(CompressionTypeBase):

def compress(self, data):

a = np.mean(np.abs(data))

quantized = 2 * a * (data > 0) - a

return quantized

Compression tasks To instruct the framework on which compression types

should be applied to which parts of the model, the user needs to populate a com-

pression tasks structure. This structure is a list of simple mappings of the form:

(parameters) → (compression view, compression type), which is implemented as

a python dictionary. The parameters are the subset of model weights, which are

wrapped into internal Parameter object. The compression view is another inter-

nal structure that handles reshaping of the model weights into a form suitable

for compression, e.g., reshaping the weight tensor of a convolutional layer into a

matrix for low-rank compression.

While our strategy of defining the compression tasks might seem unnecessarily

complicated, it brings a considerable amount of flexibility. For instance, it erases

the limitations of standard compression approaches with coarse layer-based gran-

ularity: we can compress multiple layers with a single compression, or a single

layer with multiple compressions, while simultaneously mixing different compres-

sions in a single model. This abstraction disentangles compression from the model

structure and allows us to construct complicated schemes of compressions in a

mix-and-match way. For example, consider the following compression task:

(layer 1, layer 3) → (as a vector, adaptive quantization k = 6),

(layer 2) → (as is, low-rank with r = 3)

where we want to jointly compress a three-layer neural network so that the first

and third layers are quantized with the same codebook, and the second layer is
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lc_alg = lc.Algorithm(

model, # a model to compress

compression_tasks, # specifications of compression

l_step_optimization, # implementation of the L step

mu_schedule, # schedule of the mu values

evaluation_func # the evaluation function

)

lc_alg.run() # an entry point to the LC algorithm

Figure 7.2: An example of running the LC algorithm in the toolkit.

a low-rank matrix with r = 3, and we want these compression to be applied

simultaneously. The semantics of this compression is translated almost verbatim

in our framework:

from lc.torch import ParameterTorch as P, AsVector, AsIs

compression_tasks = {

P([l1.weight, l3.weight]): (AsVector, AdaptiveQuantization(k=6)),

P(l2.weight): (AsIs, LowRank(target_rank=3))

}

The fine-grained control over semantics of the compression allows us to include

expert knowledge about properties of a particular model (e.g., do not quantize the

first layer) without much effort.

Running the software To compress a model, the user needs to construct an

lc.Algorithm object and provide the following: 1) a model to be compressed

2) associated compression tasks 3) implementation of the L step 4) a schedule

of µ values, and 5) an evaluation function to keep track of the error during the

compression. We give an example of running the algorithm in Figure 7.2.

Once the run method is called, the LC algorithm will start execution, at which

point the library will proceed in line-by-line correspondence to the pseudocode on

the top of Figure 7.1. Currently, each of the compression tasks (and corresponding

C step implementation) is called in order. Yet, due to the nature of the LC

algorithm, every compression task’s C steps can be executed in parallel, further

improving the efficiency of the toolkit.
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7.3 A guided tour through the functionality

In this section, we demonstrate the flexibility of our framework by easily ex-

ploring multiple compression schemes with minimal effort. As an example, say

we are tasked with compressing the storage bits of the LeNet300 neural network

trained on MNIST dataset (10 classes, 28× 28 gray-scale images). The LeNet300

is a three-layer neural network with 300, 100, and 10 neurons respectively on every

layer; the reference network has an error of 1.66% on the test set.

In order to run the LC algorithm, we need to provide an L step implementation

and compression tasks as described in sec. 5. The implementation of corresponding

L step is given in Figure 7.4. Now, having the L step implementation, we can

formulate the compression tasks. Say, we would like to know what would be the

test error if the model is optimally quantized with a separate codebook on each

layer? Test error in such case is 1.97%, which is 0.31% higher than the reference.

What would be the performance of the model if one would quantize only the first

and the third layers, leaving the second layer untouched? Test error in such case

is 1.96%. What about if we prune all but 5% of the weights? Yes, our framework

can handle all of these combinations and more; see Figure 7.3 for other examples.

We can even apply different compressions to every layer, for example, take a look

at the example of Figure 7.3, where we apply quantization, pruning, and low-rank

compression to the different parts of the LeNet300. Once the L step is given, trying

a new compression scheme only requires a new compression task.

7.4 Practical advice

We implemented the LC algorithm originally in 2017, and have gone through

multiple refinements and code reimplementations. We have applied it to compress-

ing a wide array of relatively large neural nets, such as AlexNet, VGG, ResNet,

etc., which are themselves tricky to train well in the first place. In the process,

we have gathered a considerable amount of practical knowledge on the behavior of

the LC algorithm on both small and large models and datasets. We want to share

a list of common pitfalls so future users of our toolkit would hopefully avoid them.
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Quantize all layers, test error: 1.97%

compression_tasks = {

Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l2.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Quantize first and third layers, test error: 1.96%

compression_tasks = {

Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Prune all but 5%, test error: 1.70%

compression_tasks = {

Param([l1.weight, l2.weight, l3.weights]):

(AsVector, ConstraintL0Pruning(kappa=13310)) # 13310 = 5%

}

Single codebook quantization with 1% non-zeros, test error: 1.85%

compression_tasks = { Param([l1.weight, l2.weight, l3.weights]): [

(AsVector, ConstraintL0Pruning(kappa=2662)), # 2662 = 1%

(AsVector, AdaptiveQuantization(k=2))]

}

Prune first layer, low-rank to second, quantize third, test error: 1.68%

compression_tasks = {

Param(l1.weight): (AsVector, ConstraintL0Pruning(kappa=5000)),

Param(l2.weight): (AsIs, LowRank(target_rank=10))

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

Figure 7.3: Some of the mix-and-match compressions possible in our framework
and corresponding train/test errors. Here, we use the LeNet300 neural network
trained on the MNIST dataset (reference test error is 1.66%) and report final test
errors after compression. Notice that trying a new combination of compressions is
as simple as writing a new compression tasks structure.
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def my_l_step(model, lc_penalty, step):

params = [p for p in model.parameters() if p.requires_grad]

lr = lr_base*(0.98**step) # decayed learning rate

optimizer = optim.SGD(params, lr=lr, momentum=0.9, nesterov=True)

for epoch in range(epochs_per_step):

for x, target in train_loader: # loop over the dataset

optimizer.zero_grad()

loss = model.loss(model(x), target) + lc_penalty()

loss.backward()

optimizer.step()

Figure 7.4: An example implementation of the L step for LeNet300.

• Monitor the progression of the algorithm Specifically, two important

quantities to keep an eye on:

– The loss of the L step: L(w) + µ

2
‖w −∆(Θ)‖2. The total loss at the

end of the L step must be smaller than the total loss at the beginning.

If some L step has not reduced the loss, optimization parameters of the

step should be tuned.

– The loss of the C step, ‖w −∆(Θ)‖2, must have a smaller value after

each C step. This often fails when new compression is introduced into

the pipeline, where compress method is not fully tested. For the base

compressions in the framework, we made sure they always optimize the

C step.

• On the µ schedule Theoretically, the sequence of µ values should start

at 0 and infinitesimally grow to ∞. In practice, we use an exponentially

increasing schedule µk = µ0 × ak with small initial µ0 and appropriately

chosen a > 1 for the k-th step of the LC. For most of compression schemes,

we have developed robust estimates of µ0-values: for pruning see suppl.mat.

of [17], for rank-selection see suppl.mat. of [53]. For the value of a, we found

the range of [1.1 1.4] to be a good spot.
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Conclusion and future work

In this dissertation we studied the problem of neural network compression and

considered a particular compression of interest: the low-rank compression and

several extensions of it. We provided an efficient solution based on the learning-

compression algorithm of Carreira-Perpiñán [15] and presented a software frame-

work that implements the algorithm and all discussed compressions (and many

others). The resulting optimization approach have the same algorithmic structure

and alternate two simple steps: L step that learns the model and C step that com-

presses the model according to chosen compression. In terms of actual compression

results, the presented algorithms are competitive and have been published in peer

reviewed conferences [53, 56, 57, 59]. We also created an extensible neural network

compression software that supports all discussed compression schemes (and many

others) and allows us to compress any neural network model with minimal effort

[52, 54].

Due to the decoupling of model training (L step) from compression (C step)

provided by the LC algorithm there are many possible extensions to our work.

Decoupling allows us to explore different compression schemes; and while we have

presented only low-rank based applications in this paper, we have extended our

research to include quantization of model weights [16], pruning [17] and additive

combinations of several compressions [55, 59]. In the remaining part of this section

we discuss several future projects which can be built upon our work.
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Selection mechanisms One possible future direction is to further develop the

idea of selection given by λC(Θ) term in eq. (3.1), which we have used for the

selection of the best rank/shape of a low-rank compression (chapters 4 and 6).

This can be achieved by developing new cost functions, including:

• cost function on power consuption, so that compressed model will use less

energy or will be operating at lower temperatures,

• cost function on model/hardware layout and placement which would allow

us to, for instance, determine whether we need to run the parts of the com-

pressed model on GPU or CPU,

• cost function on other metrics like utilization so the model will have fewer

number of cache misses, higher transfer speeds and loading times.

Compression of other ML models So far we have been studying the problems

of neural network compression, which are warranted by large size of the models and

huge demand to shrink them for various industrial applications. However, com-

pression of other (non-neural-network) machine learning models pose an intersting

research question, and has not been studied to a larger extent in the literature.

Only some of the ML models have been considered in the context of particular

compressions and have efficient algorithmic solutions:

• in context of pruning, sparse linear models are well known, with famous

LASSO formulation for regression and extensions to support vector machines

• in context of low-rank compression, the reduced rank regression (RRR) op-

timally solves the problem for linear regression.

If you want to compress other models or would like to consider other compression

(say quantization, or combination of pruning and quantization), you need to look

for a new algorithm. The decoupling of L and C steps of the LC algorithm is

well suited for compression of any model as long as its learning can be efficiently

captured in the L step, thus we can further explore the application of the LC

algorithms for ML models. Some models of interest would be Gaussian Mixture

Models and Hidden Markov Models.



Appendix A

Number of floating point

operations, FLOPs

There is no clear consensus in the literature on how to compute floating point

operations in the forward pass of a neural network. While some authors define

this number as total number of multiplications and additions [128], others count

one multiplication and addition as one operation [45], assuming multiplication and

addition will be fused during the forward pass. When reporting the FLOPs count

in this work we stick to the latter definition of the FLOPS – total number of fused

multiplications and additions incurred by convolutional or fully connected layers.

For example, assume we have a layer with weights W ∈ R
300×784 and biases

b ∈ R
300. According to the first definition, the total number of FLOPs of Wx+b

for input x ∈ R
784 is

FLOPs = 784× 300
︸ ︷︷ ︸

multiplications in Wx

+ 783× 300
︸ ︷︷ ︸

additions in Wx

+ 300
︸︷︷︸

for adding b

= 470400.

However, according to second definition, this number will be only 784 × 300 =

235200 as multiplications and additions are fused.
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