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Machine learning and neural networks

Most of this talk applies to ML models in general, however, we focus on neural networks

Neural networks have established state-of-the-art performance nearly in every machine

learning task:

• Natural Language Processing (NLP): dialog systems, translators. . .
• Computer vision: image and video recognition, classification. . .
• Speech processing: speech-to-text, audio synthesis. . .
• Various signal enhancement tasks (photo, audio, video)

The models trained on these tasks have significant practical importance
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Some famous neural network use cases

Voice Assistants Photo/Video/AR Translators

The images are obtained from official websites or blogposts of the services.

Current mobile devices contain dozens of neural networks, some of them running

non-stop!
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The improvement of NN performance

Number of parameters in NN over the years FLOPs vs Top-5 accuracy on ImageNet

Why? The improvements are attributed to several factors:
• more data and more compute
• better software with frameworks like PyTorch, TensorFlow, MxNet
• better algorithms and vast amount of collected empirical knowledge

The top left figure is obtained from Xu et al. (doi: 10.1038/s41928-018-0059-3), the top right figure is obtained from Bianco et al. (doi: 10.1109/ACCESS.2018.2877890)
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The deployment of NN

Two practical regimes of deployment

Cloud deployment:

• access to powerful hardware
• the hardware can be chosen
• high-end hardware is typically allocated

for training only
• running at scale is expensive

Edge and mobile deployment:

• hardware can not be chosen
• stringent constraints:

• processing capabilities (CPU, GPU)
• power consumption and battery life
• SLA for responsiveness (for usability)
• for mobile devices: most hardware is

old and low-end

A study from Facebook over its mobile users

Most of the mobile devices in use are old, in 2018 only

25% of users had CPUs designed later than 2013.

2005-20101.8%

2011

15.6%2012

54.7%

2013-2014

4.2%
2015+

23.6%

Most of the mobile devices in use are low-end:

The figures are obtained from Wu et al. (doi: 10.1109/HPCA.2019.00048)
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Model compression

There is a mismatch between requirements of current deep models and capabilities of

end-user hardware.

Research question:

• How to obtain a smaller (compressed) neural network that has as close performance

(e.g., accuracy) as possible to the original large model?

We will formulate the compression problem as a constrained optimization and give an

efficient algorithm based on solid optimization principles (the Learning-Compression

algorithm)

In this talk we show the application of LC for the problems of low-rank compression of

neural networks.
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Model compression: detour on neural networks
x

W1

W2

. . .

WK

σσ

σσ

σ σ

f(x)
figure from Carreira-Perpiñán and Weiran Wang,

arxiv:1212.5921

A neural network with K layers is a computational graph comprised

of K linear and non-linear transforms applied to input x :

f(x;w) = σ(WK . . . σ(W2σ(W1x)))

The weights w = {W1, . . . ,WK} are trained on a dataset of

input-output pairs (x,y) to make the network output f(x;w) closer

to the true output y:

regression: min
w

L(w) =
∑

x,y

‖y − f(x;w)‖
2

classification: min
w

L(w) =
∑

x,y

CrossEntropy(y, f(x;w))

Typically, the networks are optimized using the stochastic gradient

descent (SGD): a procedure that uses an estimate of the true

gradient ( ∂
∂w

L(w)) computed on training mini-batches.
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Model compression: examples
reference

(uncompressed)
pruning low-rank

W W W

quantization low-rank + pruning
low-rank + pruning

+ quantization

W W W

Images are from the slides of Miguel Á. Carreira-Perpiñán
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The LC algorithm: general formulation

Given a network with weights w and loss L:

min
w,Θ

L(w) + λC(Θ) s.t. w = ∆(Θ)

task
loss

uncompressed
weights

low-dim.
params

decompression
mapping

∆: Θ→ w ∈ R
P

Compression details are abstracted in ∆(Θ):

• low-rank: ∆(Θ) = UV
T where Θ = {U,V}

• pruning: ∆(Θ) = Θ s.t. ‖Θ‖
0
≤ κ

w

(reference)

w∗ (optimal

compressed)

∆(ΘDC)
(direct

compression)

w-space

(uncompressed

models)

feasible models C
(decompressible

by ∆)

feasible set C = {w ∈ R
P : w = ∆(Θ) for Θ ∈ R

Q} when λ = 0
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The LC algorithm (cont.)
Reformulate using penalty methods and optimize the following while driving µ→∞:

min
w,Θ

L(w) + λC(Θ) +
µ

2
‖w −∆(Θ)‖2

Apply alternating optimization wrt w and Θ, which gives the (LC) algorithm:
• Learning (L) step:

min
w

L(w) +
µ

2
‖w −∆(Θ)‖2

• This is a regular training of the model, but with a quadratic regularization term.
• L step is independent of compression mechanism.
• We will use SGD and standard NN software

• Compression (C) step:

min
Θ

µ

2
‖w −∆(Θ)‖2 + λC(Θ)

• For λ = 0 the C step has a form of optimal projection of the weights
• Does not involve the dataset (no L term).
• Many well studied cases with fast solutions
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The LC algorithm: pseudocode

input training data and model with parameters w

w← w = argminw L(w) pretrained model

Θ← ΘDC = Π(w) init compression

β ← 0

for µ = µ0 < µ1 < · · · <∞
w← argminw L(w) + µ

2
‖w −∆(Θ)− 1

µ
β‖

2
L step

Θ← argminΘ
µ
2
‖w − 1

µ
β −∆(Θ)‖

2
+ λC(Θ) C step

β ← β − µ(w −∆(Θ)) multipliers step

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ
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Low-rank compression with rank selection
reference

(uncompressed)
low-rank

W
−−−−−−−−−−−→

VT

U

We replace a matrix W with rank-r matrix
• Such a low-rank matrix can be written as the product UVT

• For small values of r this reduces FLOPs and storage
• Low-rank decomposition can achieve speed-up on any hardware (unlike weight pruning)

• If ranks are known, training the low-rank models is not hard: use SGD
• Selecting the right rank for each layer is challenging

for K-layer network, with R ranks per layer there are RK combinations to try

We use the LC algorithm to jointly learn both weights and ranks.
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Low-rank compression: formulation of the problem

For a K-layer deep net with weights W = (W1, . . . ,WK). Our compression problem is

defined as:

min
W

L(W) + λC(W)

s.t. rk = rank (Wk) ≤ Rk, k = 1, . . . , K.

task loss compression cost (e.g., FLOPs)

max possible rank of layer k

• λC(W) controls the tradeoff between model performance and compression
• mixed-integer optimization
• the formulation does not allow to immediately use the LC algorithm
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Low-rank compression: cost function

The compression cost C measures the model size/FLOPs and is defined as

C(W) = C(r = {r1, . . . , rK}) = C1(r1) + · · ·+ CK(rK).

Here, Ck(rk) is cost of compressing layer k using rank rk. Assume, Wk is
m× n matrix:

• size: Ck(rk) = m× rk + rk × n
• FLOPs: Ck(rk) = (m× rk + rk × n)×M where M is #times filter (layer)

has been applied
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Low-rank compression: optimization
We introduce auxiliary variables Θk with a constraint of Wk = Θk for k = 1, . . . ,K:

min
W,Θ,r

L(W) + λC(r)

s.t. Wk = Θk,

rk = rank (Θk) ≤ Rk

k = 1, . . . , K.

and then apply penalty to equality constraints (with µ→∞)

min
W,Θ,r

L(W) + λC(r) +
µ

2

K
∑

k=1

‖Wk −Θk‖
2

s.t. rk = rank (Θk) ≤ Rk, k = 1, . . . , K.
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Low-rank compression: optimization (cont.)
After our simple manipulations, we obtained the following:

min
W,Θ,r

L(W) + λC(r) +
µ

2

K
∑

k=1

‖Wk −Θk‖
2

s.t. rk = rank (Θk) ≤ Rk, k = 1, . . . , K.

Now, the alternation over W and {Θ, r} gives us the LC algorithm:

L step: min
W

L(W) +
µ

2

K
∑

k=1

‖Wk −Θk‖
2

same old L step, will be handled by SGD

C step: min
Θ,r

µ

2

K
∑

k=1

‖Wk −Θk‖
2
+ λC(r) s.t. rk ≤ Rk ∀k = 1, . . . ,K

C step separates over layers into smaller subproblems
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Low-rank compression: C step

min
Θ,r

µ

2

K
∑

k=1

‖Wk −Θk‖
2
+ λ

K
∑

k=1

C(rk), s.t. rk ≤ Rk, k = 1, . . . ,K

The C step problem separates over layers k = 1, . . . ,K into:

min
Θk,rk

µ

2
‖Wk −Θk‖

2
+ λC(rk) s.t. rk = rank (Θk) ≤ Rk

Solution: If the rank of decomposition (rk) is fixed, this reduces to best rk-rank

approximation problem of a matrix. The solution of “best rank” approximation is given by

Eckhart-Young theorem and computed using SVD. However, we have several ranks to

check: rk = 1 . . . Rk: we simply enumerate over every possible rank and chose the one

corresponding to lowest loss. No need to compute multiple SVDs, one is sufficient.

Behavior: We automatically select the best rank for our overall compression cost.
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Low-rank compression: experiments on CIFAR10 networks
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1 — Wen et al. [23]

2 — Ye et al. [27]

3 — Zhuang et al. [31]

4 — Li et al. [16]

5 — He et al. [5]

6 — Yu et al. [28]

7 — Xu et al. [25]

8 — Li and Shi [15]

R

R

R

R

R

R

CIFAR10: 10 classes, 32× 32 images:

50K in train set, 10K in test set

Error-compression space of test

error, inference FLOPs and

number of parameters (ball size for

each net). Different networks have

different colors. R — reference

network.

Results of our algorithm over

different λ values for a given

network span a curve, shown as

connected circles•—•
Other published results using

low-rank are shown as isolated

circles; filter pruning results shown

as isolated squares.
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Low-rank: AlexNet on ImageNet experiments

The ImageNet task asks to classify a colored image into one of the 1000 classes.

AlexNet is a convolutional network with 60M parameters

MFLOPs top-1 top-5 ρFLOPs

Caffe-AlexNet [11] 724 42.70 19.80 1.00

Kim et al. [13], Tucker 272 n/a 21.67 2.66

Tai et al. [21], scheme 2 185 n/a 20.34 3.90

Wen et al. [23], scheme 1 269 n/a 20.14 2.69

Kim et al. [12], scheme 2 272 43.40 20.10 2.66

Yu et al. [28], filter prun. 232 44.13 n/a 3.12

Li et al. [17], filter prun. 334 43.17 n/a 2.16

Ding et al. [3], filter prun. 492 43.83 20.47 1.47

our scheme 1, λ = 0.20 231 41.56 18.72 3.13

our scheme 2, λ = 0.20 152 41.03 18.23 4.78

Compression with our

algorithm vs published work

using low-rank methods and

structured pruning.

ρFLOPs — reduction in FLOPs.
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Can we apply low-rank to optimize inference time?

Historically, low-rank was used to reduce sizes and FLOPs

of the models. But:

• fewer FLOPs not necessarily mean faster runtime!
• Can we select the ranks per each layer to minimize

on-device runtime? (requires on-device measurements)

Hard problem There are combinatorial number of ranks

and corresponding on-device measurements. We tackle it

by

• building an accurate and fast to compute runtime

model
• formulating a suitable optimization problem
• and giving an efficient optimization algorithm based

on Learning-Compression framework

Our target device :

Jetson Nano

CPU 4-core ARM Cortex-A57, 1.4 GHz
GPU 128 CUDA cores at 0.9 GHz
RAM 4 GB 64-bit LPDDR4, 1.6 GHz
OS Ubuntu 18.04.5 LTS
Kernel GNU/Linux 4.9.140-tegra
Storage 128 GB microSDXC memory card
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Inference-targeted low-rank: Device runtime model

Let’s define the runtime R(W) as the time to process a single image through a K-layer

net with weights W = {W1, . . . ,WK}.

• runtime is function of layer’s ranks
• runtime can be directly measured on device
• assuming R ranks per layer, there are RK different configurations to measure

We model the runtime as the sum of inferences through individual layers:

R(W) = R(r) = R1(r1) +R2(r2) + · · ·+RK(rK). (1)

In reality R(W) ≤ RHS: when computational graph is executed optimally, some weights and inputs can be prefetched and layer-to-layer computations can be pipelined

This model allows to obtain runtime estimate R(W) much more efficiently:

• only need to measure R different rank configurations for each of the K layers
• total required measurements: R×K (vs RK)
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Inference-targeted low-rank: Device runtime model (cont.)
Even RK on-device measurements are time consuming and noisy, thus:

• for each layer we run measurements for equally spaced set of ranks (e.g., r = 1, 10, 20, . . . )
• fit ℓ1 regression on the measurements to interpolate and reduce noise

R7(r) measurements for AlexNet True vs. modeled inference time
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Inference-targeted low-rank: Problem formulation

Given a K-layer net with weights W = {W1, . . . ,WK} trained on the loss L (e.g.,

cross-entropy), we formulate the following device-dependent rank selection problem:

min
W,r

L(W) + λR(r)

s.t. rank (Wk) = rk, k = 1, . . . ,K.
(2)

Here, the term λR(r) controls the tradeoff between on-device inference speed and model

loss.
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Inference-targeted low-rank: Experiments

AlexNet on ImageNet VGG16 on CIFAR10
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CVPR2020

R=378 ms

227 MFLOPs
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57 MFLOPs

R=54 ms

• optimizing for latency beats optimizing for FLOPs in terms of final latency (duh?)
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Low-rank: What happens with non-matrix weights?

Weights do not necessarily come as matrices.

For example weights of convolutional layers are typically stored as NCHW or NHWC tensors.

To apply low-rank, we reshape the tensors into matrices!

R





















































−−−−−−−−−−−→





. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .





*This is known as matricization in tensor algebra.
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More on reshapes: Efficient implementation

Some of the reshapes give a rise to efficient low-rank schemes.

Regular convolution Low-rank using scheme 1 reshape

w

h
d

d

w′

h′

c
n w

h
d

d

w′

w′

h′ h′

c
r n

parameters: ncd2 FLOPs: ncd2w′h′ parameters: r(cd2 + n) FLOPs: (cd2 + n)rw′h′

Low-rank using scheme 2 reshape Low-rank using scheme 3 reshape

w

hh
d

d

w′
w′

h′

c r
n ww

hh
d

d

w′

h′

c r
n

parameters: r(cd + nd) FLOPs: (ch + nh′)rdw′ parameters: r(c + nd2) FLOPs: (cwh + nd2w′h′)r
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Which reshapes are the best? How to select them optimally?

• Historically a single fixed scheme was used throughout the NN for the compression
• In our CVPR2020 work, we used fixed scheme throughout.
• This is suboptimal!

• Can we select the best scheme per each layer?
• The problem involves selecting ranks as well.

Hard problem. There are a combinatorial number of configurations of ranks and schemes.

However, learning-compression algorithm can solve it too.
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Low-rank with scheme selection: Problem formulation

Given a K-layer net with weights W = {W1, . . . ,WK} trained on the loss L (e.g.,

cross-entropy), we formulate the following rank and scheme selection problem:

min
W,Θ,r,s

L(W) + λC(Θ, r)

s.t. Θk = R(Wk, sk),

rank (Θk) = rk, ∀k = 1, . . . ,K

(3)

Here, the term λC(Θ, r) controls the amount of compression and can target a specific

cost of interest like FLOPs or storage.
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Low-rank with scheme selection: Deriving the L and C steps
Let us apply a penalty method and obtain an equivalent formulation (with µ→∞):

min
W,Θ,r,s

L(W) + λC(Θ, r) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F

s.t. rank (Θk) = rk, ∀k = 1, . . . ,K.

(4)

Apply alternating optimization over variables W and {Θ, r, s}:
• The step over W, which we call a learning (L) step, has the form of:

min
W

L(W) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F .

• The step over {Θ, r, s}, which we call a compression (C) step, has the form of:

min
Θ,r,s

λC(Θ, r) +
µ

2

K
∑

k=1

‖Θk −R(Wk, sk)‖
2

F
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Low-rank with scheme selection: Solution of the C step

Due to the layerwise separability of cost function, the C-step problem separates over the

layers into K smaller problems:

min
Θk,rk,sk

λC(Θk, rk) +
µ

2
‖Θk −R(Wk, sk)‖

2

F

s.t. rank (Θk) = rk.

(5)

Solution:

• For a fixed scheme sk the solution is known in closed form for multiple costs C
• For storage and FLOPs, the solution involves SVD and enumeration [8]
• For nuclear-norm cost, the solution involves singular value shrinkage [1]

• Therefore, to find global solution, we iterate over possible schemes and re-use steps

for fixed scheme.
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Low-rank with scheme selection: Experiments
LeNet5 on MNIST VGG16 on CIFAR10
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[29]

[16][18] [19]

[6]
[7]

scheme 1
scheme 2
scheme 3
ours

Insights:

• selecting the scheme along with ranks outperforms rank selection
• the scheme 2 is selected more often (as optimal) per each layer
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The software
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The LC algorithm: pseudocode and software implementation

input training data and model with parameters w

w← w = argmin
w
L(w) pretrained model

Θ← Θ
DC = Π(w) init compression

β ← 0

for µ = µ0 < µ1 < · · · <∞
w← argmin

w
L(w) + µ

2
‖w −∆(Θ)− 1

µ
β‖2 L step

Θ← argmin
Θ

µ

2
‖w − 1

µ
β −∆(Θ)‖2 + λC(Θ) C step

β ← β − µ(w −∆(Θ)) multipliers step

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ

class LCAlgorithm():

# Housekeeping code skipped

def run(self):

self.mu = 0

self.c_step(step_number=0)

for i, mu in enumerate(self.mu_schedule):

self.mu = mu

self.l_step(i) # user defined

self.c_step(i) # library call

self.multipliers_step()
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The LC software

• Written in python using NumPy and PyTorch
• L step We hand off the L step to the user through the lambda functions.

def my_l_step(model, lc_penalty, args**):

# ...

loss = model.loss(out_, target_) + lc_penalty()

loss.backward()

optimizer.step()

# ...

• C step Many compression are implemented, and you can chose any. If desired, you

can add your own compression too by extending the CompressionTypeBase: class.

class ScaledBinaryQuantization(CompressionTypeBase):

def compress(self, data):

a = np.mean(np.abs(data))

quantized = 2 * a * (data > 0) - a

return quantized
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The LC software: currently implemented compressions
Type Forms

Quantization

Adaptive Quantization into {c1, c2, . . . cK}
Binarization into {−1, 1} and {−c, c}
Ternarization into {−c, 0, c}

Pruning

ℓ0-constraint (s.t., ‖w‖
0
≤ κ)

ℓ1-constraint (s.t., ‖w‖
0
≤ κ)

ℓ0-penalty (α‖w‖
0
)

ℓ1-penalty (α‖w‖
1
)

Low-rank

Low-rank compression to a given rank

Low-rank with automatic rank selection for FLOPs reduction

Low-rank with automatic rank selection for storage compression

Low-rank with device-targeted compression

Additive Combinations

Quantization + Pruning

Quantization + Low-rank

Pruning + Low-rank

Quantization + Pruning + Low-rank
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The LC software: the ease of exploration

• Mix-and-match through compression tasks. We structured the software in such way

that any compression can be applied to any part of the model, and you can mix them

as well!

For example, the following semantics:

(layer 1, layer 3) → adaptive quantization k = 6
(layer 2) → low-rank with r = 3

Translates into the following code:

from lc.torch import ParameterTorch as P, AsVector, AsIs

compression_tasks = {

P([l1.weight, l3.weight]): (AsVector, AdaptiveQuantization(k=6)),

P(l2.weight): (AsIs, LowRank(target_rank=3))

}
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Example: Apples-to-apples comparison between compressions

Tradeoff on LeNet300 Tradeoff on VGG16
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See more on it in [9]
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Example: Additive compressions to achieve smallest AlexNets
The frameworks and software allows easy exploration of new compressions. For example,

how about additive combination of quantization and pruning?

Model top-1 size, MB MFLOPs

Caffe-AlexNet Jia et al. [11] 42.70 243.5 724

L1 → Q (1-bit) + P (0.25M) 39.67 3.7 228

L2 → Q (1-bit) + P (0.25M) 40.19 2.8 185

o
u

rs

L3 → Q (1-bit) + P (0.25M) 41.27 2.1 152

AlexNet-QNN of Wu et al. [24] 44.24 13.0 175

P→1Q of Han et al. [4] 42.78 6.9 724

P→2Q of Choi et al. [2] 43.80 5.9 724

P→3Q of Tung and Mori [22] 42.10 4.8 724

P→4Q of Yang et al. [26] 42.48 4.7 724

P→5Q of Yang et al. [26] 43.40 3.1 724

filter pruning of Li et al. [17] 43.17 232.0 334
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Conclusion and future work

• We have presented the Learning-Compression algorithm: and showed
how it can be applied to the problems low-rank compression for NNs.
• The resulting algorithms require alternation of two steps: learning (L)

step involving model loss and dataset and compression (C) step
involving actual compression problem.
• Our trained models achieve considerable amount of compression and

are on-par or better than other approaches.
• During the course of my PhD studies, we have extended the LC

framework to include following NN compressions:
• quantization (arxiv, CVPR2021)
• pruning (CVPR2018)
• low-rank (CVPR2020, DCC2021, ICASSP2021, ICIP2021)
• additive combinations of above (ECML2021)
• comparison of pruning, quantization, and low-rank (IJCNN2021)

• Many extensions are possible . . .
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Future work: New models

My work is primarily about neural networks for vision, but, other models are
of interest:
• language models like LSTMs, Transformers:

• a particular interest is in compression of (tall) softmax layers
• heteregenous structure of such models imply selection of “best” compressions

• recommendation systems

General ML models:

• probabilistic models (e.g., MMs and HMMs)
• kernel methods (for both classification and regression)

A particular challenge with these are a special constraints: e.g., with
HMM’s Gaussian emission matrices, weight must be psd
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Future work: Cost-based selection mechanisms

We have demonstrated the power of compression cost function C(W) that allows to select

best ranks for size, FLOPs and runtime.

min
W,Θ

L(W) + λC(Θ) s.t. W = ∆(Θ)

There are a lot of extensions on this front:

• Design of new cost-functions targeting:
• power-consumption in the data center/mobile-device/etc
• layout and placement of model (e.g., store W or WT , run everything on CPU or GPU?)
• utilization (cache misses, transfer speeds, loading times)

• Hardware-Compression co-design:
• design hardware features optimized for specific compressions/models
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Future work: Single entry for the world of model compression

Model compression is hard, but our LC framework, its extensions and software based on it

allow us to drastically simplify it for users:

• Users only need to provide an L-step implementation (SGD-based) and choose

required compressions from the library
• Not harder than training the original model

Due to its simplicity and competitive results, we believe it can be a single entry point to

model compression:

• as PyTorch or TensorFlow but for model compression

To do so, the following is required:

• include new models/selection mechanisms/compressions/results
• advertise/popularize among community members
• include out-of-the-box support for “standard” features (framework bindings, pipelines,

etc)
• create tutorials/workshops
• look for an industry support
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The end. Thank you!
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Easy exploration of compressions
Having an L-step implementation (you only need one), definition of compression is very

simple:

quantize each layer with

separate codebooks

compression_tasks = {

Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l2.weight): (AsVector, AdaptiveQuantization(k=2)),

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

prune all but 5%

compression_tasks = {

Param([l1.weight, l2.weight, l3.weights]):

(AsVector, ConstraintL0Pruning(kappa=13310)) # 13310 =

5%

}

prune first layer, low-rank to

second, quantize third

compression_tasks = {

Param(l1.weight): (AsVector, ConstraintL0Pruning(kappa

=5000)),

Param(l2.weight): (AsIs, LowRank(target_rank=10))

Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))
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Low-rank: experiments on CIFAR10 (selected ranks)

VGG16 ResNet20
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Low-rank with scheme selection: experiments on CIFAR10 (selected

ranks & schemes)

The final selected ranks and reshaping schemes for some of the compressed VGG16 on CIFAR10

test error FLOPs parameters
The selected scheme and rank over layers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

λ = 2.0 × 10
−5 5.90% 156M 4.8M

S1 S2 S2 S2 S3 S2 S2 S3 S2 S2 S2 S2 S2 31 11 9
16 32 71 97 116 238 263 254 292 172 122 99 105

λ = 7.5 × 10
−5 5.97% 78M 2.5M

S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 23 10 9
15 20 43 53 113 110 116 239 124 79 72 74 89
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Quantization, pruning, and low-rank: Comparison on MNIST

Tradeoff on LeNet300 Tradeoff on LeNet5
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Quantization, pruning, and low-rank: Comparison on CIFAR10

Tradeoff on ResNet32 Tradeoff on VGG16
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Why not to train smaller model in the first place?

We certainly can train smaller model (with fewer weights or layers) from scratch using

SGD. However, it requires many trials to find best small network architecture.

Another option: if model (loss L and model function f ) and decompression mapping are

both differentiable, we can directly optimize:

min
Θ

L(∆(Θ))

• Unfortunately, most of the compressions of interest are non differentiable
• Many tailored algorithms were proposed to bypass the non-differentiability of specific

compression forms (BinaryConnect, STE)
• There is still the problem of selecting the best form of ∆ (say, what should be the

ranks per layer?)

Generally, training a large model and then compressing it allows to peek into upper bound

of the network performance, and adjust expectations wrt smaller, compressed model.
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Convergence of the LC algorithm

The framework includes a large variety of compression problems that can be continuous

(low-rank with given rank, ℓ1 pruning) or combinatorial (rank selection, quantizaiton, ℓ0
pruning)

Convergence of the LC alternation to a local minimizer can be established for:

• convex, differentiable cases (quite generally)
• nonconvex, fully differential cases (more restrictive results)

However, most interesting cases are those with nonconvex losses and non-differentiable

constraints (quantization, ℓ0 pruning). For these problems:

• convergence results are of general interest and is an open problem
• have flavor of k-means: algorithm stops at a point of no further improvement
• empirically, algorithm performs very well
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